
Toward Interoperable Publish/Subscribe Communication between
Wireless Sensor Networks and Access Networks

Pruet Boonma and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
{pruet, jxs}@cs.umb.edu

Abstract
Traditional wireless sensor networks (WSNs) often do

not consider interoperability between WSNs and access net-
works. To address the issue, this paper investigates inter-
operable publish/subscribe communication in WSNs. The
proposed middleware, called TinyDDS, provides two types
of interoperability, programming language interoperability
and protocol interoperability, by customizing standard data
types, data representation and session protocol. Evalua-
tion results show that TinyDDS simplifies the development
of publish/subscribe applications and it is implemented effi-
cient in memory footprint and power consumption.

1. Introduction
Wireless sensor networks (WSNs) have been investi-

gated extensively; however, most of them are designed sep-
arately from access networks, which allow human users to
connect with WSNs and perform information retrieval (e.g.,
data collection and event detection) in WSNs. Traditional
WSNs tend not to consider and enable interoperability be-
tween WSNs and access networks. As a result, it is of-
ten ad-hoc, expensive and error-prone to build a gateway,
which is responsible for protocol bridging and data conver-
sion between WSNs and access networks. Currently, gate-
ways need to be rebuilt from scratch programming language
by programming language, protocol by protocol and appli-
cation by application.

In order to address the above interoperability issue,
this paper investigates interoperable publish/subscribe com-
munication with TinyDDS, which is open-source1 and
standards-based middleware for WSNs. Compliant with the
Object Management Group (OMG)’s standard Data Distri-
bution Service (DDS) specification [9], TinyDDS provides
two types of interoperability: programming language inter-
operability and protocol interoperability.

Programming language interoperability is the ability of
TinyDDS to interoperate applications written in different

1TinyDDS is available at dssg.cs.umb.edu.

programming languages. TinyDDS implements a mapping
of the OMG IDL (Interface Definition Language) [8] to
nesC and provides a set of DDS APIs in nesC. This al-
lows different applications to use different languages with
the same DDS APIs for event subscription and publication.
For example, an access network application (or enduser ap-
plication) can be implemented with Java, while a WSN ap-
plication is implemented with nesC. Application developers
do not have to learn/use different APIs for different applica-
tions. This can significantly improve their productivity.

Protocol interoperability is the ability of TinyDDS to in-
teroperate WSN applications and access network applica-
tions on different MAC (L2), routing (L3) and transport
(L4) protocols. TinyDDS implements a session (L5) pro-
tocol, called TinyGIOP, which is a subset of the standard
General Inter-ORB Protocol (GIOP) [8]. Similar to GIOP,
TinyGIOP is independent from any underlying protocols. It
encapsulates and transmits data formatted with TinyCDR,
which is a subset of the standard Common Data Represen-
tation (CDR) [8]. CDR is the standard set of binary rep-
resentations of IDL types. Taking advantage of TinyGIOP
and TinyCDR, TinyDDS makes publish/subscribe commu-
nication interoperable between WSNs and access networks.
This allows application developers to build and maintain
gateways in a cost effective manner.

This paper describes the proposed IDL-to-nesC map-
ping, TinyGIOP and TinyCDR, and evaluates TinyDDS
through simulations.

2 OMG DDS Standard Specification
The Data Distribution Service (DSS) is a Object Man-

agement Group (OMG) standard for topic-based pub/sub
middleware.DDS provides standard interfaces for event
subscription and publication in Interface Definition Lan-
guage (IDL), and TinyDDS implements them with nesC.
See [3] for the IDL-nesC mapping in TinyDDS.

Figure 1 shows the architecture of DDS middleware.
An event sink expresses its interest to an event, or topic,
and subscribes to its local Subscriber with associated



SubscriberListner and DataReader.

