
second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

1

Toward the interoperable software design models:
quartet of UML, XML, DOM and CORBA
Junichi Suzuki

Department of Computer Science,
Graduate School of Science and Technology,

Keio University
Yokohama, 223-8522, Japan

+81-45-563-3925

suzuki@yy.cs.keio.ac.jp

Yoshikazu Yamamoto
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama, 223-8522, Japan
+81-45-563-3925

yama@cs.keio.ac.jp

ABSTRACT
Unified Modeling Language (UML) has been widely
accepted as an object-oriented analysis/design
methodology in the software engineering community, and
is in the process of revised standardization at OMG
(Object Management Group). One of the current major
enhancements is SMIF (Stream-based Model Interchange
Format) specification, which aims to interchange UML
models in a standard based way. It is expected to be based
on XML (eXtensible Markup language) standard and used
in various development tools such as CASE tools,
automatic documentation tools and repositories.

This paper addresses a standard-based UML model
interchange and presents our effort to make UML
interoperable. We developed a XML-based exchange
format called UXF (UML eXchange Format) and a
distributed model management system for UML. The
system leverages the team development, reuse of design
models and tool interoperability by interchanging the
model information with XML through the Document
Object Model (DOM) interface that is implemented on top
of CORBA (Common Object Request Broker
Architecture). DOM provides a platform and programming
language neutral interface to manipulate the content,
structure and style of documents.

Our work shows a practical application of some key
standards in terms of the software model interchange. It
provides multiple levels of interoperability for UML,
thereby UML models can be highly interoperable.
Keywords
UML, XML, DOM, CORBA, Software model interchange,
CASE data interchange, UML model interchange

1. Introduction
Unified Modeling Language (UML) [1-8] has been widely
accepted as an object oriented software analysis/design

methodology in the software engineering community. It
provides most of the concepts and notations that are
essential for documenting object oriented models. As a
publicly available standard, UML is now in the process of
revision at Object Management Group (OMG).
Enhancements include the improvement of Object
Constraint Language (OCL), development process,
business modeling, realtime modeling and model
interchange.

We are interested in the model interchange. The current
UML (version 1.1) does not have an explicit format to
interchange its models. The capability is quite important to
the future UML compliant tools because it is likely a
development team resides in separate places on a network
environment, and because UML models are not
interoperable between development tools due to the lack of
an application-neutral exchange format [9]. To solve this
problem, OMG issued an RFP (Request For Proposal) for
SMIF (Stream-based Model Interchange Format)
specification [10-11], to interchange UML models in a
standard based way.

This paper addresses a standard based UML model
interchange and presents our effort to develop a distributed
model management system allowing UML models to be
interoperable. This system allows various tools to publish,
access, manipulate and interchange UML models
formatted with XML (eXtensible Markup Language) [12]
through its published interfaces based on Document Object
Model (DOM) [13], a standard by World Wide Web
Consortium (W3C). DOM defines a set of interfaces to
manipulate the content, structure and style of documents
on the Internet. We implemented DOM interfaces on top of
CORBA (Common Object Request Broker Architecture)
[14], which is a standard for the middleware in the
distributed object environment; i.e. ORB (Object Request
Broker). By combining promising standards, we achieved

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

2

an open system allowing to manage the interoperable UML
model in a distributed environment.

The remainder of this paper is organized as follows.
Section 2 overviews UML, XML, DOM and CORBA.
Section 3 describes an UML interchange format called
UXF (UML eXchange Format). Section 4 presents the
motivation and merits of the combination of technologies
described in Section 3, and then describes the architecture
and implementation of our system to manage UML models
over the network environment. We conclude with a note on
the future work, in Section 5 and 6.

2. UML model interchange and its enabler
technologies
2.1 Unified Modeling Language (UML)
UML is the union of the previous leading object modeling
methodologies; Booch [15], OMT [16] and OOSE [17].
When UML was published in late 1996, it quickly gained
momentum and became the de-facto standard for object-
oriented modeling. UML has been also submitted to the
Object Management Group (OMG) to become a public
standard, and included additional constructs that ancestors
did not address, such as the extension for business
modeling [6], Object Constraint Language (OCL) [7] and
Object Analysis & Design CORBAfacility Interface
Definition [8]. It is the state of the art convergence of
practices in the academic and industrial community. Most
developers are expected to eventually choose UML for
their modeling work.

