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1 Introduction

Our experience collaborating with experts from several
disciplines such as environmental science and engineering
[Porta et al. (2009)], hydrology, and mining has indicated
that many applications are interested in raw data from
sensor nodes, instead of aggregated data. This motivates
us to focus on a common service that can be applied to
many sensor applications: raw sensor data collection from
all nodes to one centralized server. Our discussion with
domain experts has also revealed that sensor applications
may have different Quality of Service (QoS, e.g., timeli-
ness and reliability) and Quality of Data (QoD, e.g., data
accuracy) requirements for sensor data collection. As an il-
lustrative example, consider a network of sensors monitor-
ing ground movement to detect presence/arrival of enemy
forces in a given region in a command and control applica-
tion. Timeliness and reliability of sensing (in the presence
of failures) might be of essence here if the countering ma-
neuver requires immediate detection. Such timeliness and
reliability requirements, however, come at certain costs,
namely additional communication overheads, energy costs,
etc. Furthermore, different applications over a given sen-
sor infrastructure may have differing quality requirements.
For instance, an online monitoring and actuation appli-
cation might have real-time requirements, an analysis ap-
plication over the same sensor system might only require
that data be collected in a repository (eventually) at a
given level of accuracy or spatial and temporal frequency.
Such differing application requirements may pose compet-
ing requirements on the underlying sensor data collection,
coordination, and storage mechanisms. For instance, from
the perspective of the archival application, it might be both
feasible and desirable that the data be collected, temporar-
ily stored, compressed and then transmitted to the repos-
itory. A real-time monitoring/actuation application, how-
ever, may demand low latency. The differing requirements
of the applications conflict with each other.

Lots of current research has primarily considered func-
tional aspects of distributed sensor systems focusing on
techniques to sense, capture, communicate, and compute
over sensor networks. To support different non-functional
(i.e., quality) needs of sensor data collection, most schemes
are implemented at different layers such as MAC layer,
routing layer, or data management layer. In fact, these
non-functional needs are cross cutting issues that are bet-
ter addressed by using cross-layer approaches. Further,
very few has considered the tradeoff between multiple qual-
ity needs, which can be quite common as seen in previous
examples.

We have made the following contributions in this paper.

• We have characterized the quality requirements for
wireless sensor applications in a systematic way, which
has not appeared in the existing literature.

• We are among the first to point out the multidimen-
sional quality requirements from sensor applications.
We have further identified two complementary types

of sensor applications in terms of the tradeoff between
quality and cost.

• We have summarized various ways to specify different
quality requirements.

• We have designed and evaluated an algorithm to sup-
port applications’ data accuracy needs. Our approach
demonstrates how to merge both push and pull strate-
gies to provide improvements in energy efficiency by
adapting to data change frequency and application re-
quest frequency. Further, our approach is capable of
providing insight into the validity of application data
models in an online fashion.

• We have developed a biologically-inspired mobile
agents approach to exploit the tradeoff bewteen re-
liability, timeliness and energy consumption in sensor
data collection. Our approach demonstrates how a
joint consideration of multiple quality needs can be
satisfied.

In this paper, we first present a systematic way to charac-
terize the quality requirements from wireless sensor appli-
cations in Section 2. We then present two studies to show-
case how an application’s single quality need or multiple
quality needs can be satisfied using different techniques.
The first case study uses a simple technique to demon-
strate how exploiting an application’s data accuracy tol-
erance can help conserve energy consumption (Section 3),
and the second case study uses mobile agents for joint satis-
faction of timeliness and reliability requirements from sen-
sor applications (Section 4). We hope to use this paper as
a conduit to inspire more interesting work in this area. We
conclude the paper in Section 5 with a list of suggested ar-
eas to ensure a holistic approach to quality aware sensing.

2 Characterization of Sensor Applications’ Requirements

The first step towards the goal of supporting sensor appli-
cations with different quality needs is to fully understand
the diverse needs of monitoring, archiving or forecasting
sensor applications. This requires a careful analysis of a
wide range of performance requirements, which define the
extent to which performance specifications such as timeli-
ness, reliability, and accuracy may be violated. We explore
applications’ quality requirements from several dimensions
as illustrated in Figure 1.

• QoS-timeliness may be specified in the format of pe-
riodicity, deadline, or a certain relative order of differ-
ent tasks. For instance, in the subsurface contaminant
tracking scenario, conductivity readings will only be
collected after the temperature readings suggest the
existence of a potential plume. Current sensor sys-
tems support a basic form of time constraints - data
collection frequency as in TAG [Madden et al. (2003)]
and Cougar [Demers et al. (2003)]. It is worthwhile
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Figure 1: Multidimensional quality requirements from sen-
sor applications

to investigate other timing notions used in temporal,
real-time databases [Ozsoyoglu and Snodgrass (1995);
Ramamritham (1996); Tansel et al. (1994)] and ac-
tive databases [Chakravarthy et al. (1994); Sistla and
Wolfson (1995)], and then develop a variety of timing
semantics appropriate for distributed sensor environ-
ments.

• QoS-reliability is most commonly defined as the per-
centage of nodes participating in the collection among
all the nodes in the sensor network [Han et al. (2005);
Sankarasubramaniam et al. (2003)], or as a set of
nodes that cover the entire sensor network [Park et al.
(2004)]. In addition to supporting these reliability
specifications, we have developed more informative re-
liability metrics with well-defined semantics. For in-
stance, the recall metric used in information retrieval
may be used to indicate the desired completeness of
the answer set, if the application is gathering all the
readings that meet certain conditions [Lazaridis et al.
(2006)]; reliability can also be specified as tolerable
thresholds on “false-alarm” or “missed-event” proba-
bilities (i.e., bounds on detection or estimation accu-
racy) [Hwang et al. (2005)].

• QoD (Quality of Data) desired from the sensing sub-
strate may be imposed on individual sensor values, or
on an answer computed over readings from a set of
sensor reports. QoD requirements may be specified as
desired data freshness, absolute or relative accuracy
bounds. For instance, an application may be satis-
fied with a report that is off the true value by ±5
[Han et al. (2004)] (i.e., absolute accuracy) or by 10%
[Sharaf et al. (2004)] (i.e., relative accuracy).

• Cost is simply defined as energy consumption since en-
ergy is the most stringent resource constraint in sensor
networks.

