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Summary. The BEYOND architecture applies biological principles and mechanisms to de-
sign network applications that autonomously adapt to dynamic environmental changes in the
network. In BEYOND, each network application consists of distributed software agents, anal-
ogous to a bee colony (application) consisting of multiple bees (agents). Each agent provides
a particular functionality of a network application, and implements biological behaviors such
as energy exchange, migration, reproduction and replication. This paper describes two key
components in BEYOND: (1) a self-regulatory and evolutionary adaptation mechanism for
agents, called iNet, and (2) an agent development environment, called BEYONDwork. iNet is
designed after the mechanisms behind how the immune system detects antigens (e.g., viruses)
and produces antibodies to eliminate them. It models a set of environment conditions (e.g.,
network traffic) as an antigen and an agent behavior (e.g., migration) as an antibody. iNet al-
lows each agent to autonomously sense its surrounding environment conditions (i.e., antigens)
and adaptively invoke a behavior (i.e., antibody) suitable for the conditions. In iNet, a configu-
ration of antibodies is encoded as a gene. Agents evolve their antibodies so that they can adapt
to unexpected environmental changes. iNet also allows each agent to detect its own deficien-
cies to detect antigen invasions (i.e., environmental changes) and regulate its policy for anti-
gen detection. Simulation results show that agents adapt to changing network environments
by self-regulating their antigen detection and evolving their antibodies through generations.
BEYONDwork provides visual and textual languages to design agents in an intuitive manner.

1 Introduction

Large-scale network applications such as data center applications and grid comput-
ing applications face several critical challenges, particularly autonomy and adapt-
ability, as they have been increasing in complexity and scale!. They are expected to
autonomously adapt to dynamic environmental changes in the network (e.g., work-
load surges and resource extinction) in order to improve user experience, expand
applications’ operational longevity and reduce maintenance cost [3-6].

Based on an observation that various biological systems have developed the
mechanisms necessary to meet the above challenges, the proposed architecture,

! For example, Google, Inc. reportedly runs over 450,000 servers in its data centers [1,2].
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called BEYOND?, applies key biological principles and mechanisms to design au-
tonomous and adaptive network applications. In BEYOND, each application is de-
signed as a decentralized group of software agents. This is analogous to a bee colony
(application) consisting of multiple bees (agents). Each agent provides a particular
functionality of a network application, and implements biological behaviors such as
energy exchange, migration, replication, reproduction and death.

This paper focuses on two key components in BEYOND: (1) a self-regulatory
and evolutionary adaptation mechanism for agents, called iNet, and (2) an agent
development environment, called BEYONDwork. iNet is designed after the mecha-
nisms behind how the immune system detects antigens (e.g., viruses), how it specif-
ically produces antibodies to eliminate them and how it evolves antibodies to react
a massive number of antigens. iNet models a set of environment conditions (e.g.,
network traffic and resource availability) as an antigen and an agent behavior as an
antibody. Each agent contains its own immune system (i.e., iNet), and a configuration
of the agent’s antibodies defines its behavior policy, which determines which behav-
ior to be invoked in a given set of environment conditions. iNet allows each agent to
autonomously sense its surrounding environment conditions (i.e., antigen) for eval-
uating whether it adapts well to the sensed conditions, and if it does not, adaptively
invoke a behavior (i.e., antibody) suitable for the conditions. For example, agents
may invoke the replication behavior at the network hosts that accept a large number
of user requests for their services. This leads to the adaptation of agent availability;
agents can improve their throughput. Also, agents may invoke the migration behav-
ior to move toward the network hosts that receive a large number of user requests for
their services. This results in the adaptation of agent locations; agents can improve
their response time to user requests.

iNet also allows each agent to detect its own deficiencies to detect antigen inva-
sions, i.e., deficiencies to evaluate whether it adapts well to the current environment
conditions. Due to the deficiencies, some agents may invoke their behaviors when
they have already adapted well to the current environment conditions. Others may
invoke no behaviors when they do not adapt to the current environment conditions.
With iNet, each agent can regulate its policy for antigen detection so that it can per-
form its behaviors at the right time. This self-regulation process is intended to avoid
the degradation of agent adaptability and the waste of resource consumption incurred
by unnecessary behavior invocations.

In iNet, a configuration of antibodies (i.e., behavior policy) is encoded as a gene.
Agents evolve their antibody configurations so that the configurations become fine-
tuned to the current and even unexpected environment conditions. This evolution
process occurs via genetic operations such as mutation and crossover, which alter an-
tibody configurations (genes) during agent reproduction and replication. Agent evo-
lution frees agent developers from anticipating all possible environmental changes
and tuning their agents’ antibodies (behavior policies) to the changes at design time.
This significantly simplifies the implementation of agents.

2 Biologically-Enhanced sYstem architecture beyond Ordinary Network Designs



A Biologically-inspired Architecture for Evolvable Network Applications 3

Simulation results show that iNet allows agents to autonomously adapt to chang-
ing network environments by dynamically regulating their antigen detection and
evolving their antibodies through generations.

The second focus of this paper is an application development environment for
iNet, called BEYONDwork. BEYONDwork provides visual and textual languages
to design agent in an intuitive and easy-to-understand manner. It accepts the visual
models and textual programs built with the proposed languages, and transforms them
to Java code that are compilable and runnable on a simulator for BEYOND. This
code generation enables rapid development and configuration of agents, thereby im-
proving the productivity of agent developers.

