
Abstract—As Internet applications have been rapidly 
increasing in complexity and scale, they are expected to be 
autonomous and adaptive to dynamic changes in the network. 
Based on the observation that various biological systems 
have already overcome these requirements, this paper 
describes a biologically-inspired framework, called iNet, to 
design autonomous and adaptive Internet applications. It is 
designed after the mechanisms behind how the immune 
system detects antigens (e.g., viruses), specifically produces 
antibodies to eliminate them, and self-regulates the 
production of antibodies against its anomaly (e.g., 
immunodeficiency and autoimmunity). iNet models a set of 
environment conditions (e.g., network traffic and resource 
availability) as an antigen and a behavior of applications 
(e.g., migration and reproduction) as an antibody. iNet 
allows each application to autonomously sense its 
surrounding environment conditions (i.e., an antigen) to 
evaluate whether it adapts well to the sensed conditions based 
on an evaluation policy, and if it does not, adaptively invoke a 
behavior (i.e., an antibody) suitable for the conditions. iNet 
also allows each application to dynamically configure its own 
evaluation policy so that it can trigger the behavior 
invocation at the right time. Simulation results show that iNet 
allows applications to autonomously adapt to changing 
environment conditions and to dynamically self-regulate the 
behavior invocation by configuring the evaluation policy 
when the evaluation fails. 

1. INTRODUCTION 

Large-scale network applications such as data center 
applications and grid computing applications face several 
critical challenges, particularly autonomy and adaptability, as 
they have been increasing in complexity and scale1. They are 
expected to autonomously adapt to dynamic environmental 
changes in the network (e.g., workload surges and resource 
extinction) in order to improve user experience, expand 
applications' operational longevity and reduce maintenance 
cost [1, 2, 3, 4]. 

As inspiration for a new design paradigm for network 
applications, the authors of the paper observe that various 
 
 
 
 

1 For example, Google reportedly runs over 450,000 servers in its data 
centers [6, 7]. 

biological systems have developed the mechanisms necessary 
to meet the above requirements (i.e., autonomy and 
adaptability) [5]. For example, bees act autonomously, 
influenced by local conditions and local interactions with 
other bees. A bee colony adapts to dynamic environmental 
conditions. When the amount of honey in a hive is low, many 
bees leave the hive to gather nectar from flowers. When the 
hive is full of honey, bees rest in the hive. Based on this 
observation, the authors of the paper believe that, if network 
applications are designed after certain biological principles 
and mechanisms, they may be able to increase their autonomy 
and adaptability. 

BEYOND2 is an architecture that applies biological principles 
and mechanisms to design autonomous and adaptive network 
applications. In BEYOND, each application is designed as a 
decentralized collection of software agents. This is analogous 
to a bee colony (network application) consisting of multiple 
bees (agents). Each agent provides a particular functionality 
of a network application, and implements biological behaviors 
such as migration, replication, and death.  

This paper focuses on a self-regulatory adaptation mechanism 
for agents, called iNet. iNet is designed after the mechanisms 
behind how the immune system detects antigens (e.g., 
viruses), specifically produces antibodies to eliminate them, 
and self-regulates the production of antibodies against its 
anomaly (e.g., immunodeficiency and autoimmunity). iNet 
models a set of environment conditions (e.g., network traffic 
and resource availability) as an antigen and a behavior of 
applications (e.g., migration and death) as an antibody. 

iNet allows each application to autonomously sense its 
surrounding environment conditions (i.e., an antigen) to 
evaluate whether it adapts well to the sensed conditions based 
on its own evaluation policy and if it does not, adaptively 
invoke a behavior (i.e., an antibody) suitable for the condi-
tions. For example, agents may invoke the replication 
behavior at the network hosts that accept a large number of 
user requests for their applications. This leads to the 
adaptation of agent population; agents can improve their 
throughput. Also, agents may invoke the migration behavior 
to move toward network hosts that receive a large number of 
user requests for their applications. This results in the 
adaptation of agent locations; agents can improve their 
response time. 
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iNet also allows each application to dynamically configure its 
own evaluation policy so that it can trigger the behavior 
invocation only as needed. For example, when an agent 
realizes that the evaluation result of the environment 
conditions was wrong (e.g., even though an agent adapts well 
to the current environment conditions, its evaluation policy 
may notice that it does not, and then it performs one of 
behavior reluctantly; or, even though an agent do not adapt 
well to the current environment conditions, it may never 
invoke behaviors because its evaluation policy keeps saying 
that it does.), the agent configures the evaluation policy to 
regulate the behavior invocation (i.e., so that it can perform a 
behavior at the right time). This may avoid the degradation of 
agent’s adaptability and the waste of resource consumption 
and execution overhead in its behavior invocation. Also, this 
self-regulation process frees agent developers from 
configuring an evaluation policy for all possible environment 
conditions at design time. This significantly simplifies the 
implementation and configuration of agents. 