For the multidimensional requirements (QoS, QoD,
Cost) from both the application and the system, a sen-
sor application may have requirements for one of them, or
a combination of them with different preferences towards
different constraints. These preferences will be used to

guide future monitoring, sensing and collection plans. In
practice, it may be very difficult (if not impossible) to sat-
isfy all the specified requirements simultaneously, to reach
the multi-constraint optimal point in reality given the dy-
namic network conditions and severe resource constraints
in the sensor network. Therefore, we allow applications to
specify their preference towards different constraints.

Wireless sensor networks (WSNs) have typically been
built with a high degree of dependency between applica-
tions and the underlying communication protocols. Such
dependency is justified as necessary to achieve energy ef-
ficiency. However, it generates rigid systems with sensor
networks specifically designed to suit a particular applica-
tion. While providing a platform that accommodates all
types of sensor applications is very difficult, we intend to
build a middleware architecture that can support a rep-
resentative class of sensor applications - those with mul-
tiple performance requirements. We observe that there
exists a fundamental tradeoff between the overhead in-
troduced in supporting the application and the QoS/QoD
achieved. We refer to this characteristics as the QoS-QoD-
Cost tradeoff. If we consider Cost as one dimension and
composite performance as another dimension, the applica-
tion fixes the position of one dimension, and the system is
expected to maximize the position along the other dimen-
sion. Therefore, we will support two complementary types
of sensor applications:

• maximize the QoS/QoD without exceeding the energy
budget (Figure 2.a): This applies when the lifetime of
a sensor network is known and the application would
like to get as high-quality data as possible. For in-
stance, in the immediate aftermath of a toxic chem-
ical leakage, timely and accurate communication of
collected data is much more important than energy ef-
ficiency, hence the application would like to maximize
QoS-timeliness and QoD subject to the constraint of
remaining energy.

With the finite remaining energy level on each sensor
node, we are faced with a joint optimization prob-
lem when the objective of an application is to maxi-
mize more than one metric (i.e., two or three among
reliability, timeliness, accuracy). Existing work has
addressed limited subsets of the problem space. Us-
ing decoupled strategies that optimize each perfor-
mance goal in separate phases can unfortunately lead
to very expensive data collection plans, since these
performance goals are often interdependent. The de-
cision on achieving one objective affects the decision
on achieving the other. For instance, improving reli-
ability might entail retransmission of packets, which
may lead to increased latency.

One strategy is to design a new composite evaluation
metric. Most of the existing work focuses on one single
performance metric, such as data freshness (i.e., the
time elapsed from data generation time to the data
collection time) [Lu et al. (2005)], data fidelity (i.e.,
ratio of nodes participating in the collection to all the
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Figure 2: QoS-QoD-Cost tradeoffs in sensor applications

nodes in the area) [Lu et al. (2005)], data accuracy
measured as how much the obtained data deviates
from the real value [Han et al. (2004)], or as combined
spatial and time distortion [R. Cristescu and M. Vet-
terli (2005)]. We believe it is a a better approach if
we take into account pre-specified application prefer-
ences towards different performance goals and define a
composite system performance metric to facilitate the
identification of an “optimal” point that would maxi-
mize the multiple QoS or QoD requirements. Alterna-
tively, we can investigate the tradeoff between these
performance goals and develop a collection plan that
optimizes all the goals. More specifically, we might
be able to derive theoretical upper bounds on QoS-
timeliness, QoS-reliability and QoD, given the energy
constraint. We can further design online algorithms
that attempt to either maximize the composite perfor-
mance metric as described above, or jointly optimize
multiple goals simultaneously.

• minimize energy consumption while achieving a mini-
mum acceptable level of QoS/QoD (Figure 2.b): This
applies when a sensor network needs to consume as
little energy as possible in order to last longer while
ensuring the satisfaction of application needs. For in-
stance, careful energy management of sensor nodes is
critical to monitor remnant or new plumes in the days
and weeks after the plume disaster; hence, the appli-
cation would like to minimize energy consumption as
long as QoD reaches a certain level.

The multiple constraints can be any combination of
requirements for QoS-timeliness, QoS-reliability and
QoD. To illustrate the complexity involved in meet-
ing multiple constraints, let us consider an example.
An application might want to minimize energy con-
sumption while ensuring the minimum data accuracy
and maximum tolerable latency. Since the granularity
at which the sensor data is maintained at the server
directly affects the amount of communication, and a
sensor consumes energy even when it is idling, the
total energy consumption is a function of data granu-
larity and sensor idling time at different power saving
states. Therefore, this is a multi-variable optimization
problem subject to multiple constraints. An arbitrary

combination of algorithms for satisfying timeliness re-
quirements and those for meeting data accuracy needs
will result in undesirable system performance, since
these constraints are not orthogonal and varying one
will typically affect the others. Hence, it is crucial to
understand the interplay between different application
needs.

This paper will focus on the second case by presenting two
case studies: the first one exploits the applications’ data
accuracy tolerance to conserve energy consumption, and
the second one explores how to address composite reliabil-
ity and timeliness needs from applications.

3 Case Study One: Supporting Single Quality Need

In this section, we use data accuracy tolerance of sensor
applications as an example to demonstrate how a single
quality constraint can be met while minimizing energy
consumption. WSNs have been used to support a variety
of applications including those that can use approximate
rather than exact sensor values, as long as the values are
within a tolerable range of the true values. Due to the
limitation of sensing technologies or the possibility of mis-
calibrated sensors, It is justified to use approximate val-
ues. Furthermore, as sensors do not query every point in
the environment, their samples are already at some level
of approximation [Deshpande et al. (2005)]. The use of
approximate data allows flexibility on when to send data,
creating an opportunity to decrease the amount of energy
used by motes.

Another need in WSNs is to be able to validate data
models. A framework that enables checking whether a
model is accurate would greatly help in selecting and cal-
ibrating a model. One application that has these needs is
the tracking of contaminant plumes in underground water
flows. Researchers in the field have noted that precise value
readings are not specifically required and that data within
a bounded error percentage is useful for modeling the con-
taminant flows. For example, a 3% error percentage would
mean that if a specific reading were at 100, any value be-
tween 97 and 103 would be accurate enough. WSNs can



potentially aid the development of contaminant flow mod-
els by verifying and developing models as well as tracking
the contaminant flow.

