
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005 249

A Middleware Platform for a Biologically Inspired
Network Architecture Supporting Autonomous

and Adaptive Applications
Junichi Suzuki, Member, IEEE, and Tatsuya Suda, Fellow, IEEE

Abstract—This paper describes and empirically evaluates the
middleware platform of a new network architecture called the
Bio-Networking Architecture. The Bio-Networking Architec-
ture is inspired by the observation that the biological systems
(e.g., bee colonies) have already developed mechanisms neces-
sary to achieve future network requirements such as autonomy,
scalability, adaptability, and simplicity. In the Bio-Networking
Architecture, a network application is implemented as a group of
distributed, autonomous and diverse objects called cyber-entities
(CEs) (analogous to a bee colony consisting of multiple bees). Each
CE implements a functional service related to the application
and follows simple behaviors similar to biological entities (e.g.,
reproduction and migration). In the Bio-Networking Architecture,
beneficial application characteristics (e.g., autonomy, scalability,
adaptability, and simplicity) arise from the autonomous inter-
action of CEs. The middleware platform in the Bio-Networking
Architecture, the bionet platform, provides reusable software
components for developing, deploying, and executing CEs. The
components abstract low-level operating and networking details,
and implement high-level runtime services that CEs use to per-
form their services and behaviors. The components in the bionet
platform are designed based on several biological concepts (e.g.,
energy exchange and pheromone emission). This paper describes
key designs of the bionet platform and empirically demonstrates
that the bionet platform is efficient, scalable, reusable, and signifi-
cantly simplifies development of network applications.

Index Terms—Autonomic computing middleware, autonomous
and adaptive network applications, biologically inspired network
architecture for distributed computing.

I. INTRODUCTION

FUTURE network applications are expected to be au-
tonomous, scalable, adaptive to dynamic network envi-

ronments, and to be simple to develop and deploy. In order
to realize future network applications with such desirable
characteristics, the authors of this paper observe that various
biological systems have already developed the mechanisms

Manuscript received December 1, 2003; revised May 15, 2004. This work
was supported in part by the National Science Foundation (NSF) under Grant
ANI-0083074 and Grant ANI-9903427, in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant MDA972-99-1-0007, in
part by the Air Force Office of Scientific Research (AFOSR) under Grant
MURI F49620-00-1-0330, and in part by grants from the California MICRO
and CoRe Programs, Hitachi, Hitachi America, Novell, Nippon Telegraph
and Telephone (NTT), NTT Docomo, Fujitsu, NS Solutions Corporation, and
Denso IT Laboratory.

J. Suzuki is with the Department of Computer Science, University of Massa-
chusetts, Boston, MA 02125-3393 USA (e-mail: jxs@cs.umb.edu).

T. Suda is with the School of Information and Computer Science, University
of California, Irvine, CA 92697-3425 USA (e-mail: suda@ics.uci.edu).

Digital Object Identifier 10.1109/JSAC.2004.839388

necessary to achieve the key requirements of future network
applications such as autonomy, scalability, adaptability, and
simplicity. The authors of the paper believe if network ap-
plications are modeled after certain biological concepts and
mechanisms, they may be able to meet these requirements of
future network applications.

The Bio-Networking Architecture [1]–[5] applies key con-
cepts and mechanisms in biological systems to design network
applications.1 One of the key concepts in biological systems
is emergence. In biological systems, beneficial system prop-
erties (e.g., adaptability) often emerge through the simple and
autonomous interactions among diverse biological entities. The
Bio-Networking Architecture applies the concept of emergence
by implementing network applications as a group of distributed,
autonomous, and diverse objects called cyber-entities (CEs).
This is analogous to a bee colony (a network application) con-
sisting of multiple bees (CEs). Each CE implements a functional
service related to the application and follows simple behaviors
similar to biological entities, such as reproduction, death, mi-
gration, and environment sensing.

Similar to entities in the biological world, CEs in the Bio-Net-
working Architecture are designed to provide a sufficient degree
of diversity. Different CEs may implement different services.
For instance, a CE may implement an airline reservation service,
while another CE may implement a hotel reservation service. A
CE may implement a Web service and contain Web pages. Dif-
ferent CEs may implement different behavior policies. For in-
stance, a CE may have a migration policy of moving toward a
user, while another CE may have a migration policy of moving
toward a node, where resource availability is higher.

Similar to an entity in the biological world, each CE in the
Bio-Networking Architecture may store and expend energy for
living. CEs may gain energy in exchange for performing a ser-
vice, and they may pay energy to receive a service from other
CEs and to use network and computing resources. The abun-
dance or scarcity of stored energy may affect various behav-
iors of a CE. For example, an abundance of stored energy is an
indication of higher demand for the CE; thus, the CE may be
designed to favor reproduction in response to higher levels of
stored energy. A scarcity of stored energy (an indication of lack
of demand or ineffective behaviors) may eventually cause the
CE’s death.

1The Bio-Networking Architecture was first proposed in [2], later adopted by
NTT [3], and also adopted by the Object Management Group (OMG) as a part
of its standard specification for super distributed objects (SDO) [6].

0733-8716/$20.00 © 2005 IEEE

250 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

In the Bio-Networking Architecture, application function-
ality emerges from the collaborative execution of services
carried by CEs, and beneficial application characteristics (e.g.,
autonomy, scalability, adaptability, and simplicity) arise from
the simple and diverse behaviors among CEs and from the
autonomous interaction of individual CEs.

This paper describes and empirically evaluates the design of
the middleware platform in the Bio-Networking Architecture,
called the bionet platform [4]. The bionet platform runs on a
virtual machine, and CEs run atop the bionet platform. It pro-
vides reusable software components for developing, deploying
and executing CEs. The components abstract low-level oper-
ating and networking details (e.g., network I/O and concurrency
control for executing CEs), and implement high-level runtime
services that CEs use to perform their services and behaviors.
The components are designed based on several biological mech-
anisms (e.g., migration, replication, reproduction, energy ex-
change, and pheromone emission) so that CEs satisfy future
network requirements. Empirical measurements show that the
bionet platform is efficient, scalable, reusable, and significantly
simplifies development of network applications.

This paper is organized as follows. Section II overviews key
design principles of the Bio-Networking Architecture. Based
on the design principles described in Section II, Section III
identifies functionalities that the bionet platform performs.
Section III also describes the design of the CEs and bionet plat-
form. Section IV shows the results of empirical measurements
to evaluate the bionet platform and applications implemented
on the bionet platforms. Section V concludes with some dis-
cussion on future work.

II. DESIGN PRINCIPLES OF THE

BIO-NETWORKING ARCHITECTURE

In the Bio-Networking Architecture, CEs are designed based
on the three principles described below in order to interact and
collectively provide network applications that are autonomous,
scalable, adaptive, and simple.

1) Decentralization: CEs are decentralized. There are no
central entities to control and coordinate CEs (i.e., no directory
servers and no resource managers). Decentralization allows
network applications to be scalable and simple by avoiding
a single point of performance bottleneck and failure [7], [8]
and by avoiding any central coordination in developing and
deploying CEs [8].

2) Autonomy: CEs are autonomous. CEs monitor their local
network environments, and based on the monitored environ-
mental conditions, they autonomously interact without any in-
tervention from human users or from other controlling entities.