Publisher

Application
(Event Source)

Subscriber

Subscriber
Listener

Application
(Event Sink)

Topic B
Data ReaderData Writer

Network

DDS DDS

Event flow Data flow

Topic A Topic B

Do
m

ai
n

Pa
rti

cip
an

t

Do
m

ai
n

Pa
rti

cip
an

t

Event Source Event Sink

Figure 1. DDS Architecture

An event source creates an event/topic with its corre-
sponding DataWriter, and the event is published by a
Publisher to its subscribers in the network.

A Subscriber on each node monitors every incom-
ing event, and if the event matches an event sink’s
subscription, it will be notified to the event sink via
SubscriberListner and DataReader.

3. TinyDDS Architecture
The left-hand side of the Figure 2 shows the architec-

ture of TinyDDS running in each sensor node. With respect
to TCP/IP reference model, TinyDDS operates in transport
layer and work on top of any network layer (L3) imple-
mentation. TinyDDS follows Layer design pattern [4] by
separating different functionalities into different layers. At
the top most layer, TinyDDS provides a subset of DDS in-
terfaces to be used by applications. An application imple-
mented on top of DDS can disseminate events, i.e., data or
control messages, to the network with associated topic and
the events are captured by any subscribers, i.e., base station,
who has interest on the topic of the events. The implemen-
tation of those interfaces, as described in section 2, operates
on top of TinyGIOP layer. TinyGIOP encapsulates data into
transportation messages and interacts with the DDS Gate-
way for exchanging data with DDS applications. Only the
nodes, i.e., base station, that are physically connected to
the DDS gateway through serial interface can exchange data
with the DDS gateway. For exchanging data with the other
sensor nodes in the WSN, TinyGIOP utilizes an overlay net-
work for event routing. Different routing protocols can be
used to implement the overlay network by implementing in
the Overlay Event Routing Protocols (OERP) layer. This
OERP layer allows application developer to choose appro-
priate routing protocol to suit their requirements and con-
straints. For example, in sensor network with very limited
memory space sensor nodes, spanning-tree routing proto-
col may be used because it needs minimal memory space to
maintain routing table. On the other hand, sensor network
which try to minimize the energy consumption of memory

rich sensor nodes may use DHT-based routing protocol. By
using this OERP layer, TinyDDS frees developers from the
limitation of routing algorithm used in network layer which
generally depends on sensor node platform such as Mica Z
which based on Zigbee protocol stack. The routing protocol
in OERP layer utilizes low-level network layer implementa-
tion through a transport layer interface called TinyDDS L4
Adaption Layer (L4AL). L4AL allows TinyOS to operates
with any network and MAC layer protocol, such as AODV
and Zigbee respectively.

3.1. DDS Interfaces
In the top most layer, TinyDDS provides an API for ap-

plication developers. This API provides a subset of DDS
for creating topics, subscribe to events of topics and publish
events for particular topics. For each interfaces, the imple-
mentation is provided so application developers do not need
to implement those interfaces themselves. The implemen-
tation for the DDS interfaces is written in nesC program-
ming language and optimized for small sensor nodes plat-
form such as MicaZ.

1 typedef struct {
2 cdr_int temperature;
3 cdr_ulong time;
4 } TempData_t;
5 Publisher_t publisher;
6 Topic_t topic;
7 DataWriter_t data_writer;
8 TempData_t temp_data;
9 command result_t StdControl.start() {

10 publisher = call DomainParticipant.create_publisher();
11 topic = call DomainParticipant.create_topic("TempSensor");
12 data_writer = call Publisher.create_datawriter(
13 publisher , topic);
14 temp_data.temperature = TempSensor.read();
15 temp_data.time = call Time.getLow32();
16 call DataWriter.write(data_writer , serialize(data),
17 sizeof(TempData_t));
18 }

Listing 1. Example of TinyDDS Application
Listing 1 shows an example of an event source applica-

tion implemented on top of TinyDDS. An user-defined data
type is defined at line 1-4. Then, at line 10, a Publisher is
created. Line 11-13, a DataWriter is created associate with
topic ”TempSensor”. At line 14 and 15, a sensor reading is
captured from temperature sensor and also the current time
is read from a local clock, both information are stored in a
variable of the user-define data type. Finally, at line 16, the
data in user-defined data type is serialized into byte stream
and published through DataWriter interface.