2 Design Principles in the BEYOND Architecture

In BEYOND, agents are designed based on the six principles described below.

e Decentralization: Inspired by biological systems (e.g., bee colony), there are no
central entities to control and coordinate agents in BEYOND so that they can be
scalable and simple by avoiding a single point of performance bottlenecks [7] and
failures [8] and by avoiding any central coordination in deploying agents [9].

e Autonomy: Similar to biological entities (e.g., bees), agents sense their local net-
work environments, and based on the sensed environment conditions, they au-
tonomously behave and interact with each other without any intervention from/to
other agents and human users.

o Emergence: In biological systems, collective (group) behaviors emerge from local
interactions of autonomous entities [10]. In BEYOND, agents only interact with
nearby agents. They behave according to dynamic changes in environment condi-
tions such as user demands and resource availability. Through collective behaviors
and interactions of individual agents, desirable system characteristics (e.g., load
balancing and resource efficiency) emerge in a swarm of agents.

e Lifecycle: Biological entities strive to seek and consume food for living. In BE-
YOND, agents store and expend energy for living. Each agent gains energy in ex-
change for performing its service to other agents or human users, and expends en-
ergy to use network and computing resources (e.g., bandwidth and memory). The
abundance or scarcity of stored energy affects agent lifecycle. For example, an en-
ergy abundance indicates high demand to an agent; thus, the agent may be designed
to favor reproduction or replication to increase its availability. An energy scarcity
(i.e., an indication of lack of demand) causes death of the agent.

e Homeostasis: Biological entities regulate their internal environments to maintain
stable conditions (e.g., stable body temperature and blood fluid) even though ex-
ternal environments change. Similarly, in BEYOND, agents strive to maintain the
fitness (or the degree of adaptation) to external network environments. When an
agent finds that its fitness decreases, it adjusts its antigen detection policy so that it
can keep its fitness to dynamic network environments.
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o Evolution: Biological entities evolve as a species to increase the fitness to the envi-
ronment across generations. In BEYOND, agents collectively evolve their antibody
configurations (behavior policies) across generations. Agents perform this evolution
process by generating behavioral diversity and executing natural selection. Behav-
ioral diversity means that different agents possess different antibody configurations
(behavior policies). This is generated via mutation and crossover during agent repli-
cation and reproduction. Natural selection retains the agents that adapt well to the
environment (i.e., the agents that have beneficial/effective behavior policies suitable
for the environment) and eliminate the agents that does not adapt to the environment
(i.e., the agents that have detrimental/ineffective behavior policies).

3 Agent Structure and Behaviors

Each agent consists of attributes, body and behaviors. Attributes carry descriptive
information regarding an agent (e.g., agent ID and energy level). Body implements
a functional service an agent provides. For example, an agent may implement a web
service in a data center, while another may implement a scientific simulation model
in a grid computing system. Behaviors implement the actions inherent to all agents:

e Migration: Agents may move between network hosts.

o Energy exchange and storage: Agents may gain energy in exchange for providing
their services to other agents or users. They may also expend energy for services
that they receive from other agents and for resources available at the local network
host (e.g., memory space).

o Replication: Agents may make their copies in response to higher energy level,
which indicates higher demand for the agents. A replicated agent is placed on the
host that its parent agent resides on, and it inherits the parent’s antibody config-
uration (behavior policy) as well as the half amount of the parent’s energy level.
Mutation may occur on the inherited antibody configuration.

e Reproduction: Agents may reproduce child agents with other agents (mating part-
ners) running on their local hosts. A child agent is placed on the host that its parents
reside on, and it inherits antibody configurations (behavior policies) from both par-
ents through crossover. Each parent gives a child agent the quarter amount of its
energy level. Mutation may occur on the antibody configuration of a child agent.

o Communication: Agents may communicate with each other for the purposes of, for
example, requesting services, exchanging energy units or reproducing child agents.

o Death: Agents die due to energy starvation. If an agent cannot balance its energy
expenditure with its energy gain, the agent cannot pay for the resources it needs;
thus, it dies from lack of energy. When an agent dies, all resources allocated to the
agent are released.

Agents expend a certain amount of energy units to invoke each behavior (i.e.,
behavior cost) except the death behavior.
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4 iNet: Agent Adaptation Mechanism in BEYOND

This section overviews how the natural immune system works (Section 4.1) and
describes how iNet is designed after the natural immune system (Section 4.2).

4.1 Natural Immune System

The immune system is an adaptive defense mechanism to regulate the body against
dynamic environmental changes such as antigen invasions. Through a number of in-
teractions among various white blood cells (e.g., macrophages and lymphocytes) and
molecules (e.g., antibodies), the immune system evokes two responses to antigens:
innate and adaptive responses.

In the innate response, the immune system performs self/non-self discrimina-
tion. This response is initiated by macrophages and T-cells, a type of lymphocytes.
Macrophages move around the body to ingest antigens and present them to T-cells.
T-cells are produced in thymus that performs the negative selection. In the negative
selection process, thymus removes T-cells that strongly react with the body’s own
(self) cells. The remaining T-cells are used as detectors to identify foreign (non-self)
cells. When a T-cell(s) detects a non-self antigen presented by a macrophage, the
T-cell(s) secrete chemical signals to induce the adaptive response.

In the adaptive response, B-cells, another type of lymphocytes, are activated by
T-cells. Some of the activated B-cells strongly react to an antigen, and they produce
antibodies that specifically kill the antigen. Antibodies form a network and commu-
nicate with each other [11]. This immune network is formed with stimulation and
suppression relationships among antibodies. With these relationships, antibodies dy-
namically change their populations and network structure. For example, the popu-
lation of specific antibodies rapidly increases following the detection of an antigen
and, after eliminating the antigen, decreases again.