The above issues will be addressed through a system
that transmits data in both a push and pull fashion. The
objective is to minimize the amount of energy needed by
pushing data from the mote to the base station (i.e., a
sensor driven update) when more efficient, or to pull data
from the mote by query otherwise (i.e., a query driven
update). Furthermore, our approach will significantly help
application domain experts; the effectiveness of the data
model can now be evaluated in an online fashion, since a
poor model would often mispredict and result in frequent
sensor driven updates.

Most of the existing work uses either a push or pull
method exclusively for data gathering. In the event-driven
techniques, determining the frequency of updates based
upon the current value and known value at the base sta-
tion has been used [Han et al. (2007)]. In the query driven
techniques, reductions in energy can be achieved by aggre-
gation of data in queries to reduce data sent back [Deli-
giannakis et al. (2004)] or statistically modeling the data
at the base station to reduce queries [Deshpande et al.
(2005)]. In contrast, this work dynamically switches be-
tween push and pull techniques based on system conditions
[Hakkarinen and Han (2008)].

3.1 Problem Formulation

A particular mote may have multiple sensors that an appli-
cation needs, so systems should be able to handle multiple
types of sensor data. In specific, an application’s data ac-
quisition requests may be converted to many individual
requests for specific sensors on a mote. The application
may allow for a percentage of error on any value returned.
Therefore, an application request contains an error per-
centage δ that is tied to the sensor attribute sought. As
the base station will hold values that are sent by the motes,
it must be decided the length of time that the value is valid.
The concept of validity, or lifetime, takes care of this. If
a sensor value is sent to the base station with a validity
τ , then the base station can return that result with some
confidence ǫ when the application requests it. Note that
the base station will return only the result, which will im-
plicitly have confidence greater than ǫ. Some sensors, such
as a contaminant sensor, may vary by a small amount be-
tween two periodic samplings of the sensor, whereas others
may of only be interest when a dramatic shift occurs, such
as the flow. Thus, the needed percentage differs depend-
ing on the type of sensor for a given sampling schedule.
Overall, this means an application request will consist of a
tuple of four fields: request = <mote ID, sensor ID, error
percentage δ, validity confidence ǫ>. An example of a re-
quest would be <Mote 8, Sensor 1, 3%, 95%>, indicating
that the application is seeking the sensor value of Sensor
1 off of Mote 8 within 3% of the value at the mote at least
95% of the time.

Pre-specified data models of the sensor data will be used

to determine whether a sensor driven update should occur,
as well as help in determining the validity. The data model
will be assumed to be based on the application and pro-
grammed on the motes before the WSN is installed. There
will need to be a sensor data model for each sensor type.

WSNs may be set up with many forms of topology. De-
pending on use, an application may require a network as
simple as a single hop network, or multi-hop networks
where motes will have their messages relayed through other
motes to the base station. In terms of flexibility, a data
collection system that is not specific to the network under-
neath is desirable. Our approach presented in this paper
is irrespective of network model.

Problem statement: The problem can be stated for-
mally as follows. Given data models for each sensor type
j, error percentages δj , validity confidence ǫ, an unknown
distribution of application requests r =< i, j, δj , ǫ > for
mote i, cost to transmit and receive a query (Cqdu.i), cost
to transmit a sensor driven update (Csdu.i), the objective
is to decrease the summed cost of responding to all applica-
tion requests with values meeting δj and ǫ for each request.
The output back to the application will be a value that is
within δj at least ǫ percent of the time. In other words,
the objective is to decrease energy consumption of sensor
data collection given data models and allowed error per-
centages. To accomplish this, we develop reasonable and
efficient methods to approximate the probability of receiv-
ing a query driven update as well as to determining the
validity lifetime τ of a sensor value.

3.2 A Hybrid Push and Pull Algorithm for Sensor

Reporting

There are two different ways to get data from sensor net-
works. One is to push, i.e., to let motes report their read-
ings; the other is to pull, i.e., to let the base station send
out queries. The overall objective is to determine whether
sending an update or waiting for a query has a lower ex-
pected energy consumption.

Theoretically, the desired approach would be to com-
pare the message cost of a sensor update multiplied by the
probability of a sensor update against the message cost of a
query multiplied by the probability of waiting for a query.
This intuitively makes sense as when the number of queries
from the application is high and the number of sensor up-
dates is low, motes use sensor driven updates and save
energy by not updating values that are sufficiently accu-
rate. Alternatively, when sensors exceed the error bounds
regularly and would require many updates, or when the ap-
plication is not requesting data from a sensor frequently,
the mote will wait for queries and only expend energy when
the application actually needs the data. Therefore, if the
following predicate is true, a sensor driven update is sent,
where Psdu is the probability of sensor driven updates and
Pqdu is the probability of query driven updates.

Psdu × Csdu ≤ Pqdu × Cqdu (1)



This decision will be based upon the error percentage
given by the application and changes in sensor values. The
error percentage δj will create error bounds based upon the
current value at the base station VBS.i,j . The error bounds
for a current value v will be within ±δj × v with respect
to the last reported value at the base station. If an update
is to be sent, a mote can calculate the amount of time
a reading will likely remain within the error bounds, and
therefore send an update to the base station with a data
validity. This will allow the base station to return that
value on application request. If the data is no longer valid,
the base station will query the mote.

As we can see from the discussions above, the main idea
of our algorithm revolves around four main factors: prob-
abilities of query driven(Pqdu) and sensor driven updates
(Psdu), and costs of query driven (Cqdu) and sensor driven
updates (Csdu).

The probabilities are non-trivial to calculate, specifically
because the number of sensor driven updates are depen-
dent on the number of queries, and vice versa. If a sensor
driven update is sent to the base station, for the time that
the data is valid, no queries will need to be sent. Alter-
natively, if a query just obtained data from a sensor, it is
likely no sensor driven update will be needed until that
data is no longer valid.

For the probability of a query, Pqdu, an approximation
will be used based upon the frequency of queries received
at the mote. The probability of a sensor driven update,
Psdu, will be approximated by a combination of the sensor
data model provided by the application, the current value
VMote.i,j , VBS.i,j, and δj. Using the data model, we can
derive the probability Pin.i,j,η, that the sensor will stay
within δj within an amount of time η. For instance, a
simple data model may be to assume that the value will
change in a Gaussian fashion with a similar mean and vari-
ance to recent history. The application will provide this
data model so any amount of complexity is possible. Note
that Psdu is approximated by 1 - Pin.i,j,η as Pin.i,j,η is the
probability when no sensor update is needed. By looking
at equal times for estimation of sensor update probability
and query update probability, the two approximations can
be directly compared.