3.2 Overlay Event Routing Protocols
This OERP layer provides an overlay network over sen-

sor network’s physical ad-hoc networks. The overlay net-
work is used for transporting published events, i.e. sen-
sor data, to all nodes who subscribes to the events. The
published event is routed to each subscribers according to
the routing protocols deployed within OERP layer. Appli-
cation developers can specify the deployed routing proto-
cols to suit their need. The OERP layer encapsulates the

2



DDS Web Client

DDS Gateway

Base StationSensor

Network

TinyOS

Sensor Node

DDS Interface

…

TinyDDS

Sensors Comm.
Hardware

Sensor Device

Sensor Reading Comm. Control

Applications

Spanning

-Tree

DHT-

Based

MONSOON
Runtime

TinyDDS L4 Adaptation Layer (L4AL)

OneHop

OERP
Layer

L4 Layer

AODVL3 Layer

TinyCDR

DDS Gateway

Jetty Servlet Container

DDS Web Application

Web Browser

Downstream message transmission

Upstream message transmission

DDS Web Clients

JacORB

Java VM

A DDS Impl. in Java

TinyOS Serial Adapter

TinyDDS/DDS Bridge

Java VM

JacORB

A DDS Impl. in Java

Access Network 

(e.g.,Internet)

TinyGIOPL5 Layer

APIs

Figure 2. Architectural Components in TinyDDS

overlay network algorithm and implementation from DDS
interfaces and the lower level physical network. Routing
protocols in OERP layer work with lower-level network
protocol through the TinyGIOP. In the other words, rout-
ing protocol is a pluggable component of TinyDDS which
can be deployed/configured to meet application develop-
ers’ requirements. For example, application developers who
want to reduce the cost and size of sensor nodes by using
small-memory sensor nodes may choose to use spanning-
tree routing protocol which will use very small memory
space. The routing protocols used in this OERP framework
are developed by library developers and can be used in any
TinyDDS-based applications.

3.3. TinyCDR

TinyCDR is a subset of the Common Data Represen-
tation (CDR) [8] which allow TinyDDS applications to
directly exchange data with DDS applications. CDR is
the format for exchanging data in DDS standardized by
OMG. CDR enables different parties, i.e., sensor nodes and
client applications, which utilizes different programming
languages, such as nesC or Java, to be able to exchange
data. CDR defines standard data type with specific size and
endian which have to be followed by each parties in order
to guarantee seamlessly data exchanging. Table 3 shows the
mapping of primitive data type between CDR version 1.3,
TinyCDR and nesC native data type. Listing 1 shows an ex-
ample how the data type defined in TinyCDR is used in an
application.

CDR Type TinyCDR Type nesC Type
char cdr char uint8 t
wchar N/A N/A
octet cdr octet uint8 t
short cdr short int16 t
unsigned short cdr ushort uint16 t
long cdr long int32 t
unsigned long cdr ulong uint32 t
long long cdr longlong int64 t
unsigned long long cdr ulonglong uint64 t
float cdr float float
double cdr double double
long doublel cdr longdouble double
boolean cdr boolean uint8 t

Figure 3. Primitive Data Type Mapping be-
tween CDR, TinyCDR and TinyOS

In the table, TinyCDR does not support wchar (wide
character, i.e., Unicode characters) because it is not used in
WSN environment. Beside primitive data types, TinyCDR
also supports CDR constructed types such as struct, union
and array. TinyCDR serializes constructed data structure
into an octet stream which is compatible with CDR octet
stream. Therefore, TinyDDS applications can exchange
data formatted in TinyCDR directly with DDS applications
using CDR data format.