Simulation results show that iNet allows applications to 
autonomously adapt to changing environment conditions and 
dynamically self-regulate the behavior invocation by 
configuring the evaluation policy according to the detection of 
defect in the policy. This paper is organized as follows. 
Section 2 overviews the design principles in BEYOND. 
Section 3 describes the design details of iNet. Section 4 shows 
a series of simulation results to evaluate the autonomous 
adaptability of agents. Sections 5 and 6 conclude with 
comparison with several related work. 

2. BEYOND ARCHITECTURE 

In BEYOND, agents run on a middleware platform in a 
network host. Each platform provides a set of runtime services 
that agents use to perform their services and behaviors. There 
are no central entities to control and coordinate agents. 
Decentralization allows agents to be scalable and simple by 
avoiding performance bottleneck and any central coordination 
in deploying them [8, 9]. 

Each agent consists of attributes, body and behaviors. 
Attributes carry descriptive information regarding an agent 
(e.g., agent ID and energy level). The body implements a 
functional service that an agent provides. For example, an 
agent may implement a web service in a data center, while 
another agent may implement a scientific simulation model in 
a grid computing system. Behaviors implement the actions 
inherent to all agents:  

• Migration: Agents may move between platforms.  

• Energy exchange and storage: Agents may store and expend 
energy as biological entities strive to gain energy by seeking 
and consuming food. Each agent gain energy in exchange for 
providing services to other agents or users. They may also 
expend energy for services that they receive from other 
agents and for resources available on a platform (e.g., 
memory space). 

• Replication: Agents may make their copies in response to 
higher energy level, which indicates higher demand for the 
agents. A replicated agent is placed on the platform that its 
parent agent resides on, and it receives the half amount of the 
parent’s energy level. 

• Communication: Agents may communicate with each other 
for the purposes of, for example, requesting a service, or 
exchanging energy. 

• Death: Agents die due to energy starvation. If energy 
expenditure of an agent is not balanced with energy gain, the 
agent cannot pay for the resources it needs; it dies from lack 
of energy. When an agent dies, an underlying platform 
removes the agent and releases all resources allocated to the 
agent. 

3. DESIGN OF INET ADAPTATION MECHANISM 

3.1. Natural Immune System 
 
The immune system is an adaptive defense mechanism to 
regulate the body against dynamic environmental changes 
such as antigen invasions. Through a number of interactions 
among various white blood cells (e.g., macrophages and 
lymphocytes) and molecules (e.g., antibodies), the immune 
system evokes two responses to antigens: innate and adaptive 
responses. 

In the innate response, the immune system performs 
self/non-self discrimination. This response is initiated by 
macrophages and T-cells, a type of lymphocytes. 
Macrophages move around the body to ingest antigens and 
present them to T-cells. T-cells are produced in thymus that 
performs the negative selection. In the negative selection 
process, thymus removes T-cells that strongly react with the 
body's own (self) cells. The remaining T-cells are used as 
detectors to identify foreign (non-self) cells. When a T-cell(s) 
detects a non-self antigen presented by a macrophage, the 
T-cell(s) secrete chemical signals to activate the second 
immune response: adaptive response. 