3) Adaptability: CEs are adaptive to dynamically changing
environmental conditions (e.g., user demands, user locations,
and resource availability) over the short-term and long-term.
The short-term adaptation is achieved through designing CE be-
havior policies to consider local environmental conditions [2].
For instance, CEs may implement a migration policy of moving
toward a bionet platform that forward a large number of user re-
quests for their services. This results in the adaptation of CE lo-
cations, and CEs concentrate around the users who request their

Fig. 1. Bionet platform architecture.

services. The long-term adaptation occurs as a result of the nat-
ural selection (using energy) from diverse behavioral policies of
CEs. Diverse behavioral policies of CEs may be created manu-
ally by human CE developers or created through crossover and
mutation during replication and reproduction of CEs. Through
natural selection using energy,2 beneficial behavior policies are
retained, while detrimental behavior policies become dormant
or extinct over many successive generations, and the CEs spe-
cialize and improve themselves according to long-term environ-
mental changes [5].

III. CES AND THE BIONET PLATFORM

The bionet platform provides an execution environment for
CEs. It consists of two types of software components. The
first type of components, supporting components, abstracts
low-level operating and networking details (e.g., network I/O
and concurrency control for executing CEs). The second type
of components, runtime components, provides runtime services
that CEs use to perform their services and behaviors. The bionet
platform is implemented in Java,3 and each bionet platform
runs on a Java virtual machine (JVM) (Fig. 1). Each CE is
implemented as a Java object and runs on a bionet platform
(Fig. 1).

A. Cyber-Entities (CEs)

A CE consists of three main parts: attributes, body, and
behaviors (Fig. 2). Attributes carry descriptive information
regarding the CE (e.g., CE ID and description of a service it
provides). The body implements a service that the CE pro-
vides and contains materials relevant to the service (e.g., data,
application code, or user profiles). For instance, the CE may
implement control software for a device in its body, while
another CE may implement a hotel reservation service in its
body. A CE that implements a Web service may contain Web

2As described in Section I, a CE may store and expend energy for living.
CEs with beneficial behavior policies will acquire more energy and reproduce
more often than CEs with detrimental behavior policies. CEs with detrimental
behavior policies will eventually become extinct due to lack of energy.

3The current code base of the bionet platform contains approximately 30 600
semicolons.

SUZUKI AND SUDA: MIDDLEWARE PLATFORM FOR A BIOLOGICALLY INSPIRED NETWORK ARCHITECTURE 251

Fig. 2. Design of a CE.

pages in its body. CE behaviors implement nonservice related
actions that are inherent to all CEs. Examples of behavior
include migration, reproduction, and energy exchange.

1) CE Attributes: The current design of the bionet platform
defines four mandatory attributes that every CE maintains:
1) globally unique ID (CE GUID); 2) reference (or pointer) to
the CE; 3) description of the service that the CE provides; and
4) price (in energy units) of the service that the CE provides.
A GUID is a 32-digits string data created from the information
provided by the platform where the CE was originally created
(i.e., the Internet protocol (IP) address of the platform, JVM
identity hash code4 of the GUID generator on the platform, the
time when the CE was created on the platform, and a random
number5 generated by the JVM that the platform runs on).
A CE’s GUID is unique and does not change throughout the
lifetime of a CE. A CE’s reference is a pointer that other CEs
use to send messages to the CE. It encapsulates the IP address
and port number of the platform where the CE currently resides
on. When a CE migrates, it obtains a new reference at the
platform it migrates to. A CE’s reference is represented as a
stringfied CORBA object [9]. The description of a service is
the name of the service that a CE provides, and the price of
a service represents the amount of energy required to receive
the service that the CE provides. In addition to four mandatory
attributes, the current design of the bionet platform allows CEs
to specify optional attributes.

Attributes are implemented as name-value pairs defined with
the OMG constraint language [10]. Table I shows an example
of mandatory attributes of a CE that provides a Web service at
the price of 100 energy units.

2) CE Body: The body implements the service that a CE
provides and contains materials relevant to the service (e.g.,
data, application code or user profiles). Implementation of a CE
body is left to the developer of the CE.

3) CE Behaviors: CEs are autonomous and follow simple
biological behaviors. Some example behaviors are explained
next.

4This hash code is obtained by calling System.identityHashCode().
5Random numbers are generated with java.util.Random (default op-

tion because of its efficiency) or java.security.SecureRandom.

TABLE I
EXAMPLE OF CE ATTRIBUTES

• Migration: CEs may migrate from one bionet platform to
another.

• Communication. CEs may communicate with other CEs
for the purposes of, for instance, requesting a service, for-
warding a discovery query, or exchanging energy.

• Energy exchange and storage: CEs may receive and store
energy in exchange for providing services to other CEs.
CEs also expend energy. For instance, CEs may pay en-
ergy units for services that they receive from other CEs.
In addition, when a CE uses resources on a bionet plat-
form (e.g., CPU and memory), it may pay energy units to
the platform.

• Lifecycle regulation: CEs may regulate their lifecycles.
CEs may make a copy of themselves (replication), pos-
sibly with mutation of the replica’s behavioral policy. Two
parent CEs may create a child CE (reproduction) pos-
sibly with crossover and mutation of the child’s behavioral
policy. CEs also may die (death) as a result of lack of en-
ergy. If energy expenditure of a CE is not balanced with the
energy units it receives from providing services to other
CEs, it will not be able to pay for the resources it needs,
i.e., it dies from lack of energy. CEs with wasteful behav-
ioral policies (e.g., replicating or migrating too often) will
have a higher chance of dying from lack of energy.

• Relationship maintenance: CEs may establish and main-
tain relationships with other CEs. A relationship contains
information regarding the partner CE, for instance, the at-
tributes of the partner CE. Relationships are autonomously
maintained by the participant CEs. Such relationships
may have a variety of uses, including creating applications
from a group of CEs or performing discovery to search
for CEs.

• Discovery: CEs may seek for other CEs of certain at-
tributes by forwarding queries to CEs that they have re-
lationships to.

• Pheromone emission: CEs may emit and leave a
pheromone (or a trace) behind on a bionet platform
when they migrate to another platform. This is to indicate
their presence to other CEs. A pheromone contains the
emitter’s GUID and a reference to the platform that the
emitter migrated to. Pheromones are emitted with certain
strength and may decay over time. Pheromones may have
a variety of uses, including improving the performance of
discovery.

• Environment sensing. CEs may sense their local environ-
ment. For instance, a CE may sense the local environment
to learn which CEs are in the environment and what
services they provide. A CE may also sense pheromones
(e.g., which CEs left pheromones on remote bionet

252 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 3. Class diagram around CyberEntityImpl.

platforms) and resources (e.g., CPU processing power
and memory space available on remote bionet platforms).

The bionet platform implements behaviors explained above.
Each behavior is implemented by one or more runtime compo-
nents provided by the bionet platform. When a behavior is in-
voked, a corresponding runtime component (or components) is
called.

B. Supporting Components in the Bionet Platform

As described earlier in this section, the supporting compo-
nents in the bionet platform abstract low-level operating and net-
working details. The package edu.uci.ics.bionet.ce
on Fig. 3 shows some of the key supporting components in
the bionet platform. CyberEntityImpl is the base class for
CEs. Developers of CEs define their own CEs by extending this
class as subclasses of this class. It provides a set of operations
and variables that are common among all the CEs. The opera-
tions and variables are used to implement attributes, body, and
behaviors of CEs in the following manner.