In order to react a massive number of antigens, the immune system needs to
be able to generate a variety of antibodies. A primary repertoire of antibodies is
approximately 10° using immune genes. B-cells can increase this repertoire further
by mutating and recombining immune gene segments so that antibodies can bind an
unlimited number of antigens [12].

The immune system regularly encounters anomalies such as immunodeficiency
and autoimmunity. Immunodeficiency is a phenomenon that the immune system fails
to detect non-self antigens and produce antibodies to eliminate them. Autoimmunity
is a phenomenon that the immune system recognizes the constituent self cells as
non-self. This results in self-attacks via overreaction of the immune system. When
the immune system faces such anomalies, it is alerted with danger signals by cells
damaged by the anomalies [13]. Currently, two types of danger signals are known:
uric acid [14, 15] and heat shock proteins (HSP) [16, 17]. Uric acid is produced in
response to immunodeficiency, and it stimulates macrophages so that T-cells detects
non-self antigens properly. This accelerates the production of antibodies. HSP is
produced in response to autoimmunity. HSP reforms broken proteins in macrophages
and T-cells so that they stop attacking self cells. This suppresses antibody production.
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Fig. 1. Design of iNet Adaptation Mechanism

4.2 iNet Artificial Immune System

The iNet artificial immune system consists of the environment evaluation (EE) fa-
cility and behavior selection (BS) facility, which implement the innate and adaptive
immune responses, respectively (Figure 1). The EE facility allows an agent to con-
tinuously sense a set of current environment conditions as an antigen and classify the
antigen to self or non-self. A self antigen indicates that the agent adapts to the cur-
rent environment conditions well, and a non-self antigen indicates it does not. When
the EE facility detects a non-self antigen, it activates the BS facility. The BS facility
allows an agent to choose a behavior as an antibody that specifically matches with
the detected non-self antigen.

Environment Evaluation Facility

The EE facility performs two steps: initialization and self/non-self classification. The
initialization step produces detectors that identify self and non-self antigens. Each
antigen is represented as a feature vector (X), which consists of a set of environment
conditions, or features, (F;) and a class value (C):

X:(F17F27 """ 7Fn7c) (1)

C indicates whether a given antigen (i.e., a set of environment conditions) is self

(0) or non-self (1). If an agent senses resource utilization and workload (the number
of user requests) on the local host, an antigen is represented as follows.

Xeurrent = ((Low : ResourceUtilization,Low : Workload),0) 2)

Xeyrem= (Low: F1, Heavy: F2, High: F3, Unknown)

Randomly-generated User-defined Features ?ve:stc‘:fsr)s F1: Energy level
/—)%
Detector (R) Self Detector (S) F2: Workload
Pyl Pl Byl Clss F3: Resource utilization
Distance (R, S; o 9(5e
fstance R 3) | 1: thveshold o, 1 (Non-selh)
=<T >T f' D, 0 (Self)
= ~
‘ Self Detector (Ds) ‘ Non-self Detector (Dn) N " " ight hea
Detector Table vy

1 indicates that
Xeurrent is NON-self

Fig. 2. Initialization Step in the EE Facility Fig. 3. An Example Decision Tree
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The initialization step in the EE facility is designed after the negative selection
process in the immune system (Figure 2). As the immune system randomly gen-
erates T-cells first, the EE facility generates detectors (feature vectors) randomly.
Then, the EE facility separates the detectors into self detectors, which closely match
with self antigens, and non-self detectors, which do not closely match with self anti-
gens. This separation is performed via similarity measurement between randomly
generated feature vectors (X) and self antigens (S) that human users supply. After
the vector matching, both self and non-self detectors are stored in the detector table
(Figure 2)°.

The second step in the EE facility is self/non-self classification of an antigen
(a set of current environment conditions). It is performed with a decision tree built
from detectors in the detector table and classifies an antigen into self or non-self* The
decision tree is built using the information gain technique [18]. First, consider one
node as a root of decision tree, and it contains all detectors in the detector table. Then,
divide the detectors based on one of feature into two subsets of detectors (Assume
that each feature has two distinct values.) Each subset goes to one of two child nodes.
If all detectors in the subset have the same class value, then the node becomes a leaf
node with the class value; otherwise, divide the subset again based on one of the
other features into the subsets. Information gain technique suggests how to select a
feature at each dividing step so that the number of paths to leaf nodes and the height
of tree can be minimized.

Figure 3 shows an example of decision tree. Each node in the tree specifies which
feature (environment condition) is considered. Based on the feature values in a given
antigen, the EE facility travels through tree branches. If the EE facility classifies the
antigen to non-self, it activates the BS facility.

Behavior Selection Facility

The BS facility selects an antibody (i.e., agent’s behavior) suitable for the detected
non-self antigen (i.e., environment conditions). Each antibody consists of three parts:
a precondition under which it is selected, behavior ID and relationships to other an-
tibodies. Antibodies are linked with each other using stimulation and suppression
relationships. Each antibody has its own concentration value, which represents its
population. The BS facility identifies candidate antibodies (behaviors) suitable for a
given non-self antigen (environment conditions), prioritizes them based on their con-
centration values, and selects the most suitable one from the candidates. When pri-
oritizing antibodies (behaviors), stimulation relationships between them contribute

3 The immune system removes non-self detectors through negative selection. However, in
iNet, both self and non-self detectors are used to perform self/non-self classification.

4 The reasons for using decision trees as an antigen classifier are implementation simplicity
and algorithmic efficiency. Decision trees perform classification much faster than other
algorithms such as clustering, support vector machine and Markov model algorithms [18].
The efficiency of classification is one of the most important requirements in iNet because
each agent periodically senses and classifies its surrounding environment conditions.
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to increase their concentration values, and suppression relationships contribute to
decrease it. Each relationship has an affinity value, which indicates the degree of
stimulation or suppression.