3



3.4. TinyGIOP

TinyGIOP defines message format use for exchanging
between TinyDDS/DDS applications, based on General
Inter-ORB Protocol (GIOP) version 1.3 [8]. GIOP is an
abstract protocol for communicating between object request
brokers (ORBs). There are several concrete implementation
based on GIOP such as Internet Inter-ORB Protocol (IIOP)
, an implementation of GIOP over TCP/IP, and HyperText
Inter-ORB Protocol (HTIOP), an implementation of GIOP
over HTTP. GIOP consists of three components; CDR, In-
teroperable Object Reference (IOR), and a set of message
types. In TinyDDS, the CDR part of GIOP is addressed
by TinyCDR while the message type is addressed by Tiny-
GIOP. Given the limited resources of sensor nodes, IOR is
not supported by TinyDDS.

TinyGIOP supports three message types; Request, Reply
and CancelRequest. When a TinyDDS application wants
to communicate with the other TinyDDS application, for
example, for subscribing to a topic, it sends out Request
message. The message will be serialized and passed to
lower level, i.e. L4, or to DDS Gateway for delivering to
DDS applications. Reply message is used for answering
the request, e.g., when a TinyDDS application publish an
event subscribed by another TinyDDS application, the pub-
lisher sends out Reply message to the subscriber. Cancel-
Request is used for withdraw request sending out earlier.
Contrast with GIOP, TinyGIOP does not support object lo-
cation message formats because there is no notion of object
in TinyDDS, as discussed before, TinyDDS does not sup-
port GIOP’s IOR.

3.5 TinyDDS L4 Adaptation Layer

To access to low level physical network, the routing pro-
tocols in OERP make use of low level physical network
through a network abstract layer called TinyDDS L4 Adap-
tation Layer (L4AL). This L4AL utilize Bridge design pat-
tern to separate the real low level physical network imple-
mentation from the higher level overlay network. Thus,
TinyDDS can be portable among different sensor platform.
In particular, L4AL provides an interface to access physical
network functions such as how to get the list of neighbor-
ing nodes, how to get the link quality to each neighboring
node and also how to send/receive data to/from particular
nodes in the network. These functions are used by the rout-
ing protocols on the OERP layer and implemented by the
Network Layer implementation. Internally, L4AL contains
a set of tables that maintains the information of network,
such as neighbor list and link quality, and a set of event
queues. There are two types of event queues, incoming
queues and outgoing queues. The events submitted from
OERP for sending out to physical network is put to the end
of outgoing queue while the events collected from physical
network are put to the end of incoming queue, waiting to be
processed by the routing protocol in OERP.

3.6. Application Development with Tiny-
DDS

dds.idl
(IDL) IDL2nesc

Intermediate
Interface 

Representation 
(XML)

TinyDDS
interfaces

(nesC)

Application 
Specification

(XML)

L3 Protocol 
Implementation

(nesC)

Application 
Implementation

(nesC)

nesC compiler

Executable 
Code

Application 
Configuration

(nesC)

TinyDDS

TinyDDS Library Application

OERP 
Implementation

(nesC)

TinyDDS
Implementations

(nesC)

Figure 4. Application Development Model

Figure 4 shows the development model of an TinyDDS
application. There are three main components of the de-
velopment model, TinyDDS middleware, TinyDDS Library
and the application. The TinyDDS middleware comprises
of two parts, the DDS interfaces definition and the Tiny-
DDS implementation of the interfaces. The DDS interfaces
definition is directly generated from the dds.idl, which is the
official DDS interfaces definition in IDL format from OMG.
The dds.idl is first converted into XML format. Then,
IDL2nesc converts the DDS interfaces definition from XML
format to TinyDDS interfaces and Application Configura-
tion. The Application Configuration follows Facade design
pattern [5] and describes how to connect each interfaces and
implementation together. IDL2nesc also uses an Applica-
tion Specification, written in XML, in order to generates
appropriate Application Configuration, for example, Appli-
cation Specification specifies which routing protocol will be
used in OERP layer, then Application Configuration con-
nects the implementation of the routing protocol into OERP
interface.

