
158

推薦論文● SPA2005

mTurnpike: a Model-driven Framework for

Domain Specific Software Development

Hiroshi Wada　 Junichi Suzuki　Katsuya Oba
Shingo Takada　Norihisa Doi

This paper describes and empirically evaluates a new model-driven framework, called Modeling Turnpike

(or mTurnpike), which allows developers to effectively model and program domain concepts (ideas and

mechanisms specific to a particular business or technology domain). By leveraging UML metamodeling and

attribute-oriented programming, mTurnpike provides an abstraction to represent domain concepts at the

modeling and programming layers simultaneously. The frontend system of mTurnpike transforms domain

concepts between the modeling and programming layers. Its backend system combines domain models and

programs, and transforms them to the final (compilable) source code. This paper focuses on the mTurnpike

frontend system, and describes its design, implementation and performance implications.

1 Introduction

Modeling technologies have matured to the point

where they can offer significant leverage in all as-

pects of software development [1]. For example, the

Unified Modeling Language (UML) provides a rich

set of modeling notations and semantics, and allows

developers to specify and communicate their appli-

cation designs at a higher level of abstraction [2].

The notion of model-driven development (MDD)

aims to build application design models and trans-

form them into running applications.

Given modern modeling technologies, the focus

of software development has been shifting away

from implementation technology domains toward

the concepts and semantics in problem domains [3].

A key goal of modeling technologies is to map mod-
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eling concepts more directly to domain concepts so

that it becomes easier to specify applications [4].

In order to implement domain concepts with

modeling technologies, traditional MDD tools allow

developers to model domain concepts with model-

ing languages (e.g. UML), generate skeleton pro-

grams in general-purpose programming languages

(e.g. Java) from the domain models, and complete

the generated skeleton programs by, for example,

adding method code. Since general-purpose pro-

gramming languages can not directly express do-

main concepts, programmers often suffer from ab-

straction gap between domain concepts and gen-

erated skeleton programs. For example, the gran-

ularity of skeleton programs is usually much finer

than that of domain concepts. They also tend to be

complicated, sometimes even chaotic, to read and

maintain. Thus, it is hard for programmers to ob-

tain broader views of application designs, and they

have to repeatedly go up and down abstraction gap

to identify where to implement what in skeleton

programs. As a result, in traditional MDD tools,

programmers do not enjoy the benefits of modeling

domain concepts at a higher level of abstraction.

This paper addresses the above issue and pro-

poses a development framework, called Modeling

Turnpike (or mTurnpike), which supports a new

model-driven strategy to implement domain con-

cepts. mTurnpike allows developers to model and
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program domain concepts at the equal level of ab-

straction and to transform them to the final (com-

pilable) source code in a seamless manner. Lever-

aging UML metamodeling and attribute-oriented

programming, mTurnpike provides an abstraction

to represent domain concepts at the modeling and

programming layers simultaneously. At the mod-

eling layer, domain concepts are represented as a

Domain Specific Model (DSM), which is a set of

UML diagrams. In mTurnpike, UML diagrams are

expressed with a UML profile; a UML metamodel

that extends the UML standard metamodel [2]. At

the programming layer, domain concepts are rep-

resented as a Domain Specific Code (DSC), which

consists of attribute-oriented programs. Attributes

are declarative marks, associated with program ele-

ments (e.g. classes and interfaces), to indicate that

the program elements maintain application-specific

or domain-specific semantics [6] [7].

The frontend system of mTurnpike transforms

domain concepts from the modeling layer to pro-

gramming layer, and vice versa, by providing a

seamless mapping between DSMs and DSCs. The

backend system of mTurnpike transforms a DSM

and DSC into a more detailed model and program

by applying a given transformation rule. mTurn-

pike allows developers to define arbitrary transfor-

mation rules, each of which specifies how to spe-

cialize a DSM and DSC to particular implementa-

tion and/or deployment technologies. For exam-

ple, a transformation rule may specialize them to a

database system, while another rule may specialize

them to a remoting system. mTurnpike combines

the specialized DSM and DSC to generate the final

(compilable) source code.

This paper focuses on the frontend system of

mTurnpike, and describes its design, implementa-

tion and performance implications.

2 A Motivating Example

This section illustrates an example of the issue

described in Section 1 (i.e. an issue of abstrac-

tion gap in MDD tools) to motivate mTurnpike.