In the adaptive response, B-cells, another type of 
lymphocytes, are activated by T-cells. Some of the activated 
B-cells who strongly react to an antigen start to replicate 
themselves (called affinity maturation) and produce 
antibodies that specifically react to the antigen identified by 
T-cells. Antibodies form a network and communicate with 
each other [10]. This network is formed with stimulation and 
suppression relationships among antibodies. By these 
relationships, antibodies dynamically change their population, 
i.e. proliferation and death, and their network structure. Thus, 
the adaptive response is offered by multiple types of 
antibodies, although a single type of antibody (the best 
matched with an antigen) may play the dominant role. The 
antibody network also helps to keep the quantitative balance 
of antibodies. Through the stimulation and suppression 
interactions, the population of specific antibodies rapidly 
increases following the recognition of an antigen and, after 



 

 

eliminating the antigen, decreases again. Performed based on 
this self-regulation mechanism, the adaptive immune response 
is an emergent product from many interactions among 
antibodies. 

The human body may suffer from non-self antigens (e.g., 
viruses) as well as the anomalies of the immune system such as 
immunodeficiency and autoimmunity. Immunodeficiency is a 
phenomenon that the immune system cannot respond to 
foreign pathogens, so antibodies cannot be produced to 
eliminate them. On the other hand, autoimmunity is the failure 
of an organism to recognize its own constituent parts as self. 
This results in self-attacking by autoantibodies produced by 
overreaction of immunological cells. When the body faces 
threats by such anomalies, the damaged or dying cells by the 
threats produce danger signals [11] that alert immune system 
to respond to the threats. 

Some research work introduces two types of danger signals, 
Uric acid [12, 13] and Heat Shock Proteins [14, 15]. Two 
different compound chemicals produced as danger signals 
have different functionalities. Uric acid will stimulate 
macrophages (or dendritic cells), which induces the adaptive 
response by activating T-cells, so that the immune system 
correctly respond to the antigens. This will accelerate the 
production of antibodies. On the other hand, heat shock 
protein (HSP) will help other proteins fold into the right shape 
and locate the right place (called Chaperonin-floding 
[15]). For example, autoimmunity may occur due to apoptosis 
of macrophages and cytokines dysregulation of T-cells [16, 
17]. HSP reforms broken proteins in macrophages and T-cells 
so that they stop overreacting to self cells any more. This will 
suppress the antibody production. 

3.2. iNet Adaptation Mechanism 
 
The iNet artificial immune system consists of the environment 
evaluation (EE) facility and behavior selection (BS) facility, 
which implement the innate and adaptive immune responses, 
respectively (Figure 1). The EE facility allows an agent to 
continuously sense a set of current environment conditions as 
an antigen and classify the antigen to self or non-self. A self 
antigen indicates that the agent adapts to the current 
environment conditions well, and a non-self antigen indicates 
it does not. When the EE facility detects a non-self antigen, it 
activates the BS facility. The BS facility allows an agent to 

choose a behavior as an antibody that specifically matches 
with the detected non-self antigen. 
 
Environment Evaluation Facility (EE) 
 
The EE facility performs two steps: initialization and 
self/non-self classification. The initialization step produces 
detectors (i.e. evaluation policy) that identify self and non-self 
antigens. Each antigen is represented as a feature vector (X), 
which consists of a set of environment conditions (features) 
(F) and a class value (C). 

X = (F1, F2, ..., Fn, C) 

Each environment condition Fi has a value; C indicates 
whether a given antigen (i.e., a set of environment conditions) 
is self (0) or non-self (1). If an agent monitors resource 
utilization and workload (the number of user requests) on the 
local host and each value is lower than a certain threshold a 
user specified, an antigen is represented as follows. 

Xcurrent = ((Low: Resource Utilization, Low: Workload), 0) 

The initialization step in the EE facility is designed after the 
negative selection process in the immune system (Figure 2). 
As the immune system randomly generates T-cells first, the 
EE facility generates detectors (feature vectors) randomly. 
Then, the EE facility separates the detectors into self 
detectors, which closely match with self antigens, and non-self 
detectors, which do not closely match with self antigens. This 
separation is performed via similarity measurement between 
randomly generated feature vectors (R) and self antigens (S) 
that human users supply. After the vector matching, both self 
and non-self detectors are stored in the detector table3 (Figure 
2). 
 