UML defines the following diagrams for the object
modeling, according to various perspectives to a target
problem domain:

• Structural diagrams:

• Class diagram

• Object diagram

• Behavioral diagrams:

• Use case diagram

• Sequence diagram

• Collaboration diagram

• State transition diagram

• Activity diagram

• Implementation diagrams:

• Activity diagram

• Component diagram

• Deployment diagram
Using these diagrams with the fine level of abstraction,
complex systems can be modeled through a small set of

nearly independent diagrams. UML provides two aspects
for constructs in the above diagrams:

• Semantics: The UML metamodel defines the abstract
syntax and semantics of object modeling concepts.

• Notations: UML defines graphical notations for the
visual representation of its model elements.

While UML defines the above coherent constructs and
their interchangeable semantics, it does not intentionally
provide the explicit format to exchange the model
information.

2.2 UML model interchange
OMG has issued a RFP for SMIF, as described in Section
1, and some proposals have been received. Responses
include CDIF (CASE Data Interchange Format) [18]
based, STEP based and XML based proposals. Also, other
formats are proposed apart from the SMIF standard [19,
20, 26, 27].

Such application neutral formats facilitates:

• Intercommunications between software developers:
The Internet is an emerging infrastructure to distribute
and share software model information, because it is
effective and economical for making information
available to the widely separated group of individuals.
Within the Internet/Intranet environment, especially the
Web environment, we can represent, encode and
ultimately communicate software modeling insights and
understandings with each other. An application-neutral
interchange format simplifies the circulation of UML
models between software developers.

• Interoperability between development tools: Software
models are dynamically changed during the
analysis/design, revision and maintenance phases, and
the software tools used by a development team employ
their own proprietary formats to describe the software
model information. An application-neutral interchange
format allows UML models to be interoperable between
development tools throughout the lifecycle of software
development. Once encoded with such a format, model
information can be reusable for a wide range of usage
with different strengths of different tools (Figure 1).

The most important factor in exchanging UML models is
the semantics within the models should be described
explicitly and transferred precisely. We are interested in a
XML based transfer vehicle and have proposed an
exchange format called UXF (UML eXchange format) [9,
19].

2.3 XML (eXtensible Markup Language)

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

3

XML is a data description language standardized by W3C.
XML is a sophisticated subset of SGML (Standard
Generalized Markup Language: ISO 8879), and designed
to describe document content using arbitrary tags. As its
name implies, the extensibility is a key feature of XML;
users or applications are free to declare and use their own
tags and attributes. Therefore, XML ensures both the
logical structure and content of semantics-rich information
is retained.

XML emphasizes description of information structure and
content as distinct from its presentation. The data structure
and its syntax are defined in a DTD (Document Type
Definition) specification, which is a derivative from SGML
and defines a series of tags and their constraints. In
contrast to information structure, the presentation issues
are addressed by XSL (XML Style Language) [21], which
is also a W3C’s emerging standard for expressing how
XML-based data should be rendered. XSL is based on
DSSSL (Document Style Semantics and Specification
Language ISO/IEC 10179) and interoperable with CSS
(Cascading Style Sheet), which was originally a style
definition language specific to HTML. In addition to XML
and XSL, Xpointer [22] and Xlink [23] are in the process
of standardization at W3C, a specification to define
anchors and links within XML documents. As such, XML
has great potential as an exchange format for many kinds
of structured data, and increases the productivity to author,
maintain and view this data, together with the style sheet
and linking mechanisms.

2.4 UXF (UML eXchange Format)
UXF is a XML based format to emcode and exchange
UML models [9, 19]. It is carefully designed to be:

• Simple: UXF is compact by including only UML's
semantics, while the scope of SMIF includes other
semantics (e.g. Meta Object Facility; MOF).

• Intuitive: UXF is designed to be easy-to-understand and
readable.

• Natural extension from existing Web environments:
UXF is a natural and transparent extension from the
existing Web environment. Thus, most of the existing

applications around the Web can be used for handling
UXF encoded information with relatively minor
modifications.