The second components is the TinyDDS Library. Tiny-
DDS Library consists of pluggable components, namely,
application-level and middleware-level pluggable compo-
nents. The application-level pluggable components pro-
vides a set of services which can be used by applica-
tion, such as data aggregation and event detection. The
middleware-level pluggable components provide the ser-
vices inside the middleware, for example, routing protocols
in OERP layer. Library developer develops these function-
ality in the TinyDDS Library and the TinyDDS Library can
be used in any application on any hardware platforms which
support TinyOS.

The third components is the application. Every appli-
cation implemented on TinyDDS consists of two parts, the

4



Application Specification which is used by the IDL2nesc
compiler and the Application Implementation. The Appli-
cation Implementation is developed by application devel-
oper and perform a certain task such as data collection and
event detection.

The nesC compiler combines the Application Config-
uration, TinyDDS Interfaces, TinyDDS Implementations,
Application Implementations and the implementation from
TinyDDS Library into target executable code.

4 DDS Gateway
Figure 2 shows that TinyDDS uses TinyGIOP to com-

municate with the DDS gateway in order to exchange data
with DDS applications. The DDS gateway is an Java appli-
cation that interact with TinyDDS running in sensor nodes
through serial port using TinyOS’ serial adapter Java class.
The DDS gateway uses JacORB [1] and a Java imple-
mentation of DDS [2] to communicate with another DDS
application. A TinyDDS/DDS bridge operates on top of
DDS implementation and communicate with TinyGIOP to
exchange data between TinyDDS and DDS. In particular,
when a message is pushed from TinyGIOP in a sensor node
to DDS gateway, the TinyDDS/DDS bridge translate mes-
sage into DDS format, i.e., encapsulate with GIOP header,
and send out to DDS network. This is called downstream
message transmissions because the message is sent from
source (sensor nodes) to sink (client applications). On the
other hand, when the DDS gateway receives messages des-
tinate to the sensor network from the DDS network, Tiny-
DDS/DDS bridge translates the message into TinyDDS for-
mat, i.e., encapsulate with TinyGIOP header, and injects the
message into sensor nodes through serial interface. This is
called upstream message transmission.

5 DDS Web Clients
On the right-hand side of the Figure 2, a DDS web client

is shown connected to DDS gateway. Currently, a DDS web
client using Google Map is implemented as a Java servlet
application running in Jetty web server. The DDS web
client is able to operate on ordinary desktop computers or
mobile devices such as Apple’s iPhone. By using JacORB,
the DDS web client can communicate with DDS gateway in
order to subscribe to data published from sensor networks
and show the result on the Google map. Figure 5 and 6
show examples of web interface running on a desktop com-
puter and a iPhone respectively. In the Figures, the small
dots show location of each sensor node, bright dots repre-
sent sensor node which report data.

6. Evaluation
This section evaluates TinyDDS in terms of memory

footprint, power consumption and lines of application code.
One time event subscription and subsequent event publica-
tions are implemented in TinyDDS and simulated on Power-

Figure 5. A DDS Web Client on a Desktop
Computer

Figure 6. A DDS Web Client on an iPhone

TOSSIM [10] with the MICA2 power consumption model.
The duration of each simulation is 120 seconds, and 25
nodes transmit sensor data to the base station every 2 sec-
onds. TinyDDS is compared with Surge, a simple data col-
lection application bundled in TinyOS. Similar to Surge,
TinyDDS uses a spanning tree-based protocol as its OERP.

Table 7 shows the memory footprint of TinyDDS and
Surge. Without running applications, TinyDDS consumes
36.1 kB in ROM and 3.4 kB in RAM. With an application,
memory footprint slightly increases to 37.6 kB in ROM and
3.4 kB in RAM. However, the difference of memory foot-
print is very small between TinyDDS and Surge. TinyDDS
is implemented lightweight, and it can operate in resource-
limited nodes such as MICA2.