Fig.1 shows a UML model (DSM) that represents

a service-oriented distributed system with domain

concepts such as service, connection between ser-

vices and message†1. Given the domain concepts,

traditional MDD tools generate a skeleton program
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OrderLogger

invocationSemantics = Async
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Domain concepts
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Fig. 1 Domain Concepts at the Modeling

and Programming Layers

in a general-purpose programming language. For

example, the skeleton program may contain the

program elements shown at the bottom of Fig. 1.

As shown in Fig.1, there are not always clear one-

to-one relationship between domain concepts and

generated program elements, and the granularity of

the program elements is finer than that of domain

concepts. For example, Connector disappears at

the programming layer. Service is implemented

with two classes. Several implementation-specific

classes (e.g. Dispacher and Receiver) appear at

the programming layer, although they are not in

the modeling layer. As described in Section 1, this

abstraction gap has a negative impact on the pro-

ductivity of programmers. It can cancel the pro-

ductivity gain through application design with do-

main concepts at the modeling layer.

Rather than general-purpose programming lan-

guages, mTurnpike uses attribute-oriented pro-

grams to directly represent domain concepts at the

programming layer. It allows modelers†2 and pro-

grammers to deal with the same set of domain con-

cepts in different representations (i.e. UML models

and attribute-oriented programs), yet at the same

level of abstraction.

†1 This model is designed with a UML profile for

service oriented architecture. See Section 6 and

[13] [14] for more details on this profile.

†2 This paper assumes modelers are familiar with

particular domains but not programming experts.
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3 Attribute-Oriented Programming

Attribute-oriented programming is a program-

level marking technique. Programmers can mark

program elements to indicate that they maintain

application-specific or domain-specific semantics

[6] [7]. For example, a programmer may define a

logging attribute and associate it with a method

to indicate the method implements a logging func-

tion, while another may define a web service at-

tribute and associate it with a class to indicate the

class is implemented as a web service. Attributes

separate application’s core logic from application-

specific or domain-specific semantics (e.g. logging

and web service functions). By hiding the im-

plementation details of those semantics from pro-

grams, attributes increase the level of programming

abstraction and reduce programming complexity,

resulting in simpler and more readable programs.

The program elements associated with attributes

are transformed to more detailed programs by a

supporting tool (e.g. pre-processor). For example,

a pre-processor may insert a logging program into

the methods associated with a logging attribute.

Attribute-oriented programming is well accepted

in several languages and tools such as Java 2 stan-

dard edition (J2SE) 5.0, C# and XDoclet. J2SE

5.0 implements attributes as annotations, and the

Enterprise Java Beans (EJB) 3.0 extensively uses

them to make EJB programming simpler [8]. Here

is an example using an EJB annotation.

@entity class Customer{...}

The @entity annotation is associated with the

class Customer. It instructs Customer to be imple-

mented as an entity bean. A pre-processor in EJB,

called annotation processor, takes this annotated

code and applies a certain transformation rule to

generate the interfaces and classes required to im-

plement Customer as an entity bean (i.e. remote in-

terface, home interface and implementation class).

The EJB annotation processor follows the transfor-

mation rules defined in the EJB specification.

In addition to predefined annotations, J2SE 5.0

allows developers to define their own (user-defined)

annotations. There are two types of user-defined

annotations: marker annotations and member an-

notations. Here is an example marker annotation.

public @interface Async{ }

A marker annotation is defined with the keyword

@interface.

public class Server{
@Async public boolean orderItem(...){...} }

In this example, the Async annotation is associ-

ated with orderItem(), indicating it is an asyn-

chronous method. Then, a developer defines a

transformation rule for the annotation, and cre-

ates a user-defined annotation processor that im-

plements the transformation rule. The annotation

processor may replace each annotated method with

a method implementing asynchronous invocations.

A member annotation, the second type of user-

defined annotations, contains member variables.

public @interface Service{
String url();
int timeOut(); }

In this example, the Service annotation has the

url and timeOut member variables.

@Service(
url = "soap://host/orderentry/",
timeOut = 600 )

public class Server{...}

Here, the Service annotation is associated with

the class Server, instructing Server to be deployed

as a remotelly accessible service. url defines where

to deploy Server and the protocol to access Server.

timeOut specifies time out period for method invo-

cations. An annotation processor for the Service

annotation takes an annotated class and generates

additional classes and/or methods required to im-

plement a SOAP-accessible web service.