To author and view UML models encoded with UXF,
existing markup languages could be converted to UXF, and
most development tools such as CASE tools,
documentation tools, visual profiling tools and document
repositories, can be modified so that they recognize UXF.
In the current situation where many XML-aware
applications exist, it is relatively easy to extend existing
tools. Also, UML-related technical materials formatted in
UXF can be handled by every Web application that
manipulates HTML as well as Web browsers/servers, in
the near future. As a result, UXF allows the seemless uses
of the UML models among development tools (Figure 1).
This feature increases our productivity of UML modeling.

At present, UXF is not compliant to SMIF intentionally for
the simplicity of the format. Also, SMIF is just proposed
and has not been frozen, at the time of this writing.
Consequently, we decided to use UXF in this project. Once
SMIF is frozen or more mature, we will employ SMIF by
developing a translator from UXF to SMIF.

2.5 Document Object Model (DOM)
DOM is a platform and programming language neutral
interface that allows to access and manipulate the content,
structure and style of Web documents (e.g. HTML and
XML documents). It provides a standard set of objects for
representing documents, a standard model of how these
objects can be combined, and a standard API. It is
standardized by W3C.

DOM Level 1 [13] consists of two parts: Core and HTML.
The DOM Core specification provides a common set of
interfaces that can represent and manipulate XML
documents The DOM HTML specification uses the Core
specification and provides higher-level interfaces for
HTML documents.

At the time of this writing, the DOM level 1 specification
(version 1.0) is a W3C proposed recommendation that are
capable of the followings:

 Figure 1: The interoperability between development tools.

Programming Languages

Reverse engineering tools

Visual profiling tools

CASE tools

Printed materials

Hyperlinked online help

Interoperable UML models

Design metrics

Tools
Repositories

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

4

• Structure navigation, which is a navigation around a
document such as accessing and searching elements or
attributes.

• Document manipulation, which is a manipulation of
document structures such as adding, changing and
removing elements or attributes.

• Content manipulation, which allows for navigation and
manipulation of document contents.

Additional capabilities including Event model, DTD
manipulation and Stylesheet object model are planned for a
subsequent version.

The DOM interface is defined with OMG’s Interface
Definition Language (IDL, ISO standard 14750), a primary
component in the CORBA specification, because it is
designed to define language neutral interfaces. DOM does
not intend to be implemented with CORBA, but
implementing DOM interfaces on top of CORBA is
reasonable for our goal to make UML models highly
interoperable (see also Section 2.7).

2.6 Common Object Request Broker
Architecture (CORBA)
CORBA is a standard for heterogeneous object
interoperability. It is standardized by OMG and
recognized as a Publicly Available Standard (PAS) of ISO.
It provides a standard way to share objects and their
behaviors on a network.

The CORBA specification defines the interfaces and
components that compose an Object Request Broker
(ORB). An application that needs to access the services
and functionality of a remote object uses an ORB to send a
message to the object and receive the results. A series of
interfaces in CORBA allows to distribute remote objects
on multiple platforms in a way that is seamless and
transparent to applications. The architecture itself is
isolated from the actual transport (e.g., TCP, IPX, SNA),
thereby allowing an open-ended standard.

One of the key components in CORBA is OMG Interface
Definition Language (IDL), a language to define interfaces
of remote objects. It is programming language neutral by
providing a mapping between IDL and each language.
Another important component is Internet Inter-ORB
Protocol (IIOP), which is a standard protocol based on
TCP. IIOP leverages the interoperability between
distributed objects. Currently, there are over 60
implementations of CORBA supporting over 15 languages
(e.g. C++, Java, COBOL, CLOS and Python) and over 30
platforms from Windows CE to mainframes.

2.7 Three levels of interoperability
Our project intends to prepare three levels of
interoperability for UML:

• UXF: UXF allows UML models to be interoperable
between UML compliant tools.

• DOM: DOM allows XML formatted data (i.e. UXF
data) to be interoperable between XML-aware tools
through the uniform interfaces.

• CORBA: CORBA provides the standard interfaces to
allows DOM-aware tools to interact with each other on
a network, thereby UXF formatted data can be
transferred between distributed DOM-aware tools.