Each attribute of a CE is implemented as a typed pair of a
name and a value, and attributes of a CE are implemented as a

list of the typed pairs in the class TypedNameValueList.
CyberEntityImpl has a variable attributes, which is
typed in TypedNameValueList, to maintain attributes of a
CE. The operations of TypedNameValueList allow CEs to
define, modify, and obtain their attributes. Implementation of
a CE body is left up to the developer of the body. The bionet
platform only assumes that it is implemented as one or more
arbitrary operations in a subclass of CyberEntityImpl.
The operations that implement a body are called by the run()
operation derived from the interface Runnable upon an
arrival of a request for the corresponding service. Behaviors
of a CE are implemented by the runtime components of the
bionet platform. CyberEntityImpl includes a variable
availableBionetServices, which is a list of references
to the runtime components available on the bionet platform. In
invoking a behavior, a CE examines availableBionet-
Services and obtains references to the runtime components
that implement the behavior.

The key designs of the supporting components in the bionet
platform form a foundation of a standard specification at the
SDOs special interest group (SIG) of the OMG [6]. The SDO
SIG standardizes a uniform object model for supporting hetero-
geneous hardware devices and software services in highly dis-
tributed environments. The package org.omg.SDOPackage
on Fig. 3 shows some of the components defined in the OMG
SDO specification. The interface SDO is a uniform representa-
tion of heterogeneous hardware devices and software services.
Multiple SDOs may form relationships between themselves
using the interface Organization in order to, for example,
create a group of SDOs and forward discovery queries among
group member SDOs. The class ServiceProfile is used
to define properties of SDO’s function (e.g., identifier and
name of SDO’s function). The interface Configuration
is to configure (i.e., define and modify) the properties stored
in ServiceProfile, and the interface Monitoring is to
monitor and obtain the properties stored in ServicePro-
file.

The components in the OMG SDO specification are imple-
mented by the supporting components in the bionet platform
(Fig. 3). For example, CyberEntityImpl (in the bionet
platform) implements SDO. TypedNameValueList (in the
bionet platform) implements ServiceProfile, Config-
uration, and Monitoring. The bionet platform serves as
a reference implementation of the OMG SDO specification.

C. Runtime Components in the Bionet Platform

1) Architecture of the Bionet Platform: The runtime compo-
nents in the bionet platform provide runtime services that CEs
use to perform their services and behaviors. In order to maxi-
mize the degree of decentralization and autonomy of CEs, CEs
only use the runtime components on the platform they reside.
CEs do not invoke any runtime components running on a remote
bionet platform. In addition, there are no runtime components
that control or coordinate other runtime components.

The current design of the bionet platform defines six run-
time components as shown in Fig. 1. The bionet class loader
dynamically loads a CE class definition into JVM when a CE

SUZUKI AND SUDA: MIDDLEWARE PLATFORM FOR A BIOLOGICALLY INSPIRED NETWORK ARCHITECTURE 253

is newly created on a bionet platform or when a new CE mi-
grates from another bionet platform.6 The bionet message trans-
port performs functionalities required for communication be-
tween different CEs and between different bionet platforms,
such as marshalling and transmitting of messages. The bionet
container maintains a reference table to the CEs running on a
bionet platform, and it uses the table to dispatch incoming mes-
sages to CEs. The bionet services implement CE behaviors. A
platform representative contains the information (e.g., address)
on a bionet platform. It is used by CEs and runtime components
to reference a bionet platform. For example, the pheromone that
a CE emits when migrating to another bionet platform contains
a platform representative of the CE’s destination platform. A
CE context is an entry point for a CE to access underlying run-
time components (e.g., bionet services). It examines whether a
runtime component requested by a CE is available on a bionet
platform, and if it is, it returns a reference to the requested com-
ponent to the CE. A CE context is created and associated with a
CE by a bionet service (the lifecycle management service to be
explained below) when the CE is newly instantiated on a bionet
platform (either due to a creation of a new CE, replication or
reproduction of an existing CE, or on the arrival of a CE from
another bionet platform).

2) Bionet Services: The bionet platform provides nine
bionet services. Table II summarizes the nine bionet services.
These nine bionet services along with the runtime compo-
nents that the bionet platform provides (described earlier in
Section III-C) implement eight CE behaviors described in
Section III-A. The implementation of each CE behavior is
described below7 in detail.

a) Migration Behavior: The bionet platform provides the
migration service (a bionet service), which implements the func-
tionalities necessary to support the migration behavior of CEs.
The current implementation only supports weak migration [13],
where a CE migrates only with its data state.8 When a CE mi-
grates, the migration service on the bionet platform where the
CE resides transmits the class name, class definition, and run-
time data state of the CE to the migration service on a destination
bionet platform. The class definition and data state are serialized
at an origin bionet platform and deserialized on a destination
by using the Java serialization mechanism. A destination-side
migration service loads the received class definition into JVM
using the bionet class loader (a runtime component), and then
instantiates a CE with the received data state.

b) Communication Behavior: The bionet platform pro-
vides the bionet message transport (a runtime component),

6The bionet class loader is a customized class loader that extends JVM’s (de-
fault) system class loader.

7The bionet platform has some commonality with existing mobile agent plat-
forms such as Aglets [11], AgentSpace [12], and Hive [8]. For instance, both the
bionet platform and existing mobile agent platforms support mobility of agents
(i.e., CEs) and facilitate abstraction of low-level operating details and communi-
cation between agents. Unlike existing mobile agent platforms, the bionet plat-
form applies biological concepts and supports services such as energy manage-
ment, pheromone emission, and distributed discovery that are not supported in
existing mobile agent platforms. In addition, unlike existing mobile agent plat-
forms, the bionet platform is fully decentralized and does not require any central
entities such as directory servers.

8It does not support strong migration, where a CE migrates with both of its
data and execution state [13].

TABLE II
LIST OF THE BIONET SERVICES

which implements the functionalities necessary to support the
communication behavior of CEs.9 The bionet message transport
handles marshalling messages, establishing and maintaining
network connections, transmitting messages, unmarshalling
messages, and managing threads to accept incoming messages.
The current implementation uses the CORBA IIOP [9] as a
message transport protocol on transmission control protocol
(TCP).

c) Energy Exchange and Storage Behavior: The bionet
platform provides the energy management service (a bionet ser-
vice), which implements the functionalities necessary to support
the energy exchange and storage behavior of CEs. The energy
management service maintains a table, called the energy table,
which contains pairs of CE’s GUID and energy level of each
CE on the same bionet platform. Using the energy table, the en-
ergy management service allows a CE to pay energy units to
other CEs for the service it receives and to the bionet platform
for the resources (e.g., CPU and memory) it utilizes. Upon re-
ceiving a service, the energy management service decreases the
energy level of a CE that received a service by the price of the
service, and contacts the energy management service on the re-
mote platform to increase the energy level of a CE that provided
the service. In paying for platform resources that a CE utilizes,
the energy management service periodically decreases the en-
ergy level of a CE by the unit price of resources it utilizes.

9In the current implementation of the bionet platform, the communication
behavior of CEs is implemented by the bionet message transport, which is not
a Bionet Service (see Fig. 1). The bionet message transport is designed as a
runtime component separate from the bionet services. This is because the bionet
message transport is used not only by CEs but also by the bionet services. For
example, during a CE’s migration, migration services on two bionet platforms
communicate with each other using the bionet message transport.

254 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

d) Lifecycle Regulation Behavior: As described in
Section III-A, CEs may replicate, reproduce or die as a part of
the lifecycle regulation behavior. The bionet platform provides
the lifecycle management service (a bionet service), which
implements the functionalities necessary to support the life-
cycle regulation behavior of CEs (i.e., to initialize, replicate,
reproduce, and destroy CEs).