4 Modeling Turnpike

mTurnpike consists of the frontend and backend

systems (Fig. 2). The frontend system is imple-

mented as DSC Generator, and the backend system

is implemented as DSL Transformer. Every com-

ponent in mTurnpike is implemented with Java.

The frontend system transforms domain concepts

from the modeling layer to programming layer, and

vice versa, by providing a seamless mapping be-

tween DSMs and DSCs. In mTurnpike, a set of do-

main concepts is defined as a UML profile, which is

a metamodel extending the UML standard meta-

model. The UML extension mechanism provides

several model elements, such as stereotype and

tagged-value, in order to add application-specific

or domain-specific modeling semantics to the UML

standard metamodel [9]. Stereotypes are specified
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Fig. 2 mTurnpike Architecture

as metaclasses extending UML’s standard meta-

classes, and tagged-values are specified as proper-

ties of stereotypes (i.e. extended metaclasses).

Given domain concepts, a DSM is represented as

a set of UML class and composite structure dia-

grams. Each DSC consists of Java interfaces and

classes decorated with the J2SE 5.0 annotations.

The annotated code follows the J2SE 5.0 syntax to

define marker and member annotations.

The backend system of mTurnpike transforms a

DSM and DSC into a more detailed model and pro-

gram that specialize in particular implementation

and/or deployment technologies. Then, it combines

the specialized DSM and DSC to generate the final

(compilable) code (Fig. 2).

In mTurnpike, the frontend and backend systems

are separated by design. mTurnpike clearly sepa-

rates the task to model and program domain mod-

els from the task to transform them into the final

code. This design strategy improves separation of

concerns between modelers/programmers and plat-

form engineers†3. Modelers and programmers do

not have to know how domain concepts are imple-

mented and deployed in detail. Platform engineers

†3 Platform engineers possess expertise in platform

technologies on which DSMs and DSCs are de-

ployed. They are responsible for defining trans-

formation rules applied to DSMs and DSCs.

<<Service>>
Server

{url=“http://host/orderentry/”,

timeout = 600}

+ orderItem(OrderForm) : boolean

Fig. 3 UML Class Server (DSM)

do not have to know the details of domain concepts.

As a result, mTurnpike can reduce the complexity

in application development.

This design strategy also allows DSMs/DSCs and

transformation rules to evolve independently. Since

DSMs and DSCs do not depend on transformation

rules, mTurnpike can specialize a single set of DSM

and DSC to different implementation and deploy-

ment technologies by using different transformation

rules. When it comes time to change a running ap-

plication, modelers/programmers make the changes

in the application’s DSM and DSC and leave trans-

formation rules alone. When retargeting an appli-

cation to a different implementation and/or deploy-

ment technology (e.g. Java RMI to Java Messag-

ing Service (JMS)), platform engineers define (or

choose) a transformation rule for the new target

technology and regenerate the final code. As such,

mTurnpike can make domain concepts (i.e. DSMs

and DSCs) reusable and extend their longevity.

4. 1 Mapping between DSMs and DSCs

mTurnpike implements the mapping rules shown

in Table 1 to transform DSMs to DSCs, and vice

versa. Figure 3 depicts an example DSM, the UML

class Server stereotyped as <<Service>> with a

tagged-value. mTurnpike transforms the UML

class to the following Java code.

• Java class Server (DSC)

@Service(url = "http://host/orderentry/",
timeout = 600)

public class Server{
public boolean orderItem(OrderForm order){}}

• Member annotation entitybean (DSC)

@interface Service{
String url();
long timeout(); }

4. 2 mTurnpike Frontend System

The mTurnpike frontend system is implemented

by DSC Generator (Fig. 2). It performs transfor-

mations between DSMs and DSCs based on the

mapping rules shown in Table 1. The following five
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Table 1 Mapping rules between DSMs and DSCs

UML Elements in DSM Java Elements in DSC

Definition of a stereotype that has no tagged-values Definition of a marker annotation

Definition of a stereotype that has tagged-values Definition of a member annotation

Definition of a tagged-value Definition of a member variable in a member annotation

Package Package

Class and interface Class and interface

Method and data field Method and data field

Modifier and visibility Modifier and visibility

Primitive type Primitive type

Stereotype that has no tagged-values Marker annotation

Stereotype that has tagged-values Member annotation

Tagged-value Member annotation’s member variable

steps involve in the transformation.