Figure 4 shows a generalized network of antibodies. The antibody i stimulates M
antibodies and suppresses N antibodies. m j; and m;; denote affinity values between
antibody j and i, and between antibody i and k. m; is an affinity value between an
antigen and antibody i. The concentration of antibody i, denoted by a;, is calculated
with the following equations.

dA ( Zmﬂ aj(t Zm,k ar(t) +m; — k>~ai(t) 3)

1

1+ exp(0.5—A:(1)) @

a,-(t):

In Equation (3), the first and second terms in a bracket denote the stimulation
and suppression from other antibodies. mj; and my; are positive between 0 and 1.
m; is 1 when antibody i is stimulated directly by an antigen, otherwise 0. k denotes
the dissipation factor representing the natural death of an antibody. Equation (4) is a
sigmoid function used to squash the A;(¢) value between 0 and 1.

Every antibody’s concentration is calculated 200 times repeatedly. This repeat
count is obtained from a previous simulation experience [19]. If no antibody exceeds
a predefined threshold during the 200 calculation steps, the antibody whose con-
centration value is the highest is selected (i.e., winner-tales-all selection). If one or
more antibodies’ concentration values exceed the threshold, an antibody is selected
based on the probability proportional to the concentration values (i.e., roulette-wheel
selection).

Figure 5 shows an example network of antibodies. It contains four antibodies,
which represent the migration, replication and death behaviors. Antibody 1 repre-
sents the migration behavior invoked when the distance to users is far from an agent.
Antibody 1 suppresses Antibody 3 and stimulate Antibody 4. Now, suppose that a
(non-self) antigen indicates (1) the distance to users is far, (2) workload is heavy on
the local host and (3) resource utilization is low on a neighboring platform. This anti-
gen stimulates Antibodies 1, 2 and 4 simultaneously. Their populations increase, and
Antibody 2’s concentration value becomes highest because Antibody 2 suppresses
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Antibody 4, which in turn suppresses Antibody 1. As a result, the BS facility would
select Antibody 2.

Evolution of Antibodies

As Section 4.1 describes, the immune system diversifies antibodies by mutating im-
mune genes so that antibodies can react to unanticipated antigens. Similarly, iNet di-
versifies antibodies via gene operations such as mutation and crossover so that agents
can adapt to unanticipated environment conditions. In iNet, each agent encodes and
possesses its own antibody configuration (behavior policy) as a set of genes (geno-
type). The agent genotype consists of the antibody genes, which specify the presence
of antibodies, and the affinity genes, which specify relationships among antibodies
and their affinity values. When a new agent is born through a replication or repro-
duction process, it interprets the genes given by its parent(s) and form an antibody
network. Figure 6 shows an example genotype and phenotype.

Each agent periodically keeps track of its fitness, which quantifies how much
it adapts to the the current environment conditions. Agents strive to increase their
fitness values by altering their genes through generations. Fitness is calculated as a
weighted sum of fitness factors (f;):

Fitness = Zwi -fi ©)

Currently, iNet considers the following six fitness factors. Each factor value is
non-negative between 0 and 1.

o Response time (f): R is the time for each agent to process a single user request.
RT is the total of R and the time for a user request and agent response to travel
between a user and agent.

R

flzﬁ (6)

o Throughput (f>): indicates how many user requests agents process.
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__ #of user requests processed by all agents

f2 @)

Total # of user requests

o Energy utility (f3): indicates the rate of an agent’s energy expenditure to its energy
gain during its lifetime.

Energy expenditure during lifetime

fr=1 3

Energy gain during lifetime

e Load balance (f3): indicates how user requests (workload) are distributed over
agents. m denotes the number of user requests that an agent processes in a unit
time. u,, denotes the expected average number of user requests that each agent is
expected to process. M,,,, denotes the maximum number of user requests that an
agent can process in a unit time.
|m — | Total # of user requests

where uy,;, = )

=1
fa Mipax Total # of agents

o Resource utilization balance (f5): indicates how resource utilization is distributed
over hosts. r denotes the resource utilization rate on the local host that an agent
resides on. This is measured as the ratio of the amount of resources consumed by
agents on the host to the amount of resources available on the host. i, denotes the
expected average of resource utilization rate over all hosts that agents reside on.

Sum of resource utilization rate on all hosts

=1—|r— h = 10
Is 7= el where pi # of hosts that agents resides on (10)

o Age (fs): denotes the lifetime of an agent. S is the total simulation time.

_ Lifetime of an agent
B S

Je (11)

Upon invoking the reproduction behavior, each agent searches mating partner
candidates whose fitness values are higher than the agent’s fitness value. The can-
didates are searched on the local host. If the agent cannot find any candidates, it
performs the replication behavior rather than the reproduction behavior. This mat-
ing partner selection contributes to increase the population of agents that provide
services in higher demand and maintain higher fitness.

In reproduction, two parent agents contribute their genes, via crossover, to a child
agent. The amount of their gene contributions follow the ratio of their fitness values.
For example, in Figure 7, the fitness value ratio is 3:2 between the parent agent 1 and
2. Thus, the parent agent 1 contributes 60% (3/5) of its genes to a child agent, and
the parent agent 2 contributes the rest (2/5). In replication, a parent agent contributes
its whole genes to a child agent. In both reproduction and replication, mutation may
occur on the genes of a child agent in a certain probability (mutation rate). A re-
produced child inherits the quarter amount of energy units from each parent, and a
replicated child inherits the half of energy units from its parent.
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Self-regulation Process

As Section 4.1 describes, the immune system regulates itself with danger signals
when it detects anomalies. Similarly, iNet allows each agent to detect its own defi-
ciencies to recognize antigens, i.e., deficiencies to evaluate whether it adapts well to
the current environment conditions. Due to the deficiencies, some agents may invoke
their behaviors when they adapt well to the current environment conditions. Others
may not when they do not adapt to the current environment conditions. With iNet,
each agent can adjust its policies for antigen recognition so that it can perform its
behaviors at the right time.