In order to initialize CEs, the lifecycle management service
provides the initialization operation. This initialization opera-
tion is called when a CE is newly instantiated (either due to a
creation of a new CE, replication or reproduction of an existing
CE, or on the arrival of a CE from another bionet platform). The
initialization operation creates a CE Context, associates the cre-
ated CE context to the CE, assigns a GUID to the CE,10 registers
the CE to the bionet container, registers the CE to the energy
table in the energy management service, and starts running the
initialized CE.

In order to replicate CEs, the lifecycle management service
provides the replication operation. This replication operation
makes a copy (child) of a parent CE using the Java serialization
mechanism, possibly executing a mutation on the child CE’s be-
havioral policy, and calls the initialization operation of the life-
cycle management service. When a CE reproduces a child CE
with another CE, the CE calls the reproduction operation pro-
vided by the lifecycle management service. The reproduction
operation makes a copy (child) of the CE that called the op-
eration, executes a crossover to inherit the behavioral policies
of parent CEs, possibly executing a mutation on the child CE’s
behavioral policy, and calls the initialization operation of the
lifecycle management service. The behavioral policies of CEs
evolve through mutation and crossover as described in Sections I
and II.11

In order to destroy a CE, the lifecycle management service
provides the destruction operation. The destruction operation
frees the resources (e.g., memory and threads) that a dying CE
utilizes, removes an entry for the dying CE from the energy table
in the energy management service, and unregisters the dying CE
from the bionet container. In the current implementation of the
bionet platform, the destruction operation is called only by the
energy management service when the energy level of a CE be-
comes zero. No CEs are allowed to call this operation to destruct
other CEs.

e) Relationship Maintenance Behavior: The bionet plat-
form provides the relationship management service (a bionet
service), which implements the functionalities necessary to sup-
port the relationship maintenance behavior of CEs. The rela-
tionship management service allows CEs to establish, examine,
update and eliminate their relationships. When a CE establishes
a relationship with another CE, it invokes the relationship man-
agement service with its relationship partner CE’s GUID and/or
reference. The service then examines if the specified relation-
ship partner CE exists, and if it does, obtains the relationship
partner CE’s attributes, and creates a relationship by assigning
the obtained attributes to the created relationship.

10This step of assigning a GUID is not necessary for a migrated CE. A CE
migrated from another bionet platform already has GUID.

11Note, however, that the current implementation of the bionet platform does
not support evolution mechanisms using mutation and crossover yet. Please see
[5] for more details regarding evolution of CEs.

When a relationship of a CE becomes invalid, for example
due to migration of a relationship partner CE, the CE that finds
the invalid relationship may invoke the relationship manage-
ment service to update or destroy the relationship.

f) Discovery Behavior: The bionet platform provides the
Social Networking Service (a bionet service), which imple-
ments the functionalities necessary to support the discovery
behavior of CEs. The social networking service allows CEs to
discover other CEs with certain attributes by forwarding queries
through relationships among CEs. The social networking ser-
vice defines and implements four key phases in discovery;
query initialization, query matching, query forwarding, and
query hit backtracking.

In query initialization, a CE (discovery originator CE), be-
gins a discovery process by generating a query with the social
networking service. Each query contains its GUID to distin-
guish it from other queries, a hops-to-live count to determine
the scope of discovery, and search criteria that describe the CEs
being sought. Search criteria in a query are written in the OMG
constraint language [10]. The example below shows the search
criteria to seek Web service CEs whose service price is less than
150 energy units

serviceType HTTP/1.1' and serviceCost 150.0.

The query matching is performed when a discovery originator
CE initializes a query or a CE receives a query from another
CE. The social networking service provides an evaluator object
to examine whether the received query (i.e., the query’s search
criteria) matches a given CE. If the query matches, a query hit
is generated and returned to the discovery originator CE. Other-
wise, the query is forwarded to other CEs through relationships
among CEs.

In query forwarding, queries are forwarded from a CE to an-
other CE through their relationships, seeking the CEs that sat-
isfy given search criteria. At each CE receiving a query, the so-
cial networking service decrements the hops-to-live value in a
received query, and if the value becomes zero, the query is dis-
carded. Otherwise, the query is forwarded to the relationship
partner CEs. In forwarding a query, the social networking ser-
vice maintains a record of the query’s GUID, the CE from which
the query is received and the CE to which the query is forwarded.

The query hit backtracking is performed when a query
matches a CE. A query hit is generated and returned back to
the discovery originator CE, following the reverse route of the
query forwarding path that led to the CE being returned as a
matching query hit.

g) Pheromone Emission Behavior: The bionet platform
provides the pheromone emission service (a bionet service),
which implements the functionalities necessary to support the
pheromone emission behavior of CEs. This service allows a
CE to emit and leave its pheromone (i.e., a trace) behind on a
bionet platform when it migrates to another bionet platform.
A pheromone contains the emitter’s GUID and the platform
representative of the bionet platform that the emitter migrated
to. The pheromone emission service keeps a pheromone list
that contains pheromones emitted on the platform that it runs

SUZUKI AND SUDA: MIDDLEWARE PLATFORM FOR A BIOLOGICALLY INSPIRED NETWORK ARCHITECTURE 255

on. In the current implementation of the bionet platform, the
pheromone emission service deletes pheromones from its
pheromone table after a certain time.

h) Environment Sensing Behavior: As described in
Section III-A, CEs may detect various environmental condi-
tions through the environment sensing behavior. In order to
support the environment sensing behavior, the bionet platform
allows each CE to sense: 1) the CEs running on the same
and remote bionet platforms; 2) pheromones emitted on the
same and remote bionet platforms by other CEs; 3) resource
availability on the same and remote bionet platforms; and
4) network traffic load and traffic patterns on the same and
remote bionet platforms. The bionet platform provides several
bionet services, each of which implements sensing of each
environmental condition described above.

The bionet platform provides the CE sensing service (a bionet
service), which allows a CE to sense other CEs on the same and
remote bionet platforms. The CE sensing service maintains a list
of references to the CEs that are on the local bionet platform, and
returns the reference list when invoked by a CE. In order to sense
CEs running on remote bionet platforms, the CE sensing service
contacts the CE sensing services on a remote bionet platform
and obtains a list of the CEs on the remote bionet platform.

The bionet platform provides the pheromone sensing service
(a bionet service), which allows a CE to sense the pheromones
emitted on the same and remote bionet platforms. When called
by a CE, the pheromone sensing service accesses a pheromone
list maintained by the pheromone emission service on the same
platform and returns the list to the CE. The pheromone sensing
service can also find a specific pheromone with the GUID of a
CE that left the pheromone. In order to sense the pheromones
on remote bionet platforms, a CE asks the pheromone sensing
service to contact other pheromone sensing services running on
remote bionet platforms.

The bionet platform provides the resource sensing service (a
bionet service), which allows a CE to sense resource availability
on the same and remote bionet platforms. The resource sensing
monitors resources such as CPU and memory available on the
same platform, and maintains the type, amount, and unit price
of each resource (in energy units). CPU availability is calculated
by measuring the current CPU utilization.12 Memory availability
is obtained by executing a garbage collection and measuring the
amount of free memory in JVM. In order to sense the resource
availability on remote bionet platforms, a CE asks the resource
sensing service to contact the other resource sensing services
running on remote platforms.

The bionet container13 (a runtime component) allows a CE to
sense the network traffic load and traffic patterns on the same
and remote bionet platforms. It monitors network traffic load on
the same bionet platform by counting the number and size of

12Since measurement of CPU utilization is not available through the standard
Java APIs, CPU utilization is measured with a non-Java library implemented
with C and Java Native Interface.