(1) Loading a DSM to build a UML tree:

DSC Generator imports a DSM as a representation

of the XML Metadata Interchange (XMI) 2.0 [10].

Developers can generate XMI descriptions of their

DSMs using any UML tools that support XMI 2.0.

Here is an example XMI description showing the

class Server in Fig. 3.

<uml:Model xmi:version="2.0">
<ownedMember xmi:type="uml:Class"

name="Server">
<xmi:Extension><modelExtension>

<appliedStereotypeInstance classifier="st">
<slot xmi:type=’uml:Slot’>
<value xmi:type=’uml:LiteralString’

value=’http://host/orderentry/’/>
</slot>
</appliedStereotypeInstance>

</modelExtension></xmi:Extension>
<ownedOperation xmi:type="uml:Operation"

name="orderItem">
<ownedParameter xmi:type="uml:Parameter"

direction="in">
...

</ownedParameter>
<ownedParameter xmi:type="uml:Parameter"

direction="return">
...

</ownedParameter>
</ownedOperation>
</ownedMember>
<ownedMember xmi:type="uml:Stereotype"

name="Service" xmi:id="st">
<ownedAttribute xmi:type="uml:Property"

name="url">
<type xmi:type="uml:Primitive"

href="id_string"/>
</ownedAtrribute>
</ownedMember>
</uml:Model>

The <ownedMember> tag defines a class, and its

child element appliedStereotypeInstance refer-

ences a stereotype. In this example, the stereo-

type <<Service>> is referenced with its identifier

st. The <slot> tag defines a tagged-value.

For loading XMI descriptions and building UML

trees, DSC Generator uses the Eclipse Modeling

Framework (EMF)†4 and Eclipse-UML2†5. A UML

tree is an in-memory data structure that represents

UML model information. Once a UML tree is con-

structed, DSC Generator validates the UML tree

(i.e. an input DSM) against the standard UML

metamodel. It examines if the input DSM follows

the syntax and semantics defined in the standard

UML metamodel. DSC Generator also validates

the input DSM against a UML profile. For exam-

ple, it checks if the DSM uses appropriate stereo-

types and tagged-values defined in the UML profile.

(2) Building a JAST for Domain Concepts:

Once a UML tree is built and validated, DSC

Generator constructs a Java Abstract Syntax Tree

(JAST) to represent domain concepts (i.e. UML

profile) that an input DSM follows. Based on the

mapping rules shown in Table 1, this process tra-

verses a UML tree to convert the definitions of

stereotypes and tagged-values in the UML tree into

the definitions of annotations in a JAST.

Fig. 4 shows some key data structures to con-

†4 http://www.eclipse.org/emf/

†5 http://www.eclipse.org/uml2/. Eclipse-UML2

implements the UML standard metamodel as a

set of Java objects on EMF. mTunpike chose

Eclipse-UML2 because it was the only publicly-

available implementation of the UML 2.0 meta-

model when the authors started implementing

mTurnpike. The conformance with UML 2.0 is

important because of its improved and unambigu-

ous mechanism to extend the UML metamodel.
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struct JASTs. Annotation represents an anno-

tation. In order to represent a member an-

notation, Annotation has an association with

AnnotationMembers, each of which represents a

member variable. AnnotationMember keeps a value

of member variable. AnnotationDefinition and

AnnotationMemberDefinition represent the defini-

tions of an annotation and an annotation’s member

variable. They are powertypes of Annotation and

AnnotationMember, respectively.

(3) Building a JAST for a DSC: After con-

structing a JAST to represent a set of domain con-

cepts (i.e. stereotypes and tagged-values), DSC

Generator completes the JAST by converting the

model elements in an input DSM (i.e. class and

composite structure diagrams) into Java program

elements. This process is also performed based on

the mapping rules shown in Table 1. For example, a

stereotyped UML class in a UML tree is converted

to an annotated Java class in a JAST. DSC Gener-

ator builds a JAST using the JAST data structures

shown in Fig. 4. In Fig. 4, AnnotatableElement is

the root interface for the Java program elements

that can be decorated by annotations.