Figure 8 describes the flow of the self-regulation process. Corresponding to dan-
ger signals such as Uric acids and Heat shock proteins, each agent responds to two
types of signals. Signal 1 is produced when the current fitness decreases by classi-
fying the current environment conditions as self and by not performing any behav-
iors even though an agent does not adapt well to the conditions (this corresponds
to immunodeficiency). Signal 2 is produced when the current fitness decreases by
classifying the current environment conditions as non-self and by performing inap-
propriate behaviors although there is no necessity to perform behaviors because an
agent adapts well to the conditions (this corresponds to autoimmunity).

When an agent receives either of signals, it flips the class value (self < non-
self) of the detector, which indicates the miss-classified environment conditions. The
strength of the danger signals is represented as a probability, P, that an agent flips the
class value. The probability is calculated the weighted sum of the agent’s previous
fitness, F;_1 and the decay of the current fitness, F;_1 — F; as follow:

P=oaxF 1+ (1—-o)*(F_| —F) (12)

Environment Sensing W

itoring a set of envi ¢
conditions, i.e. an antigen) J
|

BS Facility

The set of

¥ Perform a behavior

Self or Non-self2

____________________________________

Fitness value
i

Flip the class value
of the monitored environment

EE Facility conditions at the probability 7

Fig. 8. A Self-regulation Process

5 Simulation Results

This section presents several simulation results to evaluate the autonomous adapt-
ability of agents (network applications). The simulations are carried out on the BE-
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YOND simulator. Figure 9 shows a simulated network as a server farm consisting of
network hosts connected in a 10x10 grid topology. BEYOND platform is running on
each network host, and each agent implements a web service. Service requests travel
from users to agents via user access point. This simulation study assumes that a sin-
gle (emulated) user runs on the access point and sends service requests to agents.
When a user issues a service request, request messages are broadcasted to search a
target agent that can process the issued service requests.

In order to investigate how the self-regulation (the EE facility) and evolution pro-
cess (the BS facility) impact the adaptability of agents, three different types of agents,
described in Figure 10, are evaluated. (1) R.ee+R.bs, an agent with a randomly con-
figured tree in the EE facility and a randomly configured antibody network in the
BS facility does not perform a regulation and evolution process, (2) R.EE+R.BS, an
agent with a randomly configured tree and a randomly configured antibody network
does dynamically perform a regulation and evolution process, and (3) R.ee+R.bs, an
agent with a manually tuned tree and a manually tuned antibody network; and does
also dynamically perform a regulation and evolution process.

At the beginning of simulations, four agents are randomly deployed on the net-
work. This simulation generates a random workload for web service agents as de-
scribed in figure 11. The workload trace is designed based on a daily request rate for
the www.ibm.com site in February, 2001 [20]. The request rate peaks to about 5,500
requests per min in the morning and 9,000 requests per min in the evening.

Figure 12 shows how agents autonomously adapt their population to workload
changes. When agents receive requests, they start to provide their service for users
and gain more energy from users. Agents (M.EE+M.BS) successfully adapt their
population in timely manner. For example, at 3:00, 6:00, and 15:00, when the work-
load surges, they increase their population by performing replication or reproduction
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behavior; subsequently, at 9:00 and 18:00, when the workload drops, they imme-
diately decrease their population by performing death behavior. On the other hand,
agents (R.ee+R.bs) did not perform any behaviors because their EE facility classified
environment conditions (e.g., workload is high) as self and also their self-regulation
process is never executed; so they could not adapt their population. However, agents
(R.EE+R.BS) dynamically regulate their policies for environment evaluation in the
EE facility so that they perform behaviors to adapt their population. Especially, after
3:00, agents start to update the EE facility as a response to danger signals; sub-
sequently, although they could not immediately reduce their population when the
workload drops at 9:00, they adjust the EE facility and successfully perform death
behavior at about 11:00. In addition, agents (R.EE+R.BS) may invoke inappropriate
behaviors (not suitable for the current environment conditions) in the early stage
of simulation due to a randomly configured antibody network. For example, be-
tween 3:00 and 6:00, the plotted line for agent population is swinging. This im-
plies that some agents keep invoking death behaviors inappropriately. But, in the late
stage of simulation, the plotted line is almost following that of manually configured
agents (M.EE+M.BS). It follows that agents tried to dynamically adjust their anti-
body network by performing reproduction behavior. They reproduce children having
the adapted antibody network by which appropriate behaviors are selected in timely
manner.

Figure 13 shows how agents autonomously adapt response time for a user. At
the beginning of simulation, response time becomes very high because only four
agents process 2,000 requests a minute and a distance between the agent and users
is long. However, after agents (M.EE+M.BS) accumulate enough energy from users
and start migrating towards users or replicating themselves, they rapidly decrease
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response time. For example, at 3:00, 6:00, and 15:00, the response time dramati-
cally spikes (up to about 7 sec) due to the workload surges, but the agents reduce
the response time quickly by adapting their population as described in Figure 12. On
the other hand, agents (R.ee+R.bs) cannot reduce their response time at all because
they could not perform any behaviors. However, when agents (R.EE+R.BS) recog-
nize that the EE facility wrongly evaluated the environment conditions (i.e., receive
danger signals) at 3:00, they tried to regulate evaluation policies in the EE facility. In
addition, the reproduced children keep adjusting their antibody network to perform
behaviors suitable for the current environment conditions in timely manner.