Table 8 shows the average and standard deviation (SD)
of power consumption by 25 nodes. Without a subscriber,
TinyDDS transmits no data; thus, its power consumption
remains small. In contrast, Surge always transmits data to
the base station; it consumes much more power than Tiny-
DDS. With a subscriber, TinyDDS consumes a comparable

5



Memory Footprint (kB) TinyDDS Surge

Without an Application ROM 36.132 N/A
RAM 3.360 N/A

With an Application ROM 37.572 37.430
RAM 3.394 1.929

Figure 7. Memory Footprint

amount of power compared with Surge. TinyDDS is imple-
mented power efficient.

Power Consumption (mW) TinyDDS Surge

Without a Subscriber Average 189.59 37430
SD 61.24 76.03

With a Subscriber Average 3900.9 3924.97
SD 52.55 76.03

Figure 8. Power Consumption

With TinyDDS, only 60 lines of nesC code is required to
implement the same application as Surge. Surge is imple-
mented with 300 lines of nesC code. TinyDDS effectively
simplifies the development of WSN applications.

7. Related Work
There exist many research and commercial implemen-

tations of the DDS specification. However, to the best of
the authors’ knowledge, no DDS implementations exist for
WSNs. TinyDDS is the first implementation of DDS and
IDL-to-nesC mapping for WSNs.

There are several research efforts that focus on the in-
teroperability between WSNs and access networks [6, 7,
11,12]. [6,11,12] propose interoperable middleware/frame-
works, and [7] proposes a protocol bridging between WSNs
and access networks. However, all of these related work do
not provide programming language interoperability. They
also do not provide protocol interoperability as TinyDDS
does by introducing an interoperable session (L5) protocol.

8. Conclusion
Traditional wireless sensor networks (WSNs) often do

not consider interoperability between WSNs and access net-
works. To address the issue, this paper investigates inter-
operable publish/subscribe communication in WSNs. The
proposed middleware, called TinyDDS, provides two types
of interoperability, programming language interoperability
and protocol interoperability, by customizing standard data
types, data representation and session protocol. Evaluation
results show that TinyDDS simplifies the development of
publish/subscribe applications and it is implemented effi-
cient in memory footprint and power consumption.

References

[1] JacORB website, 2008. http://www.jacorb.org/.

[2] F. Allaoui, A. Yehdih, and D. Donsez. Open-
source java-based OMG DDS implementation, 2005.
http://www-adele.imag.fr/users/Didier.Donsez/

dev/dds/readme.html.
[3] P. Boonma and J. Suzuki. Middleware support for plug-

gable non-functional properties in wireless sensor networks.
In Proc. of IEEE Workshop on Methodologies for Non-
functional Properties in Services Computing, 2008.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and
M. Stal. Pattern-Oriented Software Architecture - A System
of Patterns. Wiley and Sons, 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley Professional, 1995.

[6] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ra-
manathan, and D. Estrin. Emstar: a software environment
for developing and deploying wireless sensor networks. In
Proc. of USENIX Technical Conf., 2004.

[7] A. Marchiori and Q. Han. A foundation for interoperable
sensor networks with internet bridging. In Proc. of ACM
Workshop on Embedded Networked Sensors, 2008.

[8] Object Management Group. Common Object Request Bro-
ker Architecture (CORBA) specification, version 3.1; part
2: CORBA interoperability, 2007. http://www.omg.org/
spec/CORBA/3.1/.

[9] Object Management Group. Data Distribution Ser-
vice (DDS) for real-time systems, v1.2, 2007.
http://www.omg.org/technology/documents/

formal/data_distribution.htm.
[10] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and

M. Welsh. Simulating the power consumption of large-scale
sensor network applications. In Proc. of ACM Int’l Conf. on
Embedded Networked Sensor Systems, 2004.

[11] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for
connecting sensor networks and applications. Technical re-
port, Harvard University, 2004.

[12] P. Spiess, H. Vogt, and H. Jütting. Integrating sensor net-
works with business processes. In Proc. of ACM Real-World
Sensor Networks Workshop, 2006.

6