13In the current implementation of the bionet platform, the bionet container is
not a bionet service (see Fig. 1), It is designed as a runtime component separate
from the bionet services. This is because the bionet container is used not only by
CEs but also by the bionet services. For example, during a CE’s migration, the
bionet container (and the bionet message transport) are used by the migration
services on two bionet platforms to communicate with each other.

TABLE III
CONFIGURATIONS OF PCS USED IN EMPIRICAL EVALUATION

incoming messages. It also monitors network traffic patterns on
the same bionet platform by recording the sources of incoming
messages. The bionet container also finds the sender CE of an
incoming message by obtaining a reference to the sender CE
through parsing the incoming message. In order to sense the net-
work traffic load and traffic patterns on remote bionet platforms,
a CE asks the bionet container to contact the bionet containers
on remote bionet platforms.

IV. EMPIRICAL EVALUATION

This section empirically evaluates the simplicity of devel-
oping network applications with CEs. It also empirically exam-
ines the efficiency and scalability of the bionet platform.

A. Configurations for Empirical Evaluation

In the empirical evaluation of the bionet platform presented
in this section, various measurements were obtained assuming
varying numbers of CEs (from 1 through 8000 CEs) and bionet
platforms (from 1 through 16 bionet platforms). A maximum of
eight Windows 2000 PCs are used in the empirical evaluation,
each running the Java 2 standard edition JVMs (version 1.4.2 01
from Sun Microsystems). These eight PCs were divided into
four groups of two PCs in each group, depending on their CPU
speed and memory size, as shown in Table III. These PCs were
connected through 100 Mb/s Ethernet.

B. Application Development Using CEs

In order to examine how the bionet platform reduces the com-
plexity of developing network applications, three different net-
work applications are implemented using CEs.14

In the first network application, Web services are imple-
mented using CEs. The body of a Web service CE contains a
set of files, accepts HTTP request messages from users, and
returns the requested files to the users. In this Web service
application, users are also implemented as CEs.

In the second network application, the peer-to-peer content
discovery protocol in Gnutella [15] is implemented using CEs.
Each CE represents a network node in Gnutella and contains
a set of files in its body. The relationships between CEs corre-
spond to the links between Gnutella nodes. Similar to searching
for files in Gnutella by forwarding queries through the links
among nodes, CE’s search for files by forwarding queries
through the relationships among CEs.

In the third network application, a new and improved version
of Gnutella discovery protocol, GnutellaPlus, is implemented

14A software engineering discipline suggests investigating at least three ap-
plications on a framework in order to examine generality and reusability of the
framework [14].

256 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

TABLE IV
APPLICATIONS IMPLEMENTED USING THE BIONET PLATFORM

using CEs. Unlike Gnutella, which searches for files with file
names, GnutellaPlus allows CEs to specify name-value pairs as
file search criteria. For example, with GnutellaPlus, CEs can
search for files with their keywords, the date when they were
created/revised or the names of their authors.

Table IV shows the empirical evaluation of the three network
applications described above. It shows that it is fairly simple and
easy to implement network applications on the bionet platform.
The reusable components in the bionet platform help to reduce
the lines of code and development time.

C. Empirical Evaluation of the Bionet Platform

This section describes empirical evaluation of the bionet plat-
form and includes eight separate measurements using different
configurations. The first five measurements use one or two PCs
of the group A configuration shown in Table III. The last three
measurements use eight PCs (two PCs from each of the four
configurations shown in Table III).15

1) Overhead of Bionet Platform Initialization: In order to
evaluate the overhead of initializing a bionet platform, Table V
shows the bootstrap overhead (i.e., the time for the bionet plat-
form to initialize each runtime component) and the bootstrap
memory footprint (i.e., the amount of memory space each run-
time component consumes when it is initialized) for each run-
time component. Table V shows that a bionet platform initializes
its runtime components efficiently with small memory footprint.

2) Overhead of CE Deployment: In order to evaluate the ef-
ficiency of deploying a CE on a bionet platform, Table VI shows
the time required for the bionet platform to execute key steps
of CE deployment. The measurement examined the following
key deployment steps; instantiating a CE, initializing an instan-
tiated CE with the Lifecycle Management Service, locating the
CEs on the same bionet platform with the CE Sensing Service,
and establishing relationships to the located CEs with the rela-
tionship management service. In the step to instantiate a CE, the
measurement examined two cases; the case where a human de-
veloper manually instantiates a new CE, and the case where a
parent CE replicates (makes a copy of) itself. Table VI shows
that the overhead of deploying a CE is small and that the bionet
services used to deploy a CE are efficient. The overhead differ-
ence between the two cases to instantiate a CE is due to the time
to make a copy of a parent CE in the replication process.

15Please note that although there exists research to empirically evaluate the
scalability of agent platforms (such as the bionet platform described in the
paper), the number and the scope of such empirical evaluation is rather limited
[12]. For instance, Auctionbot is concluded scalable through a measurement
with only 90 agents [16], illustrating difficulty of empirically examining scal-
ability of agent platforms. In this paper, the scalability of the bionet platform
was examined with 8000 CEs and 16 bionet platforms.

TABLE V
BOOTSTRAP OVERHEAD AND MEMORY FOOTPRINT

OF EACH PLATFORM COMPONENT

TABLE VI
OVERHEAD OF CE DEPLOYMENT

3) Message Transmission Latency and Throughput: In order
to examine the time required for a message to travel between
two CEs on different bionet platforms (i.e., the message trans-
mission latency) and the number of messages that such CEs can
exchange per second (i.e., throughput), in the following mea-
surements, a single CE (a sender CE) is deployed on a bionet
platform, and the varying number of CEs (receiver CEs) are de-
ployed on another bionet platform to receive messages from the
sender CE. The two bionet platforms run on different PCs. The
number of receiver CEs varies from 1 to 1000, and the sender
CE randomly chooses one of the receiver CEs and sends an
empty message to the receiver CE. The bionet message transport
and the bionet container perform message transmission. On the
sending bionet platform, the bionet message transport creates a
message, establishes a TCP connection to the receiving bionet
platform, and transmits a message on the connection. On the
receiving bionet platform, the bionet message transport accepts

SUZUKI AND SUDA: MIDDLEWARE PLATFORM FOR A BIOLOGICALLY INSPIRED NETWORK ARCHITECTURE 257

Fig. 4. Message transmission latency.

Fig. 5. Throughput.

the incoming message, and the bionet container dispatches the
message to a receiver CE.

Fig. 4 shows the message transmission latency in the bionet
platform.16 It also shows the message transmission latency in
well-known Java-based distributed object platforms (JacORB
[17] and Java IDL [18]) for the purpose of comparison. Fig. 4
shows that the message transmission latency in the bionet plat-
form is small and comparable with the other distributed object
platforms. Fig. 4 also shows that the message transmission la-
tency remains relatively constant as the number of receiver CEs
increases, indicating that the bionet platform (i.e., the bionet
message transport and bionet container) scales well. This is be-
cause the bionet message transport creates only one TCP con-
nection between the sending and receiving platforms, and the
sender CE transmits messages to multiple receiver CEs over the
same TCP connection. The bionet message transport does not
create a separate connection for each receiver CE.