The following code fragment shows how DSC

Generator transforms a stereotyped UML class

to an annotated Java class. The method

convertClass() takes a UML class and instan-

tiates the class Class in a JAST, which repre-

sents a Java class (see Fig. 4). Then, the method

transforms the stereotypes applied to the UML

class to Java annotations by instantiating the class

Annotation in resolveStereotypes().

import edu.umb.cs.dssg.mturnpike.java.ast.*;

Class convertClass( uml2.Class c_ ) {
// create a Java class as a JAST node
jast.Class c = new jast.Class();
// create a Java annotation(s),
// if a UML class is stereotyped.
resolveStereotypes( c, c_ );
return c;

}
void resolveStereotypes(
jast.AnnotatableElement annotatable,
uml2.Element element ) {
// convert all stereotypes into
// Java annotations.
foreach( uml2.Stereotype s in

element.getAppliedStereotypes() ){
// add an annotation to a Java element.
jast.Annotation a = ...
annotatable.addAnnotation( a ); }

}

(4) Generating a DSC (annotation defini-

tions): Once a JAST is constructed, DSC Genera-

tor generates annotation definitions in Java. Each

JAST node has the toString() method, which gen-

erates Java source code corresponding to the JAST

node. DSC Generator traverses a JAST and calls

the method on instances of AnnotationDefinition

and AnnotationMemberDefinition (Fig. 4).

(5) Generating a DSC: Once generating annota-

tion definitions, DSC Generator completes to gen-

erate a DSC (i.e. annotated code in Java). It tra-

verses a JAST and calls the toString() method on

each node in the JAST.

After DSC Generator generates a DSC, program-

mers write method code in the generated DSC in

order to implement dynamic behaviors for domain

concepts. Please note that the methods in the gen-

erated DSC are empty because DSMs specify only

the static structure of domain concepts (with UML

class diagrams and composite structure diagrams).

In addition to transformations from DSMs to

DSCs, mTurnpike can perform reverse transforma-
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tions from DSCs to DSMs. In a reverse transforma-

tion, mTurnpike parses a DSC with a lexical ana-

lyzer†6, and builds a JAST with the data structure

shown in Fig.4. The JAST is transformed to a UML

tree and an XMI file using Eclipse-UML2

4. 3 mTurnpike Backend System

The mTurnpike backend system consists of three

components: DSM Transformer, Skeleton Code

Generator and DSC Transformer (Fig. 2).

DSM Transformer: DSM Transformer accepts a

DSM as a UML tree built by DSC Generator, and

specializes it to particular implementation and/or

deployment technologies (Fig. 2). Given a transfor-

mation rule that a platform engineer defines, DSM

Transformer transforms DSM model elements asso-

ciated with stereotypes and tagged-values into plain

UML model elements that have no stereotypes and

tagged-values. For example, if a transformation

specializes a DSM to Java RMI, the classes stereo-

typed as <<Service>> are converted to the classes

implementing the java.rmi.Remote interface.

DSM Transformer is implemented with the

Model Transformation Framework (MTF)†7, which

is implemented on EMF and Eclipse-UML2. MTF

provides a language to define transformation rules

between EMF-based models. Each transformation

rule consists of conditions and instructions. DSM

Transformer traverses a DSM (i.e. a UML tree),

identifies the DSM model elements that meet trans-

formation conditions, and applies transformation

instructions to them. This transformation pro-

cess generates another UML tree that represents

a model specializing in particular implementation

and/or deployment technology. The following is an

example transformation rule.

relate class2class(
uml:Class src when equals(

match over src.stereotypes.name, "Service"),
uml:Class tgt,
uml:Interface tgt2 when equals(

tgt2.name, "Remote")
) when equals(src.name, tgt.name){

implementation(tgt, tgt2)
}
relate implementation(
uml:Class c1, uml:Interface c2){

realize(over c1.implementation, c2)
}
relate realize(

†6 mTurnpike’s lexical analyzer is implemented with

JavaCC (http://javacc.dev.java.net/).

†7 www.alphaworks.ibm.com/tech/mtf

uml:Implementation i, uml:Interface c){
check interfaces(g.contract, c)

}
relate interfaces(
uml:Interface c1, uml:Interface c2)
when equals(c1.name, c2.name)

The keyword relate is used to define a transfor-

mation rule. This example defines four rules. Each

rule accepts model elements as parameters and in-

structs how to transform them. For example, the

first rule (class2class) accepts the classes stereo-

typed with <<Service>>, and transforms each of

them to extend the interface Remote.