Figure 14 also shows how three different types of agents dynamically adapt their
throughput. It is measured as the number of responses that users receive a minute
from agents. Agents (M.EE+M.BS) successfully maintain high throughput by dy-
namically adapting their locations and population through migration and reproduc-
tion behaviors while agents (R.ee+R.bs) could not improve their throughput because
the agents did not migrate or replicate at all. Until 3:00, agents (R.EE+R.BS) also
could not improve their throughput. However, after 3:00, the agents regulate the be-
havior invocation by dynamically updating a tree in the EE facility, and the repro-
duced children adjust an antibody network in the BS facility to invoke appropriate
behaviors in timely manner. As the result, they increase their throughput (i.e., tried
to reply all user requests in timely manner).

Figure 15 shows the average fitness value of agents (i.e., the degree of adaptation
to the environment) as described in Section 4.2. Agents (M.EE+M.BS) dynamically
improve their fitness value to about 0.6 0.7 while agents (R.ee+R.bs) could not im-
prove the fitness value (although the fitness value slightly increases because of energy
utility (f3) and age (f6) factors). On the other hand, agents (R.EE+R.BS) keep trying
to improve their fitness value after 3:00. In early stage of simulation, because their
iNet configuration is not optimized yet, the plotted line for fitness value is swinging
(i.e., the fitness value easily drops) compared to that of manually configured agents
(M.EE+M.BS). Some of agents with high fitness value might die unexpectedly. How-
ever, in the late stage of simulation, the trace of their fitness value eventually close
in that of manually configured agents. It follows that self-regulation and evolution
process contribute for agents to autonomously improve their adaptability by dynam-
ically tuning their iNet configurations.

Finally, Figure 16 shows the variance of agents’ fitness values; that is, how the
fitness values are spread around the average. The variance for agents (M.EE+M.BS)
has gradually converged. The lower variance implies that every agents’ fitness values
are close to each other. Together with the results in figure 15, figure 16 explains that
most agents improve their fitness values at the same time. This concludes that the
optimal or adapted antibody network is successfully spread out to other surviving
agents by evolution; thus, agents adapts to the environment conditions well through
generations. Agents (R.EE+R.BS) also reduce the variance gradually. However, the
plotted line is unstable compared to that of manually configured agents. Some agents
still posses non-adapted antibody network and then invoke inappropriate behaviors.
This may kill agents with high fitness value and make the spread speed of the adapted
iNet configuration slow.
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6 BEYONDwork: Agent Development Environment in BEYOND

BEYONDwork is an application development environment for iNet. It provides two
visual modeling languages and a textual programming language for configuring envi-
ronment conditions, detectors and behavior policies. Figure 17 shows the iNet con-
figuration process with BEYONDwork. BEYONDwork consists of four facilities:
environment configuration facility, EE configuration facility, BS configuration facil-
ity and code generator. The environment configuration facility allows environment
condition designers to configure environment conditions with a visual language. The
EE configuration facility allows agent designers to configure a set of detectors to
identify self and non-self antigens (see Section 4.2) based on environment conditions
configured in the environment configuration facility. The BS configuration facility
allows agent designers to configure their agents’ behavior policies (antibody con-
figuration) with visual or textual languages. Both languages have the same level of
expressiveness, and the artifacts of the languages (models and programs) are trans-
parently translatable with each other. Agent designers can configure the behavior
policy of each agent through the use of either language.

Once environment conditions, detectors and a behavior policy are complete in
the form of visual models or textual programs, the code generator transforms them
to compilable source code by following a transformation rule between the languages
and source code. The transformation rules are implemented by platform developers,
who know the details of platform technologies. (e.g., operating systems, middleware,
simulators and programming languages) Through changing one transformation rule
to another, the code generator can generate source code that are compatible with
different deployment environments such as simulators and real networks. Environ-
ment condition designers and agent designers do not have to write different mod-
els/programs for the same agent running on different platform technologies. This
flexible code generation feature improves the productivity of agent designers. Cur-
rently, BEYONDwork supports Java code generation for a simulator in BEYOND.
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Designers Designers
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(' ﬁ \ BEYONDworD
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Config.
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i EE Visual Textual BS
Config. Modeling Programming )
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acility

{} Inter- {}

#en o5y
Cond. @ @ C{j"_gfa_>e Behavior
Detectors 7 Policies

Code Generator
S ot X /
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Simulator App. for App. for g Platform
code data center Developers

Fig. 17. iNet Configuration with BEYONDwork
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Figure 18 shows the environment configuration facility. As Figure 18 illustrates,
the visual language visualizes an environment condition as a rectangle. Each rectan-
gle can contain arbitrary number of rounded rectangles representing categories of a
corresponding environment condition. For example, in Figure 18, the LocalWorkload
environment condition has two categories, HEAVY and LIGHT. Also, each category
specifies a condition to classify a corresponding environment condition. In iNet, each
environment condition is supposed to have one representative value, e.g., workload
value or the number of agents, and the representative value is used to identify the
category of a corresponding environment condition. For example, in Figure 18, the
LocalWorkload environment condition is classified as HIGH when its representative
value exceeds 200, otherwise classified as LIGHT.

enveonf.env_diagram X [d] DataCenterConfig.bs_diagram =g
Palette +
&' LocalWorkload &' NeighborWorkload k Select
+, Zoom
3 HEAVY <3 HEAVY = Note .
=200 >300 o' EnvCondition
<3 LIGHT 3 LIGHT G Categary
else else
&' NumOfagents
o' EnergyLevel
<3 MANY S
HIGH
=10
\>MID \>>25
Low
3< &B<=10
Srew glse
else