Fig. 5 shows the throughput between two CEs on different
platforms.17 Similar to Fig. 4, Fig. 5 compares the throughput of
JacORB and Java IDL. Fig. 5 shows that the throughput of the
bionet platform (bionet message transport and bionet container)
is comparable with existing distributed object platforms. This
figure also shows that the throughput remains mostly constant as
the number of CEs increases, indicating that the bionet container
scales well. This is because the bionet container implements
a hash-based table that contains references to the CEs on the
same bionet platform. The overhead for the hash-based table to

16Note that the bionet message transport and bionet container of the bionet
platform contribute to the message transmission latency.

17Note that the bionet message transport and bionet container of the bionet
platform contribute to the throughput.

TABLE VII
OVERHEAD OF DISCOVERY USING SOCIAL NETWORKING SERVICE

dispatch an incoming message to a target CE does not change
even if the number of CEs increases.

4) Overhead of Discovery Using the Social Networking Ser-
vice: In order to evaluate the overhead of the social networking
service in discovery, GnutellaPlus, one of the three network ap-
plications described in Section IV-B, is used in this measure-
ment. Two CEs (i.e., a discovery originator CE and a discovery
target CE that matches the search criteria) are deployed on two
different bionet platforms (on different PCs). The search target
CE has the attributes described in Table I.

In discovery, the discovery originator CE issues a query that
contains '

as discovery criteria using the social networking service
(query initialization phase). The discovery originator CE for-
ward the query to a relationship partner CE using the social net-
working service (query forwarding phase). Upon the receipt of
a query, the relationship partner CE examines whether the dis-
covery criteria in the query matches its attributes using the social
networking service (query matching phase), and if they match,
returns a query hit to the discovery originator CE using the so-
cial networking service (query hit backtracking phase).

Table VII shows that the overhead of the social networking
service in each phase of discovery is small. Note also that the
time to perform query matching is very small (under 13 ms), and
this is because the social networking service caches a received
query and bypasses the overhead of parsing search criteria in
subsequent queries. Although this measurement is for two CEs,
given the small overhead shown in Table VII, the social net-
working service is expected to scale well for discovery in larger
scale.

5) Overhead of Migration Using the Migration Service: In
order to evaluate the time required for a CE to migrate from a
bionet platform to another bionet platform using the migration
service, two bionet platforms are deployed on different PCs, and
CEs of varying sizes from 31 KB to 8 MB migrate from a bionet
platform to the other using the migration service. The overhead
of migration includes the time for the migration service on an
origin bionet platform to serialize a CE into mobile code, the
time for the bionet message transport to transmit the mobile
code from the origin bionet platform to the destination bionet
platform, and the time for the migration service on the destina-
tion platform to deserialize the incoming mobile code and in-
stantiate a CE.

Fig. 6 shows that the overhead of the migration service is
small and that the migration service allows CEs to efficiently
migrate from a platform to a platform. Note also that a mea-
surement study for Aglets [19], a well-known mobile agent plat-
form, indicates that the migration service and Aglets’ migration

258 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 6. Migration overhead.

TABLE VIII
OVERHEAD OF ENVIRONMENT SENSING WITH

THE PHEROMONE SENSING SERVICE

service are comparable in their performance. Fig. 6 also shows
that, as the size of CE increases, the overhead of the migration
service increases linearly, indicating that the migration service
scales.

6) Overhead of Environment Sensing Using the Pheromone
Sensing Service: In order to evaluate the time required for
pheromone sensing (i.e., environment sensing) using the
pheromone sensing service, 16 bionet platforms are deployed
on eight PCs (two platforms on each PC), and two CEs are
deployed. One CE randomly migrates 15 times between these
bionet platforms, and when it migrates, it leaves a pheromone
behind on a bionet platform. The other CE senses pheromones
emitted by the migrating CE to locate it. The overhead of
pheromone sensing includes the time for the pheromone
sensing service to find the migrating CE’s pheromone by
accessing a pheromone list maintained by the pheromone emis-
sion service, contact a representative of the bionet platform that
the pheromone specifies (i.e., the platform that the CE migrated
to), and locate the migrated CE on the remote bionet platform.

Table VIII and Fig. 7 show the overhead of pheromone
sensing using the pheromone sensing service. Table VIII shows
the overhead in each phase of pheromone sensing. Fig. 7 shows
how the overhead changes when a CE senses pheromones
emitted on remote bionet platforms that are multiple hops
away. Table VIII illustrates that the overhead of the pheromone
sensing service is small and that the pheromone sensing service
efficiently performs pheromone sensing. Fig. 7 demonstrates
that the overhead increases linearly, as the hop count to the re-
mote bionet platform increases, indicating that the pheromone
sensing service scales.

7) Latency in Relationship Examination and Energy Ex-
change Between CEs: As described in Sections III-A and
III-C, a CE may receive a service from another CE that it has
a relationship to in exchange for energy. Receiving a service
involves using the relationship management service to examine
if there is a valid relationship to the CE that provides a desired

Fig. 7. Overhead of environment sensing (pheromone sensing) using
pheromone emission services.

Fig. 8. Latencies in round-trip latency, relationship examination, and energy
transfer between CEs.

service and the energy management service to pay energy
units for the service received. In order to evaluate the time for
the relationship management service to examine relationships
and the time for the energy management service to exchange
energy, 16 bionet platforms are deployed on eight PCs (two
platforms on each PC), and the varying number of CEs are
randomly deployed on the bionet platforms. The number of
CEs varies from 1 to 500 on each platform (i.e., 16–8000 CEs
in total). Each CE randomly chooses a CE and establishes a
relationship with it. Each CE continuously requests a service
to its relationship partner CE by sending an empty message
(considered as a service request). It examines if its relationship
is valid18 before sending a message using the relationship man-
agement service. Upon receiving a service request message, a
relationship partner CE immediately sends back a reply mes-
sage (considered as a service) to the CE that sent the service
request message. When receiving a reply service (a service),
a CE transfers 100 energy units to its relationship partner CE
using the energy management service.

Fig. 8 illustrates the overhead of examining relationships
using relationship management service (denoted as “relation-
ship examination” in Fig. 8) and the overhead of exchanging
energy using the energy management service (denoted as “en-
ergy transfer” in Fig. 8). For the purpose of comparison, Fig. 8
also shows the delay to exchange a service request message and
a service message between two CEs (denoted as “round-trip

18In this measurement, when a CE examines its relationship, the relationship
is always valid because its relationship partner CE does not migrate nor die.

SUZUKI AND SUDA: MIDDLEWARE PLATFORM FOR A BIOLOGICALLY INSPIRED NETWORK ARCHITECTURE 259

Fig. 9. CPU utilization of the bionet platform and CEs.

latency” in Fig. 8). Fig. 8 demonstrates that the overhead of ex-
amining relationships and that of exchanging energy are small,
compared with the round-trip latency of exchanging messages
between two CEs. For instance, for 8000 CEs, the overhead of
examining relationships and the overhead of exchanging energy
are 4.7% and 7.1%, respectively, of the round-trip latency. This
demonstrates that the relationship management service and the
energy management service are efficient. Fig. 8 also illustrates
that the overhead increases linearly, as the number of platforms
and CEs increases, indicating that relationship management
service and energy management services scale.