Skeleton Code Generator: Skeleton Code Gen-

erator takes a UML tree created by DSM Trans-

former, and generates skeleton source code in Java

(Fig. 2). It traverses an input UML tree, builds

a JAST corresponding to the UML tree using the

data structures shown in Fig. 4, and generates Java

code from the JAST. Since the mTurnpike frontend

system only supports structural UML diagrams,

the methods in the generated code are empty.

DSC Transformer: DSC Transformer accepts a

DSC generated by DSC Generator, method code

written on the DSC by programmers, and skele-

ton code generated by Skeleton Code Generator.

Then, DSC Transformer combines them to gener-

ate the final compilable code. DSC Transformer

extracts method code embedded in an input DSC,

and copies the method code to an input skeleton

code. DSC Transformer analyses a transformation

rule to determine where to copy each method code

in an input skeleton code. Fig. 5 depicts an exam-

ple of this process. It shows how the orderItem()
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method in a DSC is extracted when specializing the

DSC to EJB and JMS.

5 Empirical Evaluation

This section empirically evaluates the efficiency

and memory footprint of the mTurnpike frontend

system.

5. 1 Evaluation Results

In order to evaluate the efficiency of the mTurn-

pike frontend system, Fig.6(a) and Fig.6(b) show

the overhead to transform a DSM to a DSC, and a

DSC to a DSM, respectively. Measurements use a

Sun J2SE 5.0.4 VM running on a Windows 2000 PC

with an AMD Sempron 3.0 Ghz CPU and 512MB

memory. Each figure consists of 20 clusters, each of

which shows the transformation overhead using the

same number of classes, operations and data fields.

For example, the nearest cluster shows the overhead

to transform a DSM that contains 10 classes, each

of which has no operations and data fields. The fur-

thermost cluster shows the overhead to transform a

DSM that contains 500 classes, each of which has 30

operations and 30 data fields. Each cluster consists

of four bars. The leftmost bar shows the trans-

formation overhead in a configuration where each

DSM class has no stereotypes and tagged-values.

The second bar from the left shows the overhead in

the case that each DSM class has a stereotype and

a tagged-value. In the third bar from the left, each

DSM class has two stereotypes and five tagged-

values. In the rightmost bar, each DSM class has

five stereotypes and 10 tagged-values.

Figs. 6(a) and 6(b) illustrate that the transfor-

mation overhead is small enough and acceptable

(below 5 seconds) in small-scale to mid-scale appli-

cation development, where each of 300 classes has

10 operations, 10 data fields, 2 stereotypes and 5

tagged-values. mTurnpike does not interrupt devel-

opers’ modeling and programming work severely.

Figs. 7 and 8 depict the time to execute each of

the functional steps to transform a DSM to a DSC,

and a DSC to a DSM, respectively (see Section

4. 2). In the measurements, each class is configured

to have five operations and five data fields.

Fig. 7 shows that the most time-consuming step

in a DSM to DSC transformation is building

a JAST for a DSC. In this step, mTurnpike
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calls the Java instanceof operator many times

to check consistency between annotation defini-

tions (instances of AnnotationDefinition and

AnnotationMemberDefinition) and annotations

(instances of Annotation and AnnotationMember)

(see Fig.4). It is expensive to call instanceof. The



166 コンピュータソフトウェア

10 50 100 300 500

0

10

20

30

40

50

60

# of classes

no operation and no field

5 operations and 5 fields

10 operations and 10 fields

30 operations and 30 fields

(a) DSM to DSC

10
50

100
300 500

0

10

20

30

40

50

60

70

m
e
m
o
ry
 u
ti
li
z
a
ti
o
n　
 (
M
B
)

# of classes

(b) DSC to DSM

Fig. 9 Memory footprint in a transformation

more classes and stereotypes a DSM has, the more

heavyweight it is to build a JAST for the DSC.

Fig. 8 shows that the most time-consuming step in

a DSC to DSM transformation is applying a UML

profile to DSM classes. In this step, mTurnpike

executes nested loops to decide which stereotype

is applied to which class. The more classes and

stereotypes a DSM has, the more heavyweight this

decision making process is.

In order to examine the memory footprint of

the mTurnpike frontend system, Figs. 9(a) and 9(b)

shows how much memory mTurnpike consumes to

transform a DSM to a DSC, and a DSC to a

DSM, respectively. mTurnpike consumes no more

than 15MB to handle DSMs and DSCs produced

in small-scale up to mid-scale projects, where each

of 300 classes has 10 operations, 10 data fields, two

stereotypes and five tagged-values. Since the mem-

ory footprint of mTurnpike is fairly small, devel-

opers do not need to upgrade their development

environments (e.g. memory modules in their PCs).