Fig. 18. BEYONDwork Environment Configuration Facility

The details of representative values, e.g., how and when to obtain the value,
are hidden from environment condition designers and agent designers. Platform
developers implement such details on skeleton code generated by the code gen-
erator. For example, the following is a fragment of Java source code generated
from the LocalWorkload environment condition in Figure 18. By implementing the
getRepValue method, e.g., returns a request rate, CPU load, or the summation of
them, a representative value of an environment condition is retrieved and evaluated
against conditions specified by each category. The environment configuration facility
is implemented on Eclipse Graphical Modeling Framework (GMF)°. The transfor-
mations from visual models and Java source code are implemented with a model-
code transformation engine in openArchitectureware®.

class LocalWorkload extends EnvCondition{

enum Category{ HIGH, LOW };
public Category evaluate(){
double repValue = getRepValue();

> www.eclipse.org/gmf/
6 www.openarchitectureware.org
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if ( repValue > 200 ){ return Category.HIGH; }
else{ return Category.LOW; }

}
private double getRepValue(){

// TODO: platform developers add code here
}
}

Figure 19 shows the EE configuration facility appears as one of windows in BE-
YONDwork, located below the BS configuration facility (Figure 20). Each column
in the table represents an environment condition configured in the environment con-
figuration facility (Figure 18) and each row represents a detector. The facility al-
lows agent designers to add and remove detectors, and configure detectors by se-
lecting the categories of each environment condition. For example, in Figure 18, the
NumOfAgents environment condition is configured to have three categories, MANY, MID
and FEW, and cells in the corresponding column in Figure 19 allows agent designers
to select its value from MANY, MID and FEW. From a set of detectors, BEYONDwork
automatically create a decision tree and deploys it in agents (see Section 4.2).

Problems | Javadoc| Declaration | Properties '@ X
LocalWorkload Meighborworkload  MumOfAgents Energylevel
HEAVY HEANY MANY HIGH
HEAVY LIGHT FEW Low
LIGHT LIGHT MID Low
LIGHT HEANY MANY HIGH

LIGHT HEAVY FEWV ~ | HIGH
HEAVY HEAVY A

Fig. 19. BEYONDwork EE Configuration Facility

Figure 20 and 21 show the visual modeling and textual programming environ-
ments in the BS configuration facility, respectively. As Figure 20 illustrates, the vi-
sual language visualizes an antibody as a rounded rectangle. Each rectangle consists
of three compartments: (1) the name and the initial concentration of an antibody,
(2) an environment condition to which an antibody reacts, and (3) an agent behav-
ior and its properties. For example, in Figure 20, AntibodyA’s initial concentration
value is 5, and it represents the reproduction behavior. The behavior is invoked when
LocalWorkload is high. A stimulation/suppression relationship between antibodies
is visualized as an solid arrow between rounded rectangles. Each arrow has value,
which represents affinity value of a relationship. As Figure 20 demonstrates, the vi-
sual language supports all the concepts in antibody configurations as built-in model
elements, and agent designers can configure antibodies (agent behavior policies) in
an intuitive and rapid manner. The BS configuration facility is implemented on GMF
and openArchitectureWare as well as the environment configuration facility.

In the textual language (Figure 21), each antibody is defined with the built-in
keyword antibody. The program in Figure 21 and the model in Figure 20 define the
semantically same antibody configuration. As Figure 21 shows, the textual program-
ming environment in BEYONDwork shows built-in keywords in boldface, automat-
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[l envconfenv_dagram | [l DataCenterConfig.bs_dagram 52 =0

Palette — »
Y AntibodyA ¥ AntibodyB [y Select
5 15 10 &, Zoom
' LocalWorkload 4 Neighborworkload = Note
HIGH HEAVY Y Antibody
Affinity
&23 831 & EnvCondition
FitnessBased
> Behavior  *
FitnessBased .5 &R Reproduction
Y antibodyC ) &, Replication
128 12 Y antibodyd & Mioraton
£ Death
& NumOfagents 1
FEW. ' Energylevel
Local £ user

HalfandHalf

Problems| Javadoc | Dechration (R T d, EE Configuration |ujp@m 7 =8

Advanced

property Value
A N
Crossover Policy = HafAndHalf
Mutstion Rate 5.2
Partner Selection Poicy = Local

Fig. 20. Visual Modeling Environment in BEYONDwork BS Configuration Facility

B DataCenterConfiguration.bsdsl X =0

hntibody EntibodyAf{ -~
s,

LocalWorkload = HIGH,

reproduction |
motationRate = '2.3",
partnerSelectionPolicy = fitnessbased,
crossoverPolicy = fitnessbased

¥

antibody AntibodyD{
1,
(x] energylevel = HICH,
migration( directionPolicy = user )
}

Antibodyhk -> AntibodyD 5.3 v

Fig. 21. Textual Programming Environment in BEYONDwork BS Configuration Facility

ically performs a syntax check, and reports syntax errors while antibody designers
configure antibodies. In Figure 21, a syntax error is reported as a cross mark. (The
textual language does not support keyword energylevel but EnergyLevel because of
the environment conditions defined in Figure 18.) The textual programming environ-
ment in the BS configuration facility is implemented on Eclipse. The transformations
from textual programs and Java source code are implemented with a model-code
transformation engine in openArchitectureware.