As the cost of a message is a predominant cost in wire-
less networks, we use the number of messages sent as an
approximation of energy cost. For a query, messages must
be sent both from the base station to the mote and back.
For a sensor update, only a message from the sensor to the
base station needs to be sent. In a typical network, these
costs would be calculated as an average number of mes-
sages actually sent, including retransmission messages. In
a multi-hop network this would require tracking the mes-
sage cost of using intermediate motes to relay messages
between the base station and the mote of interest.

The amount of time in the future to attempt to perform
this calculation on is not obvious, as the model will have
higher uncertainty the further in the future, but the en-
ergy savings would be minimal if the time is too short. A
good heuristic is to perform the calculation until the next

scheduled sampling. This would allow a time in which the
model is still able to predict with reasonable certainty, but
long enough as no additional messages would need to be
sent.

Hence, the criteria for sending a sensor-driven update is
as follows, assuming that t is the present time.

(1 − Pin.i,j,η) · Csdu.i ≤ ψi,j · (η − t) · Cqdu.i

If it is decided to use a sensor driven update, the data
model can again be used to predict how long the value
would remain valid. The mote can send the base station
a value and validity time for which the base station can
assume that the data is valid. During this validity life-
time, the base station will answer any application requests
directly rather than sending a query.

Discussions: The approach is suited to bounding energy
costs as the ratio of query frequency against sensor data
changes grows large or approaches zero. In the former
case, the number of queries coming from the application
for a mote is high and thus the mote will be more likely
to send data via sensor update. This would be effective
as all of those queries will not have to be propagated by
messages to the mote. In the latter case, the algorithm is
effective in that it will not report frequent data changes
when the application is not sending application requests
for the mote. When the expected cost of sensor driven
updates and queries are roughly equivalent each method
will expected to have about the same cost. Note that our
approach is independent of underlying network structures,
i.e., the approach lies in the data management layer which
is above the transport and network layers.

3.3 Performance Evaluation

A performance evaluation was done to examine the via-
bility of the proposed push and pull hybrid approach in
terms of reducing energy usage. In specific, the evaluation
was developed to determine how much energy, measured
in number of messages, is used through this algorithm (re-
ferred to as ‘HYBRID’) relative to two more traditional
approaches. It also examined what circumstances the al-
gorithm would perform the best and most poorly com-
pared to traditional approaches. In specific, the algorithm
was compared against two standard approaches: a query
driven update only approach (referred to as ‘QDU-ONLY’)
and a sensor driven update only approach (referred to as
‘SDU-ONLY’). In the QDU-ONLY approach, each mote
only sends data when a query is received. This would only
occur when an application request has received by the base
station and as such there is no use for error percentage (δ)
or a data model. In the SDU-ONLY approach, the sen-
sor will send data to the base station whenever the data
at the base station is no longer valid. Note that this ap-
proach does not require a specific validity τ to be reported
as the mote will send the data only when a new reading is
beyond δj .



In order to compare the three approaches a simulation
was created using NesC and TOSSIM 2.0, the most widely
accepted sensor network simulator. The metric used was
the total number of messages sent during equal periods of
simulation. This was measured at various rates of applica-
tion requests, sensor change, and application error percent-
ages. Each simulation was run 20 times for 500 simulated
seconds. The application requests were modeled by peri-
odically choosing a mote and sensor and then requesting
that value from the base station. Additionally, the per-
formance at various levels of sensor error percentages were
evaluated.

Sensor values were created as a random walk with a pa-
rameterized change period. At each interval, the random
walk will move up or down one unit, starting with a uni-
form distribution in the range of 150 to 250.

A Normal distribution was used for the data model as a
random walk distribution converges to a Normal distribu-
tion with mean of the initial value and variance of number
of steps multiplied by the square of the step size. The
mean was taken to be the current value and the number of
steps was determined by the range allowed by the sensor
error percentage. In practice, any data model can be used
since our approach does not rely on a specific data model.

Experimental Results: Figure 3 shows the behav-
ior of the three methods when the rate of data change
is varied. The simulations showed that HYBRID sends
fewer messages than QDU-ONLY in cases of higher appli-
cation request rates and better than SDU-ONLY for faster
rates of data change. As is expected, QDU-ONLY does not
change significantly with the rate of data change, and SDU-
ONLY decreases dramatically as the rate of data change
decreases. HYBRID is affected by this rate of change, but
not to the extent that the SDU-ONLY is affected. As the
frequency of change slows down, there is a point at which
SDU-ONLY will send fewer messages than HYBRID. One
reason for this is that when the sensor data change rate
approaches the point that queries are never more efficient,
both SDU-ONLY and HYBRID will send an update if the
sensor value exceeds the error bounds, but HYBRID addi-
tionally sends an update if the validity expires.

Figure 4 shows the behavior of the the three meth-
ods when the rate of application requests is varied. As
expected, SDU-ONLY is not affected by the application
request rate, and QDU-ONLY dramatically decreases mes-
sages sent as the frequency diminishes. HYBRID also de-
creases greatly as the frequency diminishes, however not
at the same rate as QDU-ONLY. Shown in this figure is
the point where QDU-ONLY will be more efficient, how-
ever the approaches remain competitive thereafter. Both
HYBRID and QDU-ONLY decrease along an exponential
curve as the application request period increases, however
the QDU-ONLY is a steeper exponential curve. One rea-
son for this is that the HYBRID approach uses the average
number of queries in deciding whether to send an update
or not, the more queries that are sent pushes the HYBRID
approach back toward using sensor driven updates.

Figure 5 shows the behavior of the three methods when

Figure 3: Impact of data change rate on the data collection
overhead (query period = 1 s, application error percentage
=3%) with 95% confidence interval.

Figure 4: Impact of application request frequency on the data
collection overhead (sensor change period = .3 s, application
error percentage = 3%) with 95% confidence interval.

the application error percentage is varied. As expected,
QDU-ONLY is not affected by the change. Both SDU-
ONLY and HYBRID are affected by the change in the
error percentage, however similarly to the change in sen-
sor period, the SDU-ONLY mode is affected more than the
HYBRID method. In fact, the HYBRID method appears
to level out as the sensor percentage grows large. This in-
dicates that for larger error percentages SDU-ONLY will
outperform HYBRID. However, for more stringent per-
centages, such as 3% or 5%, HYBRID will outperform or
be competitive with SDU-ONLY. For percentages greater
than this, it would be better to use an approach such as
SDU-ONLY. The reason for this is similar to the reason
a longer sensor change period benefits SDU-ONLY more



than HYBRID. Whether a larger error percentage or a
longer average sensor change period, the length of time
that the value will likely remain in range increases.