5. 2 Performance Improvement

The measurement result in Fig. 6(a) is obtained

after a performance improvement work. This work

reduces the overhead to traverse a UML tree and

build a corresponding JAST by 4.8% up to 56.0%

(20.3% in average).

Eclipse-UML2 provides a standard API, called

UML2Switch, to traverse a UML tree (Fig. 10).

UML2Switch.switch() takes a UML element, de-

termines its type and calls a method corresponding

to the type. For example, when UML2Switch deter-

mines the type of a UML element is Class, it calls

caseClass() to transform a UML class to a Java

Element

Class Operation

switch( Element )

caseClass( Class )

caseOp( Operation )

UML2Switch

Fig. 10 Tree Traversal with UML2Switch

Element

visit( Element )
visit( Class )

visit( Operation )

accept( Visitor)accept( Visitor)

accept( Visitor)

Class Operation

Visitor

<<Aspect>>
VisitorAspectInject accept methods

Fig. 11 UML2 Tree Traversal with Visitor

class. UML2Switch.switch() excessively calls the

Java instanceof operator to perform type check-

ing, and suffers from performance degradation.

In order to improve overhead performance by

avoiding excessive calls of instanceof, mTurnpike

implements the visitor design pattern [25] as an al-

ternative way to traverse a UML tree. The visitor

pattern is designed to iterate tree nodes and call

type-specific methods on a visitor object. Thus,

developers do not need to explicitly determine the

type of each node. This way, mTurnpike can reduce

the number of instanceof invocations.

The visitor pattern requires adding very simi-

lar method code to every node in a tree. The

method (accept()) takes a visitor object and calls

a type-specific method on the visitor depending on

the type of each node (see Fig. 11). For exam-

ple, Class.accept() calls Visitor.visit(Class).

This means the accept() methods scatter over tree

nodes. Therefore, mTurnpike encapsulates all the

accept() methods in a single aspect [24], and in-

jects them to tree nodes with AspectJ†8. Thanks to

the use of an aspect, it is not necessary to modify

Eclipse-UML2 manually. Also, Eclipse-UML2 and

visitor code can be updated separately.

6 Applications

In order to demonstrate how to exploit mTurn-

pike in application development, it has been used

to develop distributed systems with a UML profile

for Service-Oriented Architecture (SOA) [13] [14]†9.
Fig. 1 shows an example UML model developed

†8 http://eclipse.org/aspectj/
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with this profile. SOA is a distributed systems

architecture that models a distributed system as

a collection of services and interoperates them in

a platform independent manner. The UML pro-

file abstracts distributed systems using three ma-

jor domain concepts, service interface, connections

between services and message interface. It allows

modelers to specify, as DSMs, connection seman-

tics (e.g. queuing and secure connections), invoca-

tion semantics (e.g. synchronous and asynchronous

invocations) and message filtering semantics (e.g.

message conversion and aggregation). It is planned

to support an Enterprise Service Bus†10 as an ad-

ditional deployment platform.

7 Related Work

mTurnpike has some functional commonality

with existing MDD tools such as OptimalJ†11, Rose

XDE†12, Together†13, UMLX [11], KMF [12] and

J3 [19]. They usually have two functional com-

ponents: Model Transformer and Code Generator

(Fig. 12). Similar to DSM Transformer in mTurn-

pike, Model Transformer accepts UML models that

modelers describe with UML profiles, and converts

them to more detailed models in accordance with

transformation rules. Similar to Skeleton Code

Generator in mTurnpike, Code Generator takes the

UML models created by Model Transformer, and

generates skeleton source code.

A major difference between existing MDD tools

and mTurnpike is the level of abstraction where

programmers work. In existing MDD tools, pro-

grammers and modelers work at different abstrac-

tion levels (Fig. 12). Although modelers work on

UML modeling at a higher abstraction level, pro-

grammers need to handle generated skeleton code

at a lower abstraction level. It tends to be compli-

cated, time consuming and error-prone to read and

modify the skeleton source code.

Unlike existing MDD tools, mTurnpike offers a

new method to represent domain concepts at the

†9 This work is one of the first attempts to exploit

UML 2.0 to define and use a UML profile.