8) CPU Utilization of the Bionet Platform and CEs: In order
to evaluate how much CPU power the bionet platform and CE’s
consume, CEs that implement the Web service described in Sec-
tion IV-B are deployed on a bionet platform. In this measure-
ment, each Web service CE contains in its body five files whose
sizes are 500 B, 5 KB, 50 KB, 500 KB, and 5 MB. These file
sizes are taken from the specification of Webstone [20], a per-
formance profiling tool for Web servers. Note that each CE con-
tains an identical set of files, and there is no sharing of files
among CEs. In addition, a user is implemented as a CE, and a
user CE is deployed on the same bionet platform as Web service
CEs. A user CE sends HTTP request messages to a randomly se-
lected Web service CE, and the request rate of the user CE is set
at ten requests per second.

Fig. 9 shows the CPU utilization by the bionet platform and
Web service CEs. Note that as the underlying operating system
consumes approximately 25% of the CPU power, the total CPU
utilization of the PC used for this measurement reaches 100%
when the CPU utilization by the bionet platform and Web ser-
vice CEs reach approximately 75%. In Fig. 9, the CPU utiliza-
tion for a specific file size is obtained when a user CE always
requests the given file size (among the five files that Web CEs
house). Fig. 9 also shows the CPU utilization when a user CE
probabilistically requests files of different sizes. Probabilities
that a user CE follows to request files are taken from WebStone
[20] and are shown in Table IX. The CPU utilization of the prob-
abilistic access case on Fig. 9 shows that approximately 330 CEs
can simultaneously run on a platform under 75% CPU utiliza-
tion. Fig. 9 also shows that the CPU utilization increases almost
linearly as the number of CEs increases up to 290. The bionet
platform scales well to the number of CEs.

TABLE IX
PROBABILITY OF FILE REQUESTS

For the purpose of comparison, Fig. 9 shows the CPU uti-
lization (denoted as “TCP-Web” in Fig. 9) of a Web server im-
plemented in a conventional manner. As with the Web service
CEs, each conventional Web server houses five files of different
sizes, and the number of Web servers is varied in Fig. 9. Fur-
ther, a user randomly selects a conventional and probabilisti-
cally accesses one of the files on the Web server. Unlike Web
service CEs, which use the bionet platform (the bionet message
transport and bionet container) to exchange messages, the con-
ventional Web servers use the TCP interface of the underlyng
operating system to exchange messages. Fig. 9 shows that the
difference in the CPU utilization between the Web service CEs
(denoted as “probabilistic access”) and the conventional Web
servers (denoted as “TCP-Web”) is small, indicating that the
bionet platform does not impose significant performance over-
head on network applications.

V. CONCLUDING REMARKS

This paper describes and empirically evaluates the mid-
dleware platform for a new network architecture, called the
Bio-Networking Architecture. With biologically inspired prin-
ciples and mechanisms, network applications created based on
the Bio-Networking Architecture satisfy the key requirements
of future network applications such as autonomy, scalability,
adaptability, and simplicity. The empirical evaluation shows
that the platform is efficient, scalable, reusable, and signifi-
cantly simplifies development of network applications.

An extended set of empirical measurements are being
planned to provide additional performance implications of the
bionet platform. Further deployment of the bionet platform
and CEs on more realistic environments (e.g., PlanetLab [21])
would identify the impact of the network size and realistic
constraints on the bionet platform performance.

ACKNOWLEDGMENT

The authors would like to thank three anonymous reviewers,
as well as M. Moore, Y. Pan, J. Lu, T. Nakano, and K. Fujii
for their valuable comments and contributions that improved the
quality of the paper.

REFERENCES

[1] T. Suda, T. Itao, and M. Matsuo, “The bio-networking architecture: The
biologically inspired approach to the design of scalable, adaptive, and
survivable/available network applications,” in The Internet as a Large-
Scale Complex System, K. Park, Ed. Princeton, NJ: Princeton Univ.
Press, Feb. 2005.

260 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

[2] M. Wang and T. Suda, “The bio-networking architecture: A biologi-
cally inspired approach to the design of scalable, adaptive, and surviv-
able/available network applications,” in Proc. 1st IEEE SAINT, 2001,
pp. 43–56.

[3] T. Itao, S. Tanaka, T. Suda, and T. Aoyama, “A framework for adap-
tive UbiComp applications based on the jack-in-the-net architecture,”
Kluwer/ACM Wireless Network J., vol. 10, no. 3, pp. 287–299, 2004.

[4] J. Suzuki and T. Suda, “Design and implementation of a scalable infra-
structure for autonomous adaptive agents,” in Proc. 15th IASTED Int.
Conf. Parallel Distrib. Comput. Syst., Nov. 2003, pp. 594–603.

[5] T. Nakano and T. Suda, “Adaptive and evolvable network services,” in
Proc. GECCO, Jun. 2004, pp. 151–162.

[6] S. Sameshima, J. Suzuki, S. Steglich, and T. Suda. (2004, Apr.) Platform
independent model (PIM) and platform specific model (PSM) for super
distributed objects. OMG final recommended spec.. [Online]. Available:
http://www.omg.org/cgi-bin/doc?sdo/03-09-01

[7] R. Albert, H. Jeong, and A. Barabasi, “Error and attack tolerance of
complex networks,” Nature, vol. 406, pp. 378–382, Jul. 2000.

[8] N. Minar, K. H. Kramer, and P. Maes, “Cooperating mobile agents for
dynamic network routing,” in Software Agents for Future Communica-
tions Systems, A. Hayzelden, Ed. New York: Springer-Verlag, 1999,
ch. 12.

[9] Object Management Group, The CORBA Specification, Version 3.0,
2002.

[10] Object Management Group, “The Trading Object Service,”, 2000.
[11] D. Lange and M. Oshima, Programming and Deploying Java Mobile

Agents with Aglets. Reading, MA: Addison-Wesley, 1998.
[12] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T. Brazier,

“Supporting Internet-scale multi-agent systems,” Data Knowl. Eng., vol.
41, no. 2–3, pp. 229–245, 2002.

[13] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Trans. Softw. Eng., vol. 24, no. 5, pp. 342–361, 1998.

[14] D. Roberts and R. Johnson et al., “Evolving frameworks: A pattern
language for developing object-oriented frameworks,” in Pattern Lan-
guages of Program Design, R. Martin et al., Eds. Reading, MA: Ad-
dison-Wesley, 1997, vol. 3, ch. 26.

[15] [Online]. Available: http://gnutella.wego.com
[16] P. Wurman, M. Wellman, and W. Walsh, “The michigan Internet auc-

tionbot: A configurable auction server for human and software agents,”
in Proc. Agents’98, 1998, pp. 301–308.

[17] G. Brose, “JacORB: Implementation and design of a Java ORB,” in Proc.
IFIP DAIS’97, Sep. 1997, pp. 143–154.

[18] G. Lewis, S. Barber, and E. Siegel, Programming with Java IDL. New
York: Wiley, 1997.

[19] D. Hagimont and L. Ismail, “A performance evaluation of the mobile
agent paradigm,” in ACM SIGNAL Notices, vol. 34, 1999, pp. 306–313.

[20] G. Trent and M. Sake, WebStone: The First Generation in HTTP Server
Benchmarking. Los Gatos, CA: Mindcraft, 1995.

[21] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Pe-
terson, T. Spalink, T. Roscoe, and M. Wawrzoniak, “Operating system
support for planetary-scale services,” in Proc. 1st Symp. Network Syst.
Design Implementation, Mar. 2004, pp. 253–266.

Junichi Suzuki (M’99) received the Ph.D. degree in
computer science from Keio University, Keio, Japan,
in 2001.