Figure 5: Impact of application error percentage on the data
collection overhead (query period = 1 s, sensor data change
period = .1 s) with 95% confidence interval.

As stated previously, our approach also works for multi-
hop networks. To keep it simple, our evaluation so far has
only been conducted on a one-hop network, intending to
merely validate our approach. In practice, many sensor
networks use clustering based or multi-hop based commu-
nication. To obtain results for non one-hop networks, a
few key changes would need to be made. The relaying
nodes could evaluate if adding their data to relayed pack-
ets would be efficient. Furthermore, nodes that do not
communicate directly with the base station would require
either to develop a protocol or to have a MAC layer that
would provide an adequate estimate of energy used to send
a message to or receive a message from base station. Many
strategies are available for such information, however, they
may require additional energy being spent due to increased
packet size or administration messages. A finished solution
to this problem is out of the scope of this paper, but we
would like to use the presented ideas to demonstrate that
exploiting application’s error tolerance can help conserve
energy consumption and also validate applications’ data
models.

4 Case Study Two: Supporting Multiple Quality Needs

In this section, we use composite need of reliability and
timeliness as an example to demonstrate how multiple
quality constraints can be met while conserving energy
consumption. WSNs are often deployed to detect events
that are distributed spatially such as fire spreading and oil
spills. Due to the sheer number of sensor nodes and con-
stant failures in the network, the detection of an event is of-
ten determined when a certain number of nodes report the

same observation. For instance, a potential fire breakout
may be identified when 80% of nodes report their tempera-
ture readings over 100 degrees. Without loss of generality,
an event is identified when a certain percentage (α%) of
nodes report their readings over a threshold. Furthermore,
in order to enable a prompt response to the event, these
sensor reports must reach the base station within a reason-
able timeframe (D time units). Thus, a WSN application
requires α% of sensor reports within D time units for an
event detection while minimizing energy consumption.

Existing work mostly considers reliability, timeliness and
energy consumption largely in isolation. Few attempts
have been made to satisfy these requirements simultane-
ously. This simultaneous satisfaction imposes several chal-
lenges. First, reliability and timeliness are two compet-
ing goals. The requirement on reliability (i.e., the number
of sensor reports) ensures that the base station can have
enough information to make informed decisions on a de-
tected event. The requirement on timeliness (i.e., dead-
line) aids timely decisions on a detected event. In order
to ensure reliable data delivery, hop-by-hop recovery is of-
ten applied; however, this may not meet a given timeli-
ness requirement. Second, reliability and energy efficiency
conflict with each other. The more data the base station
receives, the more reliable decisions can be made based on
the data; however, more energy is consumed for extra data
retransmissions and recovery actions. Third, there exists
a tradeoff between timeliness and energy efficiency. In or-
der to detect an event sooner, more energy is drained from
nodes because more data transmissions are required.

We address the above challenge by designing WSN ap-
plications after biological systems. This design strategy is
motivated by an observation that various biological sys-
tems have developed the mechanisms to meet conflicting
requirements simultaneously. For example, a bee colony
simultaneously maximizes the amount of collected nectar,
maintains the temperature in a nest, and minimizes the
number of dead drones [Seeley (2005)]. If bees focus only
on foraging, they fail to ventilate their nest and remove
dead drones. Given this observation, this paper proposes
a biologically-inspired architecture for WSN applications
to adaptively balance the tradeoffs among conflicting re-
quirements.

The proposed architecture models each WSN application
as a group of multiple mobile agents. This is analogous
to a bee colony (application) consisting of bees (agents).
Agents read/collect sensor data (as nectar) on individual
nodes (modeled as flowers), and carry (or push) the data
through multiple hops to the base station, which is mod-
eled as a nest of bees. If they do not satisfy a desired
level of reliability (i.e., the number of sensor data required
for an event detection), extra agents leave the base sta-
tion (nest) to the network for collecting (or pulling) extra
sensor data from nodes. Agents perform these push/pull
functionalities by invoking biologically-inspired behaviors
such as migration, swarm formation and replication.

In order for agents to optimally perform their behav-
iors in terms of reliability, timeliness and energy efficiency,



agent behaviors are formulated into a well-known NP-hard
problem, the Vehicle Routing Problem (VRP). Agents per-
form a decentralized and centralized VRP heuristics to
push and pull sensor data, respectively. Simulation results
show that the VRP-formulated migration behavior allows
agents (i.e., WSN applications) to adaptively balance the
tradeoffs among reliability, timeliness and energy efficiency
and outperform an existing similar mechanism.

4.1 Problem Formulation

This paper assumes WSN applications, each of which re-
quires the base station to collect at least NR sensor data
within D time units. NR is referred as the desired reliabil-
ity. Nrd (the actual reliability) denotes the actual number
of data received by the deadline. In order to reliably detect
an event, Nrd ≥ NR. In other words, each WSN applica-
tion requires the normalized reliability Nrd

NR
≥ 1 while min-

imizing energy consumption. In order to formally state
the problem at hand, we use the following notations to
describe WSNs. A WSN is considered as a graph G(V,E).

• V = {v0, v1, ..., vn} is a vertex set, where v0 is the
base station. V ′ = V −{v0} is a set of n sensor nodes.
Each node periodically generates sensor data.

• E = {(vi, vj)|vi, vj ∈ V ; i 6= j} is an edge set. An edge
is established from the node vi to vj if vi can transmit
a packet to vj . Due to the nature of asymmetric com-
munication in WSNs, an edge is directed; (vi, vj) ∈ E

does not necessarily mean (vj , vi) ∈ E.

• cij is a non-negative weight associated with the edge
(vi, vj). It represents the cost for moving an agent
between the nodes vi and vj . We will later describe
the cost function to determine cij .

• tij is the latency for an agent to move from the node
vi to vj .

• m is the number of agents. Each agent can carry a
limited size S of data due to the limitation of packet
size. This is a constraint on how many nodes an agent
can collect data from.

• Rk is a migration route for the agent k to follow. CRk

is the cost of moving the agent k along the route Rk.
CRK

=
∑

(h,h′)∈Rk
chh′ ; h′ is the next hop node of the

node h in the route Rk.