The following is a fragment of Java source code generated from the textual pro-
gram in Figure 21.

void setupAntibodiesOfINet(){
Antibody antibodyA =
new Antibody( "AntibodyA", 5, LocalWorkload.HIGH,
new Reproduction(
2.3, CROSSOVER.FITNESSBASED, PARTNER.FITNESSBASED ) );
Antibody antibodyD =
new Antibody( "AntibodyD", 1, EnergyLevel.HIGH,
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new Migration( DirectionPolicy.USER ) );

ImmuneNetwork inet = getImmuneNetwork() ;

inet.add( antibodyA );

inet.add( antibobyD );

antibodyA.addAffinity( antibodyD, 5.3 );
}

The BS configuration facility allows agent designers to not only configure an an-
tibody configuration (behavior policy) from scratch, but also investigate and fine tune
existing antibody configurations in running agents. In iNet, antibody configurations
are evolved automatically via genetic operations (see Section 4.2). The BS config-
uration facility helps agent designers to understand evolved antibody configurations
by showing it in a visual manner, and experienced agent designers can fine-tune them
by hand.

Without the BS configuration facility, agent designers need to know the details
on how to implement agents in Java (e.g., how to define new agents, where to imple-
ment antibody configuration code, and which iNet API to use.) For example, agent
designers need to define a new class extending the Agent class provided by a simu-
lator in BEYOND. Also, as the above code fragment shows, they need to write the
setupAntibodies0fINet () method using iNet API in order to configure the agent’s
antibodies. The visual and textual languages hide these implementation details and
allow agent designers to focus on the design of antibody configurations. In addition,
compared with the Java code shown above, a model or program in the BS configura-
tion facility is easier to read and understand.

7 Related Work

This paper describes several extensions to the prior work on iNet [19,21]. [19] does
not investigate the iNet evolutionary mechanism. Thus, agent designers needed to
manually and carefully configure antibodies in their agents at design time. In con-
trast, the iNet evolutionary mechanism allows agents to autonomously adjust their
antibody configurations at runtime; it does not require manual antibody configura-
tions. [21] describes preliminary simulation results of the iNet evolutionary mecha-
nism; however, it does not investigate the languages in BEYONDwork as well as the
self-regulatory mechanism in the iNet EE facility.

The Bio-Networking Architecture [22] is similar to BEYOND in that it applies
biological principles and mechanisms to allow network applications to autonomously
adapt to dynamic environmental changes in the network. However, its adaptation en-
gine is different from iNet. While iNet is designed after immune responses, [22] em-
ploys a simple weighted sum calculation for behavior selection. Although [22] has an
evolutionary mechanism that dynamically adjusts weight values in the weighted sum
calculation, agent designers still need to manually define a weighted sum equation
for each behavior and configure a threshold value for each weighted sum equation.
In contrast, iNet requires no manual configuration work for agent designers.
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Artificial immune systems have been proposed and used in various application
domains such as anomaly detection [23] and pattern recognition [24]. [23] focuses
on the generation of detectors for self/non-self classification and improves the nega-
tive selection process of the artificial immune system. [24] focuses on the accuracy
for the matchmaking of an antigen and antibody. Unlike those work, this paper pro-
poses an artificial immune system to improve autonomous adaptability of network
applications. To the best of our knowledge, this work is the first attempt to apply an
artificial immune system to this domain.

In addition, some research work [25] using artificial immune systems extend
their work with the concept of danger signals. [25] proposes the mechanism to detect
misbehaving nodes as antigens based on event sequences of routing process in ad hoc
network. Danger signals contribute to reduce the number of false positives (i.e., the
system evaluates a correctly working node as a misbehaving node) by dynamically
updating the definition of normal event sequences (self). On the other hand, iNet self-
regulation process allows agents to respond false positives as well as false negatives
(i.e. the system cannot catch unknown non-self antigens).

BEYONDwork provides visual and textual languages to configure iNet, i.e., con-
figuring environment conditions, detectors and behavior policies. The work of the
languages in BEYONDwork is parallel to the existing research on domain specific
languages (DSLs) [26]. The languages are considered as DSLs focusing on directly
capturing the concepts and mechanisms specific to a particular problem domain.
There are several DSLs to model biological systems such as biochemical networks
for simulating and understanding biological systems (e.g., [27, 28]). However, the
objective of the languages in BEYONDwork is different from theirs; languages in
BEYONDwork aim to model biological (immunological) mechanisms for building
autonomous and adaptive network applications. This work is the first attempt to in-
vestigate a DSL for biologically-inspired networking.

8 Conclusion

This paper describes the BEYOND architecture, which applies biological principles
and mechanisms to design evolvable network applications that autonomously adapt
to dynamic environmental changes in the network. This paper proposes two key com-
ponents in BEYOND: (1) a self-regulatory and evolutionary adaptation mechanism
for agents, called iNet, and (2) an agent development environment, called BEYOND-
work. iNet allows each agent to autonomously sense its surrounding environment
conditions (i.e., antigens) and adaptively invoke a behavior (i.e., antibody) suitable
for the conditions. iNet also allows each agent to detect its own deficiencies to rec-
ognize antigens and regulate its policies for antigen recognition. Agents evolve their
antibodies so that they adapt to unexpected environmental changes. Simulation re-
sults show that agents adapt to changing network environments by self-regulating
their antigen recognition and evolving their antibodies through generations. In ad-
dition, BEYONDwork provides visual and textual languages to configure iNet in
an intuitive and easy-to-understand manner. It accepts the visual models and textual
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programs built with the proposed languages, and transforms them to Java code that
are compilable and runnable on a simulator for BEYOND. This code generation en-

ab
of

les rapid development configuration of agents, thereby improving the productivity
agent developers.
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