Consequently, UML models encoded with UXF can be
interoperable between any UML compliant tools, any XML
tools, any DOM tools and any ORBs.

3. UML eXchange Format (UXF)
In terms of exchanging model information between
development tools, there can be two types of information
that should be exchanged [20]:

• Model-related information

• View-related information
While model-related information is a series of building
blocks to represent a given problem domain (e.g. classes,
attributes and associations), view-related information is
composed of the way in which the model is rendered (e.g.
the shapes and position of graphical objects). This paper
concentrates on exchanging the model-related information.
The interchange of the view-related information is future
work, but it would be easy to describe the view-related
information with XSL.

3.1 UXF DTDs
As described above, the UXF specification actually
consists of a series of XML DTDs. It provides the mapping
of UML model information into document tags in the
DTDs. UXF captures the constructs (i.e. model elements)
in a UML metamodel, and defines each construct as a tag
(i.e. a document element) straightforwardly. The attributes
of each UML construct are mapped into attributes of the
corresponding UXF tag.

We have specified UXF DTDs for the following three
UML diagrams. These diagrams are fundamental for the
analysis and design of problem domains.

• Class diagram: A class diagram shows the static
structure of classes and relationships between them.
This diagram also defines the foundation for other
diagrams that specify different aspects of the problem
domain.

• Collaboration diagram: A collaboration diagram shows
an interaction organized around the objects in the
interaction and their links to each other.

• Statechart diagrams: A statechart diagram shows the
sequences of states that an object goes through during

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

5

its life in response to received stimuli, together with its
responses and actions.

Table 1 depicts the comparison of UML model elements
and UXF tags. Current UXF supports most elements in the
UML’s Core package, Collaboration package, State
Machines package and some elements in other packages
(see Table 1).

Using UXF, most essential concepts and constructs in
UML can be mapped to the stream-based exchange format
seamlessly. Sample markup (encoding) examples can be
found in [24]. Note that constructs described with UXF are
not shared between different diagrams for the simplicity.
Sharing model information between different diagrams
consistently is considered the responsibility of UXF aware
applications.

4. Distributed model management system
This section describes our effort to distribute UML models

over the Internet/Intranet environment.

4.1 System’s goal
We developed a prototype system to share and manage the
UML design information precisely within a distributed
environment based on the Internet. The Internet-oriented
centralized management of design information leverages:

• Team development: allows analysts, designers and
programmers to continue their work concurrently at
physically separated places. They can create, retrieve
and change the UML model information.

• Reuse of development information: allows developers
to communicate with each other, and eases a smooth
progress of the development project. This feature
increases productivity of the team development. The
capability to maintain development information at a
single point throughout a software lifecycle is vital to
development teams for archival purpose, because every

 UML Package UML Model Element UXF Representation

 Core Association <Association>
 AssociationEnd <AssocRole>
 Attribute <Attribute>
 Class <Class>
 Dependency <Dependency>
 Generalization <Generalization>
 Interface <Interface>
 Operation <Operation>
 Parameter <Parameter>
 Auxiliary Elements Refinement <Refinement>
 Extension TaggedValue <TaggedValue>
 Common Behavior Exception <Exception>
 Action <Action>
 ActionSequence <ActionSequence>
 Instance <Instance>
 Model Management Model <Model>
 Package <Package>
 Collaborations Collaboration <collaboration>
 Interaction <Interaction>
 Message <Message>
 StateMachines CompositeState <CompositeState>
 Event <Event>
 Guard <Guard>
 State <State>
 Transition <Transition>
 PseudoState <PseudoState>

Table 1: Comparision between UML model elements and UXF tags

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

6

team typically has large volumes of materials.
Developers can use these materials in their work to
refer and revise the current information, or record
results of experiments or historical logs.

4.2 Our first prototype system
We developed a system to meet the above requirements, on
top of the existing Web environment and a CORBA
compliant ORB. It was based on the three-tier deployment
architecture, and provides two kinds of accesses to UXF
documents: via HTTP and IIOP (the right of Figure 2).