• TRk
is the latency for the agent k to move along the

route Rk. TRk
=

∑
(h,h′)∈Rk

thh′ .

The problem at hand is to, given a set of n nodes, de-
termine a set of m agents that can satisfy Nrd

NR
≥ 1 and

the migration route (Rk) of each agent such that
∑
CRk

is minimized subject to maxTRk
≤ D.

We can reduce this problem to Vehicle Routing Problem
(VRP). VRP can be described as follows. Let there be n
demand points in a given area, each demanding a quantity
of weight Qi (i = 1, 2, · · · , n) of goods to be delivered to

it. The goods are stored at a depot, where a fleet of ve-
hicles is stationed. Vehicles have the identical maximum
weight capacity and maximum route time (or distance)
constraints. They must all start and finish their routes at
the depot. It is assumed that Qi is less than the maxi-
mum weight capacity of each vehicle and Qi is delivered
by a single vehicle. In VRP, both the required number of
vehicles and their routes are unknown. The objective of
VRP is to obtain a set of routes for vehicles to minimize
their total route time. In fact, VRP is an m-TSP problem
with two additional constraints: the maximum weight ca-
pacity and maximum route time for each vehicle. In our
problem, there are n sensor nodes (demand points) in the
network. Each node vi has a sensor data of size li bytes to
be delivered to the base station (the depot) by an agent (an
vehicle). The packet size limitation in WSNs is analogous
to the vehicle weight capacity in VRP. The timeliness con-
straint in WSNs is mapped to the maximum vehicle route
time in VRP.

Cost Function: We next define the function to deter-
mine the link cost between the node vi and vj (cij). We
use packet loss rate to determine link cost. To avoid the
asymmetric nature of communication links, the link cost
cij is determined as fij × fji, where fij is the loss rate to
transmit packets (agents) from the node vi to vj . Packet
loss rate simultaneously impacts the reliability, timeliness
and energy efficiency of sensor data transmission (agent
transmission). Lower packet loss rate better meets all of
the three requirements.

Packet loss rate is measured when nodes are deployed.
Currently, assuming that WSNs are semi-static [Woo et al.
(2003); Meliou et al. (2006); Zhao and Govindan (2003),
packet loss rate is measured at the beginning of a WSN
operation. It can be periodically measured and updated;
however, it is out of this paper’s scope. Each node trans-
mits a set of packets to each neighboring node. Each
packet contains its sequence number and the total number
of transmitted packets. Upon receiving a set of packets,
each neighboring node determines packet loss rate based
on the number of received packets.

4.2 Biologically-inspired Mobile Agents

In order to solve the problem at hand, this paper proposes
to use biologically-inspired mobile agents in a push and
pull hybrid manner. There are two types of agents: event
agents and query agents. An event agent (EA) is deployed
on each node. It carries (or pushes) a sensor data to the
base station using multiple hops. On its way to the base
station, each EA swarms with other EAs to aggregate as
many sensor data as possible as long as it meets a given
deadline. Due to inherent failures in WSNs, EAs may not
be able to satisfy the desired reliability (the number of
sensor data required for an event detection). In this case,
query agents (QAs) are created at the base station and dis-
patched to the network for collecting (or pulling) missing
sensor data from nodes. Agents (EAs and QAs) implement
the following behaviors.



• Replication: Agents (EAs and QAs) may make a copy
of themselves. An EA replicates itself on a node when
it detects an event of interest, which is application-
specific and may simply be a sensor reading exceed-
ing a threshold. A replicated EA contains collected
sensor data can carries to the base station. A QA is
replicated at the base station and dispatched to the
network to collect sensor data from nodes.

• Swarming: Agents (EAs and QAs) may swarm (or
merge) with other agents on their way to the base
station. EAs swarm with other EAs, and QAs swarm
with other QAs. With this behavior, multiple agents
become a single agent. The resulting (swarm) agent
aggregates sensor data. This data aggregation saves
power consumption of nodes because in-node data
processing requires much less power consumption than
data transmission does.

• Migration: Agents may move from one node to an-
other. Migration is used to deliver agents (sensor
data) to the base station. There are two ways for
agents to move.

– Chemotaxis walk: The base station periodically
propagates base station pheromones to individ-
ual nodes in the network. Their concentration
decays on a hop-by-hop basis. (Each pheromone
evaporates in a certain time period.) Agents
(EAs and QAs) can locate the base station ap-
proximately, and move to the base station in the
shortest paths by sensing pheromone’s concen-
tration gradient. Base station pheromones are
designed after the Nasonov gland pheromone,
which guides bees to move toward their nest [Free
and Williams (1972)].

– Sidestep walk: In addition to the chemotaxis
walk, each EA may sidestep the shortest migra-
tion path and move to a neighboring node that
has the equal or longer distance to the base sta-
tion, as long as the EA meets a given deadline to
reach the base station. This behavior encourages
EAs to perform swarming-based data aggrega-
tion by increasing the number of nodes EAs visit.
QAs are not allowed to perform this behavior.

Agents perform their behaviors with VRP heuristics.
We propose a decentralized VRP heuristics for EAs, and
leverages an existing centralized VRP heuristics for QAs.
Particularly, these VRP heuristics are used to answer the
following questions. (1) Where and how should EAs repli-
cate themselves? (2) How many agents (EAs and QAs)
should be created? (3) How should each agent (EA and
QA) move?

A decentralized VRP heuristics for Event Agents:

EAs implement a decentralized VRP heuristics to carry
sensor data to the base station by a given deadline. To
the best of our knowledge, there is no existing heuristics

to solve VRP in a decentralized way. We propose a de-
centralized greedy algorithm to govern the EA behaviors.
The proposed algorithm uses a cluster-based approach to
determine where and how EAs replicate themselves. Nodes
are grouped to form clusters, and an EA replicates itself on
each cluster head when it detects an event. Each cluster
has one-hop topological radius, and all neighboring nodes
of a cluster head become its cluster members.