He joined the Department of Computer Science,
University of Massachusetts, Boston, in September
2004, where he is currently an Assistant Professor.
From 2001 to 2004, he was with the School of
Information and Computer Science, University of
California, Irvine (UCI), as a Postdoctoral Research
Scholar. Before joining UCI, he was with Object
Management Group Japan, Inc., as a Technical

Director. His research interests include autonomous adaptive distributed
systems, biologically inspired software adaptation, self-organizing overlay
networks, and model-driven software development.

Dr. Suzuki is a member of the Association for Computing Machinery (ACM).
He is an active participant and contributor of the International Standard Organ-
ization SC7/WG19 and the Object Management Group, Super Distributed Ob-
jects SIG.

Tatsuya Suda (S’80–M’82–SM’97–F’01) received
the B.E., M.E., and Dr.E. degrees in applied math-
ematics and physics from Kyoto University, Kyoto,
Japan, in 1977, 1979, and 1982, respectively.

From 1982 to 1984, he was with the Department of
Computer Science, Columbia University, New York,
as a Postdoctoral Research Associate. Since 1984,
he has been with the Department of Information and
Computer Science, University of California, Irvine,
where he is currently a Professor. He has also served
as a Program Director of the Networking Research

Program, National Science Foundation from 1996 to 1999. He was a Visiting
Associate Professor at the University of California, San Diego, a Hitachi
Professor at the Osaka University, and currently is a NTT Research Professor.
He is an Area Editor of the International Journal of Computer and Software
Engineering. He has been engaged in research in the fields of computer
communications and networks, high-speed networks, multimedia systems,
ubiquitous networks, distributed systems, object oriented communication
systems, network applications, performance modeling and evaluation, and
application of biological concepts to networks and network applications.

Dr. Suda is a member of the Association for Computing Machinery (ACM).
He received an IBM Postdoctoral Fellowship in 1983. He was the Conference
Coordinator from 1989 to 1991, the Secretary and Treasurer from 1991 to
1993, the Vice Chairman from 1993 to 1995, and the Chairman from 1995 to
1997 of the IEEE Technical Committee on Computer Communications. He was
also the Director of the U.S. Society Relations of the IEEE Communications
Society from 1997 to 1999. He is an Editor of the IEEE/ACM TRANSACTION

ON NETWORKING, a Senior Technical Consultant to the IEEE TRANSACTIONS

ON COMMUNICATIONS, and a former Editor of the IEEE TRANSACTION ON

COMMUNICATIONS. He is a member of the Editorial Board of the Encyclopedia
of Electrical and Electronics Engineering, Wiley. He was the Chair of the 8th
IEEE Workshop on Computer Communications and the TPC Co-Chair of the
IEEE INFOCOM 1997.

	toc
	A Middleware Platform for a Biologically Inspired Network Archit
	Junichi Suzuki, Member, IEEE, and Tatsuya Suda, Fellow, IEEE
	I. I NTRODUCTION
	II. D ESIGN P RINCIPLES OF THE B IO -N ETWORKING A RCHITECTURE
	1) Decentralization: CEs are decentralized. There are no central
	2) Autonomy: CEs are autonomous. CEs monitor their local network
	3) Adaptability: CEs are adaptive to dynamically changing enviro

	Fig.€1. Bionet platform architecture.
	III. CE s AND THE B IONET P LATFORM
	A. Cyber-Entities (CEs)

	Fig.€2. Design of a CE.
	1) CE Attributes: The current design of the bionet platform defi
	2) CE Body: The body implements the service that a CE provides a
	3) CE Behaviors: CEs are autonomous and follow simple biological

	TABLE I E XAMPLE OF CE A TTRIBUTES
	Fig.€3. Class diagram around CyberEntityImpl .
	B. Supporting Components in the Bionet Platform
	C. Runtime Components in the Bionet Platform
	1) Architecture of the Bionet Platform: The runtime components i
	2) Bionet Services: The bionet platform provides nine bionet ser
	a) Migration Behavior: The bionet platform provides the migratio
	b) Communication Behavior: The bionet platform provides the bion

	TABLE II L IST OF THE B IONET S ERVICES
	c) Energy Exchange and Storage Behavior: The bionet platform pro
	d) Lifecycle Regulation Behavior: As described in Section€III-A,
	e) Relationship Maintenance Behavior: The bionet platform provid
	f) Discovery Behavior: The bionet platform provides the Social N
	g) Pheromone Emission Behavior: The bionet platform provides the
	h) Environment Sensing Behavior: As described in Section€III-A,

	TABLE III C ONFIGURATIONS OF PC S U SED IN E MPIRICAL E VALUATIO
	IV. E MPIRICAL E VALUATION
	A. Configurations for Empirical Evaluation
	B. Application Development Using CEs

	TABLE IV A PPLICATIONS I MPLEMENTED U SING THE B IONET P LATFORM
	C. Empirical Evaluation of the Bionet Platform
	1) Overhead of Bionet Platform Initialization: In order to evalu
	2) Overhead of CE Deployment: In order to evaluate the efficienc

	TABLE V B OOTSTRAP O VERHEAD AND M EMORY F OOTPRINT OF E ACH P L
	TABLE VI O VERHEAD OF CE D EPLOYMENT
	3) Message Transmission Latency and Throughput: In order to exam

	Fig.€4. Message transmission latency.
	Fig.€5. Throughput.
	TABLE VII O VERHEAD OF D ISCOVERY U SING S OCIAL N ETWORKING S E
	4) Overhead of Discovery Using the Social Networking Service: In
	5) Overhead of Migration Using the Migration Service: In order t

	Fig.€6. Migration overhead.
	TABLE VIII O VERHEAD OF E NVIRONMENT S ENSING W ITH THE P HEROMO
	6) Overhead of Environment Sensing Using the Pheromone Sensing S
	7) Latency in Relationship Examination and Energy Exchange Betwe

	Fig.€7. Overhead of environment sensing (pheromone sensing) usin
	Fig.€8. Latencies in round-trip latency, relationship examinatio
	Fig.€9. CPU utilization of the bionet platform and CEs.
	8) CPU Utilization of the Bionet Platform and CEs: In order to e

	TABLE IX P ROBABILITY OF F ILE R EQUESTS
	V. C ONCLUDING R EMARKS
	T. Suda, T. Itao, and M. Matsuo, The bio-networking architecture
	M. Wang and T. Suda, The bio-networking architecture: A biologic
	T. Itao, S. Tanaka, T. Suda, and T. Aoyama, A framework for adap
	J. Suzuki and T. Suda, Design and implementation of a scalable i
	T. Nakano and T. Suda, Adaptive and evolvable network services,
	S. Sameshima, J. Suzuki, S. Steglich, and T. Suda . (2004, Apr.)
	R. Albert, H. Jeong, and A. Barabasi, Error and attack tolerance
	N. Minar, K. H. Kramer, and P. Maes, Cooperating mobile agents f
	Object Management Group, The CORBA Specification, Version 3.0, 2
	Object Management Group, The Trading Object Service,, 2000.
	D. Lange and M. Oshima, Programming and Deploying Java Mobile Ag
	N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T
	A. Fuggetta, G. P. Picco, and G. Vigna, Understanding code mobil
	D. Roberts and R. Johnson et al., Evolving frameworks: A pattern
	P. Wurman, M. Wellman, and W. Walsh, The michigan Internet aucti
	G. Brose, JacORB: Implementation and design of a Java ORB, in Pr
	G. Lewis, S. Barber, and E. Siegel, Programming with Java IDL .
	D. Hagimont and L. Ismail, A performance evaluation of the mobil
	G. Trent and M. Sake, WebStone: The First Generation in HTTP Ser
	A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L.