The HTTP access aims to allow client applications
including Web browsers to refer the UXF documents
stored in Web servers or any backend databases. The left
of Figure 4 is a sample screenshot of a Web browser
displaying a UXF document with a corresponding XSL
stylesheet. If other stylesheets are prepared, different
outputs can be displayed as suited to a specific purpose.

The IIOP access aims to allow developers at separated
places to consistently register, refer, process and change
UML models. A server application parses UXF formatted
documents at a system’s start-up time or on the fly, and
builds an in-memory structure of these documents; tree
structures of parsed UXF elements. Client applications
include simple command-line tools, GUI profiling tools,
development environments, etc. The right side of Figure 5
is a sample screenshot of a client-side GUI profiling tool
similar to the system browser in Smalltalk. In this tools, the
left-side pane shows the list of UML packages, the central
pane lists classes in the package, the right side is the list of
operations (i.e. methods) of the class selected in the central

pane, and the bottom pane shows the comments (Note or
TaggedValue in the UML term) for each package, class or
method. This tool accesses a CORBA server to obtain the
necessary data to display, according to the user’s mouse
manipulation.

The selected IDL interfaces of a CORBA server are shown
in Figure 3. The interface UxfHandler in Figure 3
defines a series of methods to access the constructs in class
diagrams.

In general, APIs that handle XML documents via
middleware are categorized into three groups [25]:

• Source document APIs
manage the XML document instances directly.

• Element APIs
manage the parsed elements in document instances.
The navigation, selection, control and update on of a
XML document is achieved through this API.

• Custom APIs
provide application specific interfaces, and depend on
certain applications with related DTDs.

Our original interface listed in Figure 3 is a custom API
specific to the UXF description for class diagrams. With
custom APIs, it is easy to understand their semantics, but
they are not ideal for the interoperability of UML models,
because they should be modified when UXF DTDs or
UML itself are revised. This is where the element API
comes in.

Figure 2: Deployment architecture of our original prototype system that allows to share UML models over the Internet (left),
and layered architecture for CORBA based system (right).

typedef sequence<string> StrSequence;

interface UxfHandler {

 StrSequence getPackageList();

 StrSequence getClassList(in string pkgName);

 StrSequence getOperationList(in string pkgName, in string className);

 string getPackageDescription();

 string getClassDescription(in string pkgName);

 string getOperationDescription(in string pkgName, in string className);

 boolean findConstruct(in string name);

}

Figure 3: Selected IDL interfaces of a CORBA server for accessing UXF formatted information.

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

7

4.3 Revised system
We revised our system to replace the traditional custom
API with the element API to provide more generic
interface to UXF encoded data. The DOM interface plays a
key role for accessing and manipulating it.

4.3.1 Architecture
As depicted in the left of Figure 5, our layered architecture
is revised so that the DOM interface is placed between the
CORBA interface and components to process UXF data.
The traditional IDL interface, described in Figure 3, is
replaced with the DOM interface that is defined by IDL.
This means client applications can access UML models
through the generic interface, thereby the server-side
interface can be kept uniform even if the UXF format or
UML is changed.

There can be a wide range of implementations of DOM
(right of Figure 5). The difference between
implementations is encapsulated with the common DOM
interface. It can use backend tools from a variety of
selections, including tools to manipulate XML, SGML and
HTML or even proprietary systems handling their own

format, because it does not specify its implementation
issue. We can also easily migrate from existing legacy
systems.

Our system employs a defacto standard named "Simple
API for XML" (SAX) [28] for a backend of the DOM
interface. SAX has been developed collaboratively in the
XML community, and defines the common interface
between XML parsers and their applications. It is
supported by various parsers implemented in Java, C++,
Python and so on. SAX allows us to select XML parsers
along with a given requirement without effecting other
components in the system (right of Figure 5).

The essential components that consist of the DOM Core
specification are shown in the left of Figure 6. These
defines common parts of documents on the Internet. The
DOM extended interface is a set of components to
manipulate elements specific to XML (i.e. DTDs). Our
system focuses on only DOM Core interface, because it
does not have to process any UXF DTDs.

Figure 4: Sample screenshots of a Web browser that displays a UXF document with a XSL stylesheet
and a GUI profiling tool that communicates with CORBA servers.

Figure 5: Revised system architecture (left) and connections between the DOM interface and its backends (right).