Cluster head election is designed to maximize the num-
ber of cluster members by choosing a sensor node who has
many neighboring nodes. In this process, each node be-
comes idle first for Tidle time units. It calculates Tidle by
randomly choosing a number between zero and Tmax/N .
Tmax is a constant that specifies the bound of cluster head
election period, and N is the number of neighboring nodes.
After this idle period, each node becomes a cluster head
and broadcasts an ADV (advertisement) message to its
neighboring nodes. However, if a node receives an ADV
message from any of its neighboring nodes during the idle
period, it becomes a cluster member of the node who orig-
inates the ADV message. Each cluster member sends a
JOIN message to its cluster head so that the cluster head
know who are cluster members. Through this process, clus-
ters are uniformly distributed and cover the entire network.
Note that each node always belongs to a single cluster; if it
receives multiple ADV messages during its idle period, it
responds to the first ADV message and ignores subsequent
ones.

When an EA detects an event on a cluster head, the
EA replicates itself one or more times. The replicated EAs
visit cluster members to collect sensor data from them.
This way, each EA aggregates sensor data and carries the
aggregated data to the base station. The ideal number of
replicated EAs per cluster is ⌈n

s
⌉, where n is the expected

number of nodes in a cluster and s is the number of data
that a single EA can carry. If an EA already contains s
number of data and cannot contain any more, the EA is
refereed as a fat EA. If an EA can still contain data, it is
referred as a slim EA.

Each fat EA moves toward the base station on a hop by
hop basis by selecting the next hop node that minimizes
the link cost (cij). This allows fat EAs to increase the
chances to reach the base station by a given deadline.

By default, each slim EA also chooses the next hop node
that minimizes link cost as well. However, when it finds a
cluster on its way to the base station and has not visited
the cluster’s head node, the EA sidesteps to the cluster
head for swarming with other slim EAs as as far as it meets
a timeliness constraint. If there is no slim EAs on the
cluster head, the EA stays there for a period of time before
moving to the base station again. This period increases the
chances for a waiting EA to swarm with other slim EAs
while allowing it to reach the base station within a given
time constraint.

The waiting period of each slim EA is calculated by each
cluster head based on a given deadline and the latency from
the cluster head to the base station. Let Td be the deadline,
and ti,b be the latency from the cluster head i to the base



station, a slim EA at cluster head i can wait for Td − ti,b
before it starts moving towards the base station. This
waiting time allows slim EA to move to the base station
within the deadline, as long as the deadline is greater than
the longest traveling time. In addition, the waiting time
allows slim EAs to increase the chance to combine with
other slim EAs. For instance, we assume that on its way
to the base station, a slim EA at cluster head i has to visit
cluster head j which also has a slim EA. Let ti,b and tj,b
be the latency from the cluster head i and j to the base
station respectively. The traveling time from the cluster
head i to j, ti,j , is then approximately ti,b − tj,b. The slim
EA at cluster head i will wait until Td− ti,b, while slim EA
at cluster head j will wait until Td − tj,b. When slim EA
at cluster head i starts moving at Td − ti,b, it will reach
cluster head j at time Td − ti,b + ti,j . This is the same
as the time that slim EA in cluster head j is supposed to
leave, which is Td − tj,b. So, the two EAs will combine and
then leave cluster head j. This waiting and combination
process is performed repeatedly along the way to the base
station. In practice, the waiting time can be considered
as an upper bound instead of a hard deadline. Therefore,
an EA may leave a cluster head before the waiting time
expires.

A centralized VRP heuristics for Query Agents:

QAs implement a centralized VRP heuristics to visit a cer-
tain number of nodes from the base station and collect ex-
tra sensor data on the nodes. To find an optimal number
of QAs and also traveling path of each QA, Clarke-Wright
Savings algorithm [Clarke and Wright (1964); Lenstra and
Kan (1981)], a well known VRP solving algorithm, is used
with some modifications. The Clarke-Wright Savings al-
gorithm is an heuristic algorithm which uses constructive
methods to gradually create a feasible solution with mod-
est computing cost. Basically, the Clarke-Wright Savings
algorithm starts by assigning one agent per vertex in the
graph. The algorithm then tries to combine two routes
so that an agent will serve two vertices. The algorithm
calculates the “savings” of every pair of routes, where the
savings is the reduced total link cost of an agent after a
pair of route is combined. The pair of routes that have the
highest saving will then be combined if no constraint, time
or capacity, is violated.

In this paper, Clarke-Wright Savings algorithm is ex-
tended to consider the time and space constraint. By
looking into the data the base station has received from
the EAs, the base station can determine to which cluster
or area a QA should be dispatched initially.

• An internal path, Rj , is created within each cluster,
Xj which sensor readings are missing. Consider a set
of node {v|v ∈ Xj}, Clarke-Wright Saving can be used
by choosing a cluster head, i.e. swarm location, v̂j as
a depot, then create a path to visit every v ∈ Xj −
{v̂j}. The time, tj , to travel within the cluster is also
assigned to the cluster.

• The cluster head, v̂i, is selected from the cluster Xj

to represents the location of the cluster.

• The shortest route Rij between two nodes, v̂i and
v̂j where i 6= j are calculated using Floyd-Warshall
algorithm. The distance between nodes are measured
by cost, ĉij of moving agent between two nodes, which
is the function of packet loss rate.

• A route R0j is created from base station to each node
v̂j .

• The saving of combining a pair of routes between the
base station and two individual nodes(v̂j ; cluster rep-
resentative) are computed.

sij = ĉ0i + ĉ0j − ĉij (2)

The saving must obey two constraints; first, the trav-
eling time along the combining route must less than
deadline, t0i +ti +tij +tj +tj0 < D and the number of
node in the route R0ij , |Xi| + |Xj |, is less than space
limit, S.

• The saving is ordered from the largest to smallest into
a saving list

• Begin at the top of the saving list, a sub-tour is formed
by merging the routes, R0i and R0j , that create the
saving, sij ;

– a new route, R0ij is constructed with traveling
cost ĉ0ij and time t0ij .

– the route R0i and R0j are removed.

• The process is repeated from the first step until no
more possible saving.

Finally, a set of routes between cluster are constructed
and an QA is assigned for each route. Also, the traveling
route inside each cluster is given to a QA who is going to
visit the cluster. Then, QAs are dispatched to collect data
from each cluster by visiting the cluster head first.If QA
can visit cluster head and the cluster head still have the
sensor readings from each cluster members, QA can collect
sensor readings from the cluster head and travel back to
the base station immediately. However, if QA cannot visit
the cluster head, e.g. cluster head is missing or running
out of battery, QA then consult the traveling path inside
the cluster which assigned by base station to visiting each
cluster member to collect data and then travel back to base
station.