†10 http://mule.codehaus.org/

†11 www.compuware.com/products/optimalj/

†12 www.ibm.com/software/

awdtools/developer/rosexde/

†13 www.borland.com/together/architect/
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programming layer through the notion of attribute-

oriented programming (Fig.2). Programmers im-

plement method code in DSCs, before DSL Trans-

former specializes DSCs to particular implementa-

tion and/or deployment technologies. This means

that programmers can focus on coding applica-

tion’s core logic without handling the details on im-

plementation and deployment technologies. Also,

DSCs are much more readable and easier to main-

tain than the source code generated by Code Gener-

ators in existing MDD tools. Therefore, mTurnpike

provides a higher productivity of programmers in

implementing their applications.

mTurnpike customizes existing languages (UML

and Java) to specifically represent domain con-

cepts. In that sense, this work parallels the re-

search efforts to investigate domain specific lan-

guages (DSLs). A DSL is a programming or specifi-

cation language that directly captures the concepts

and semantics specific to a particular problem do-

main [5]. In mTurnpike, UML profiles and anno-

tations are viewed as DSLs. mTurnpike employs

a language-in-language (or piggyback) strategy to

design DSLs. This strategy reuses the elements of

an existing language as a hosting base for new DSLs

[20] [21]. It is often used when the base language is

well known, and it can lower the barrier to learn

and access extended/customized DSLs. It is not

always cost effective to define DSLs from scratch

[17] [18].

DSLs can be visual or textual. GME [21], UDM
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[22] and MetaEdit+†14 support visual DSLs to

specify both structural and behavioral aspects of

domain concepts. Visual DSLs help developers

grasp broader views of their applications in an intu-

itive manner. [28] and [29] supports textual DSLs

to specify both structural and behavioral aspects

of domain concepts. Textual DSLs help developers

easily define and control details in domain concepts

(e.g. detailed behavioral specifications). mTurn-

pike supports both visual and textual DSLs. Vi-

sual DSLs (i.e. UML profiles) are used to specify

the structural aspect of domain concepts, and tex-

tual DSLs (i.e. annotations) are used to define the

behavioral aspects of domain concepts. This way,

mTurnpike tries to maximize separation of con-

cerns in modeling and programming domain con-

cepts. There are few generic frameworks that sup-

port both visual and textual to define arbitrary do-

main concepts.

The model-driven program transformation

(MDPT) scheme transforms the source code writ-

ten in general purpose programming languages into

a visual DSL(s) and keeps the consistency between

source code and DSLs [26] [27]. Although this

scheme supports visual DSLs and textual code, de-

velopers are not allowed to write or modify source

code. They have to specify structural and behav-

ioral aspects only with visual DSLs. In mTurnpike,

different types of developers use different types of

DSLs; modelers use visual DSLs to define struc-

tural aspect, and programmers use textual DSLs

to define behavioral aspect.

Similar to mTurnpike, executable UML (xUML)

allows developers to specify application’s structure

with UML models (class and statechart diagrams)

and application’s behaviors with action languages

(textual languages) [23]. However, xUML does

not have a mechanism to specifically express do-

main concepts. It does not support metamodel cus-

tomization (or UML profiling).

8 Concluding Remarks

This paper describes and empirically evaluates

a new model-driven development framework called

mTurnpike. In addition to an overview of archi-

tectural design, this paper focuses on the frontend

system of mTurnpike and describes its design, im-

†14 www.metacase.com

plementation and performance implications. Em-

pirical measurement results show that mTurnpike

works efficiently with a small memory footprint in

small-scale to mid-scale application development.

Several extensions to mTurnpike are planned as

future work. mTurnpike currently supports only

one UML profile for each transformation from a

DSM to compilable code. It will be extended to

generate compilable code through combining DSMs

and DSCs written in multiple UML profiles. Future

experiments will evaluate how it impacts on the de-

sign and performance of mTurnpike to use multiple

DSLs simultaneously.

Two other UML profiles are being designed on

mTurnpike. The first one is a UML profile to spec-

ify the resources, procedures and policies in insur-

ance claims processing in the workers compensa-

tion domain. The authors of the paper are working

with industry experts to develop this profile. The

second one is a UML profile to design portal web

sites using the Java Portlet and Web Services for

Remote Portlets specifications [15] [16]. It allows

users to specify common functionalities in portal

site design, such as login, database access, content

aggregation, user profile management and user in-

terface personalization. It is planned to enhance an

existing ecological observations portal†15 with this

profile.
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