Internet (TCP/IP)

CORBA/IIOP

DOM Interface DOM Interface

CORBA Interface CORBA Interface

UXF Client

GUI

SAX I/F

DOM Impl

Non-SAX

Repository

Proprietary systems

SAX I/F

SGML tools

C++ Impl

Java Impl

XML tools

DOM I/F

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

8

4.3.2 Implementation
As shown in the left of Figure 5, our system architecture
intends to use a SAX-compliant XML parser as an
implementation of the DOM interface. Our system
currently uses an implementation of the DOM Core
specification called Docuverse DOM SDK (DOMSDK)
[29], and connects it with a XML parser called Lark [30]
using its SAX driver.

DOMSDK provides a series of classes and interfaces
implemented with Java. By wrapping them with additional
objects, we extended it so that it can run on the CORBA
environment, because it assumes a standalone use. The
right of Figure 6 depicts the relationship between
components in DOMSDK and CORBA objects. DOMSDK
provides Java interface classes compliant to the DOM Core
specification (DOMImplementation and Document
in this figure), and implementation classes corresponding

to interface classes (DOM, BasicDocument and
DefaultFactory). To allow these classes to be used on
CORBA, we defined a set of classes that are glue to
connect DOM and CORBA. The name of every glue class
has a prefix "Corba". For example, CorbaDocument
provides the functionality of the interface Document in
the DOM specification by using BasicDocument
internally (see the right of Figure 6). The classes with the
suffix "Factory" are factory classes responsible for
creating CORBA objects on demand basis. For example,
CorbaDocumentFactory creates an instance of
CorbaDocument with its method
createDocument()(see the right of Figure 6). All
other components are structured in this manner, though the
right of Figure 6 includes just two sets of interface class-
implementation class-glue class pairs.

Figure 6: The essential interfaces of the DOM Core specification (left) and their implementations
which are used in CORBA environment.

Figure 7: A typical behavior of server-side components.

Node

DocumentFragm ent

CharacterData

Text Comm ent

Process ingInstruction

Attribute

Elem entDocument

DOMImplem entation

Bas icDocument

getElem entsByTagNam e()

Docum entDOMIm plem entation

CorbaDocum ent

uses

CorbaDocum entFactory

createDocum ent()

creates

DefaultFactory

uses

CorbaDOMServer creates

DOM

createDocum ent()
createIns tance()
openDocum ent()

creates
im plem ents

usesCorbaDom

createDocum ent()
findDocum ent()

crteates

uses

im plements

Client

(3) initialize()

CorbaDom

Naming
Service

(1) createDocument()

CorbaDocumentFactory

(2) createDocument()

CorbaDocument(4) bind()

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

9

Figure 7 shows a typical behavior of server-side
components. When CorbaDom accepts a request to create
a XML document (i.e. a UXF formatted data) from a client
application (1), it calls the method createDocument()
of CorbaDocumentFactory, a factory class for
CorbaDocument (2). This method instanciates
CorbaDocument by invoking the method
initialize() (3), and them binds the instance into a
CORBA naming service (4). The CORBA naming service
is a standard registry for CORBA objects, which allows
client applications to locate them. The newly created
instance is returned to the client application through
CorbaDom. After that, the client application can directly
communicate the instance to access its content. Our system
uses a CORBA implementation called JavaIDL, included in
Java Development Kit (JDK) 1.2 or later.

5. Future work
To achieve the goal described in Section 4.1, our system
has many enhancements. For example, we are investigating
the use of an object-oriented database for a persistent
storage of UXF data. It enhances the current transient
CORBA objects to be a persistent one, which can maintain
the tree structures of parsed UXF elements even after the
shutdown of a server. Another enhancement is to enable
the concurrent access in the server-side components and
make the response time in client applications to be
minimum using a callback capability. Also, we are
introducing a mechanism of the revision control for UXF
data using two tags of XML; <![INCLUDE[…]]> and
<![IGNORE[…]]>. In addition, UXF-aware and DOM
compliant tools are planned such as diagram
editing/drawing tools, documentation tools and visual
profiling tools. We are particularly interested in developing
different tools with different languages in order to prove
the language neutrality in our system.