4.3 Performance Evaluation

The proposed approach is implemented in NesC and evalu-
ated using TOSSIM 1.0 [Levis (2003)]. A sensor network is
simulated in an area of 200x200 square meters. In most of
our experiments, the network consists of 150 sensor nodes
modeled after MICAz mote with communication radius
of about 30 meters, bandwidth of approximately 200kbps



and 128kB of memory space [Crossbow Technology Inc.
(2006)]. B-MAC is used as the MAC layer protocol by us-
ing CC2420 radio module in TinyOS. The sensor nodes are
uniformly deployed in the area.

To the best of our knowledge, only MMSPEED satis-
fies reliability and timeliness requirements simultaneously
[Felemban et al. (2005)]. MMSPEED provides active on-
time reachability of packets by using multiple speed levels
and multi-path routing. It uses SPEED [He et al. (2003)]
for the timeliness guarantee and adds probabilistic relia-
bility guarantee based on probabilities of reliable delivery
of packets at different links. MMSPEED provides the flex-
ibility for applications to choose several different levels of
reliability and timeliness. However, it does not consider
minimizing the energy consumption in routing. Therefore,
we implemented MMSPEED in TinyOS for comparison.
In addition, we use TinyOS’s Drain Data Collection Pro-
tocol [Tolle and Culler (2005)] as a baseline. The appli-
cation’s desired reliability is varied from 0.6 to 1.0 and
desired freshness, which is a metric to measure timeliness,
is varied from 60 and 100 seconds. Each sensor node re-
ports sensing values one at a time and each agent can carry
up to 10 readings. We evaluate the system performance to
demonstrate how proposed approach achieves the desired
reliability, freshness and the energy consumption involved.
For Agentilla, the energy consumed during both the cluster
formation stage and the data collection stage is included
in the measurement. We have also studied how the net-
work density, the packet size, i.e. the maximum number
of sensor readings an agent can carry, and network fault
severity affect the system performance. More results can
be found in [Boonma et al. (2007)].

Figure 6 shows the actual reliability against the desired
reliability when desired reliability is set to be 0.5 and 1.0.
The results show that for proposed approach, a reliability
of 0.74 can be achieved by purely using EAs. When the
desired reliability is greater than 0.74 (i.e., 1.0), QAs are
dispatched to collect additional data in order to archive
higher reliability. However, due to the time constraint im-
posed by the application, the actual reliability can be less
than the desired reliability. For example, when the fresh-
ness is very short (60 seconds in the figure), the highest
achievable actual reliability is 0.81, which may be lower
than the desired reliability. However, if the freshness is
long enough, i.e. 90 - 100 seconds, the actual reliability
can be equal or higher than the desired reliability. In con-
trast, Drain and MMSPEED can not improve the actual
reliability beyond 0.73 and 0.85 respectively because both
of them rely purely on push mechanism. Figure 7 shows
the average energy consumption when the desired reliabil-
ity is set to be 0.5 and 1.0. When the desired reliability
is greater than 0.7, data collected by EAs can not satisfy
the desired reliability, so the QAs are dispatched to gather
additional data; hence, the increase in the total energy con-
sumption. Compared with Drain and MMSPEED which
consume similar amount of energy irrespective of any re-
liability requirement, our approach consume less energy
when the desired reliability is low (i.e. 0.5). Moreover,

when the desired reliability is high (i.e. 1.0) proposed ap-
proach has lower energy consumption due to the data ag-
gregation mechanism used in proposed approach. Figure 8
shows that the energy consumption of MMSPEED is con-
stant regarding the desired reliability. Nevertheless, pro-
posed approach can reduce the energy consumption when
the desired reliability is low, i.e. by using only EAs.
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5 Suggestions for Future Research Directions

Existing work has largely been limited to studying the
tradeoff between energy consumption and each individ-
ual quality need. The techniques developed differ in their
assumptions about the observed phenomena, the network
properties, and the stringency of application needs. Some
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schemes are implemented at the data management layer,
completely oblivious of underlying network routing or node
duty cycling issues. Other schemes, in contrast, provide a
universal routing protocol that does not take into account
applications’ specific characteristics. We believe that all
the non-functional needs (reliability, timeliness, and ac-
curacy) are cross-cutting issues that are best addressed by
cross-layer approaches. The dynamic and uncertain nature
of sensor environments caused by varying network condi-
tions, system loads and application traffic implies that data
collection techniques must be adaptive and customizable
to provide desired QoS and QoD. Collection of raw or de-
rived data should take into account (a) the non-functional
requirements of applications, (b) the underlying observed
physical phenomena, whose properties may suggest a pro-
cessing strategy, and (c) the characteristics and current
state of the sensor network, e.g., its scale, degree of hetero-
geneity, processing/memory/energy capabilities of sensors.

Considering the wide use of sensor data collection proto-
cols as a building block for many sensor applications, the
sensor network community needs to standardize a com-
mon methodology that evaluates these protocols. Despite
a considerable number of proposed sensor data collection
protocols in the literature, no comprehensive comparative
analysis has been previously conducted. Those protocols
are often designed with different assumptions and evalu-
ated under different network and system conditions. The
lack of a thorough and fair comparison among these proto-
cols makes it very difficult for application developers to se-
lect an appropriate protocol for their applications. There is
an urgent need to design a platform that allows both func-
tional and non-functional (timeliness, accuracy, reliability)
requirements of applications to be specified, simulates var-
ious network conditions and application workloads to be
used for evaluation, and provides well-defined interfaces
for easy plug-in of various schemes. This motivation is
derived from the premise that choosing between compet-

ing execution strategies should be hidden from the user.
Instead, user tasks will be submitted in a high-level lan-
guage appropriate to the application domain. These will
be mapped to appropriate data management primitives by
the application software which will then be posed to the
sensor database management system in a declarative (e.g.,
SQL-like) language. The language will specify not only
what they need, but also in what manner they need the
data. Subsequently, the application needs will then be
evaluated by sensor data collection schemes.

With the evaluation framework in place, we would be
able to provide fair comparisons of existing sensor data
collection protocols and thorough evaluation of any newly
proposed techniques. The framework can also provide an
end-to-end support of sensor data collection with varying
QoS and QoD needs. A full-fledged framework can be built
on initial work on data quality specification Bisdikian et al.
(2009) and our previous work on Quality-aware Sensing
Architecture (QUASAR) Lazaridis et al. (2004).
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