As for the UXF format, we are refining the existing DTDs
and developing ones for all the UML diagrams.

6. Conclusion
This paper addresses how we can provide an open
environment for highly interoperable UML models with
some emerging standards. We proposed the co-use of
XML, DOM and CORBA as enabler technologies, and
developed a distributed system to share and manage UML
models. We believe our work shows an important step in
interchanging UML analysis/design models, and provides a
blue print indicating how emerging standards can be used
for practical applications in near future. Information on our
project can be obtained at [24].

At last, we would like to thank Yuu Tanaka for his help to
design UXF DTDs, Uche Ogbuji for our discussion to use
DOM and Kenji Shirane for his initial input for UXF
applications.

7. References
[1] Rational Software et.al. UML Proposal Summary,

OMG document number: ad/97-08-02.

[2] Rational Software et.al. UML Summary, OMG
document number: ad/97-08-03.

[3] Rational Software et.al. UML Semantics, OMG
document number: ad/97-08-04.

[4] Rational Software et.al. UML Notation Guide, OMG
document number: ad/97-08-05.

[5] Rational Software et.al. UML Extension for Objectory
Process for Software Engineering, OMG document
number: ad/97-08-06.

[6] Rational Software et.al. UML Extension for Business
Modeling, OMG document number: ad/97-08-07.

[7] Rational Software et.al. Object Constraint Language
Specification, OMG document number: ad/97-08-08.

[8] Rational Software et.al. OA&D CORBAfacility, OMG
document number: ad/97-08-09.

[9] Suzuki, J. and Yamamoto, Y. Managing the software
design documents with XML. In Proceedings of ACM
SIGDOC '98.

[10] DSTC, IBM, Oracle, Platinum Technology and
Unisys, Joint Initial Submission to the SMIF RFP.
OMG document number ad/98-07-01, 1998.

[11] DSTC, IBM, Oracle, Platinum Technology and
Unisys, XMI specification: Appendices. OMG
document number ad/98-07-03, 1998.

[12] Bray, T et.al. (ed.). Extensible Markup Language
(XML) 1.0. W3C Recommendation, February 1998.

[13] Apparao, V et al (ed.). Document Object Model
(DOM) Level 1 Specification version 1.0. W3C
proposed recommendation, 18 August 1998.

[14] Object Management Group, Common Object Request
Broker Architecture. 1998.

[15] Booch, G. Object-Oriented Analysis and Design 2nd

Edition. The Benjamin/Cummings Publishing, 1994.

[16] Rumbaugh, J et.al. Object-Oriented Modeling and
Design. Prentice Hall, 1991.

[17] Jacobson, I. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1995.

[18] A series of CDIF specifications are available at
http://www.cdif.org/

[19] Suzuki, J. and Yamamoto, Y. Making UML models
exchangeable over the Internet with XML. In
Proceedings of UML '98, 1998.

[20] Rational Software. UML-Compliant Interchange
Format, OMG document number: ad/97-01-13, 1997.

second draft submitted to 4th IEEE International Software Engineering Standards Symposium (ISESS ’99).

10

[21] Clark, J. et.al. (ed.). Extensible Stylesheet Language
(XSL) version 1.0. W3C Working Draft 18-August-
1998.

[22] A Proposal for XSL. W3C, 1998.

[23] Eve Maler et.al. (ed.), XML Pointer Language
(XPointer), W3C Working Draft 3,.

[24] Maler, E et.al. (ed.), XML Linking Language (XLink),
W3C Working Draft 3.

[25] http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/

[26] Ohno, K. and Bayer, M. Development of SGML/XML
Middleware Component. In Proceedings of
SGML/XML’98 Europe, 1998.

[27] UML Xchange. at http://WWW.CAM.ORG/~nrivard/
uml/umlxchng.html.

[28] UML to Text. at http://www.ccs.neu.edu/home/
nickman/com1205/uml-text.html.

[29] SAX 1.0: The Simple API for XML. at
http://www.megginson.com/SAX/index.html.

[30] Docuverse DOM SDK. at http://www.docuverse.com/
domsdk/.

[31] Bray, T. An Introduction to XML Processing with
Lark and Larval. at http://www.textuality.com/Lark/.