The second step in the EE facility is self/non-self 
classification of an antigen (a set of current environment 
conditions). It is performed with a decision tree built from 
detectors (i.e. evaluation policies) in the detector table and 
classifies an antigen into self or non-self4. The decision tree is 
built using the information gain technique [18]. First, consider 
one node as a root of decision tree, and it contains all detectors 
in the detector table. Then, divide the detector based on one of 
feature into two subsets of detectors. (Assume that each 
feature has two distinct values) Each subset goes to one of two 
child nodes. If the subset of detectors contains only one 
detector, then the node becomes a leaf node with the class 
label; otherwise, divide the subset again based on one of the 
other features into the subsets. Information gain technique 
suggests how to select a feature at each dividing step so that 

 
3  The immune system removes non-self detectors through negative 

selection. However, in iNet, both self and non-self detectors are used to 
perform self/non-self classification 

4  The reasons for using decision trees as an antigen classifier are 
implementation simplicity and algorithmic efficiency. Decision trees 
perform classification much faster than other algorithms such as clustering, 
support vector machine and Markov model algorithms [18, 19]. The 
efficiency of classification is one of the most important requirements in iNet 
because each agent periodically senses and classifies its surrounding 
environment conditions. 
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Figure 1 – Design of iNet adaptation mechanism 



 

 

the number of paths to leaf nodes and the height of tree can be 
minimized. 

Figure 3 shows an example decision tree. Each node in the tree 
specifies which feature (environment condition) is considered. 
Based on the feature values in a given antigen, the EE facility 
travels through tree branches. If the EE facility classifies the 
antigen to non-self, then it activates the BS facility. 
 
Behavior Selection Facility (BS) 
 
The BS facility selects an antibody (i.e., agent's behavior) 
suitable for the detected non-self antigen (i.e., environment 
conditions). Each antibody consists of three parts: a 
precondition under which it is selected, behavior ID and 
relationships to other antibodies. Antibodies are linked with 
each other using stimulation and suppression relationships. 
Each antibody has its own concentration value, which 
represents its population. The BS facility identifies candidate 
antibodies (behaviors) suitable for a given non-self antigen 
(environment conditions), prioritizes them based on their 
concentration values, and selects the most suitable one from 
the candidates. When prioritizing antibodies (behaviors), 
stimulation relationships between them contribute to increase 
their concentration values, and suppression relationships 
contribute to decrease it. Each relationship has an affinity 
value, which indicates the degree of stimulation or 
suppression. 

 
Figure 4 shows a generalized network of antibodies. The 
antibody i stimulates M antibodies and suppresses N 
antibodies. mji  and mik denote affinity values between 
antibody j and i, and between antibody i and k. mi is an affinity 
value between an antigen and antibody i. The concentration of 
antibody i, denoted by ai, is calculated with the following 
equations. In Equation (1), the first and second terms in a 
bracket denote the stimulation and suppression from other 
antibodies. mji and mik are positive between 0 and 1. mi is 1 
when antibody i is stimulated directly by an antigen, otherwise 
0. k denotes the dissipation factor representing the natural 
death of an antibody. Equation (2) is a sigmoid function used 
to squash the Ai(t) value between 0 and 1. 
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Every antibody's concentration is calculated 200 times 
repeatedly. This repeat count is obtained from a previous 
simulation experience [20]. If no antibody exceeds a 
predefined threshold during the 200 calculation steps, the 
antibody whose concentration value is the highest is selected 
(i.e., winner-takes-all selection). If one or more antibodies' 
concentration values exceed the threshold, an antibody is 
selected based on the probability proportional to the 
concentration values (i.e., roulette-wheel selection). 

Figure 5 shows an example network of antibodies. It contains 
four antibodies, which represent the migration, replication and 
death behaviors. Antibody 1 represents the migration behavior 
invoked when the distance to users is far from an agent. 
Antibody 1 suppresses Antibody 3 and stimulates Antibody 4. 
Now, suppose that a (non-self) antigen indicates (1) the 
distance to users is far, (2) workload is heavy on the local host 
and (3) resource utilization is low on a neighboring host. This 

F1F1

F3F3

F3F3 F2F2 F2F2

High              Low

1 0 1 0 1 0

light heavy

F2

high       low

1 0 1 0 1 011

high       lowlight  heavy

1 0 1 0 1 01 0 1 0 1 011

F2: Workload

F3: Resource utilization

0 indicates that 
Xcurrent is non-self

= (Low: F1, Heavy: F2, High: F3, Unknown)Xcurrent

F1: Energy level

light heavy

Figure 3 – An example of classification based on decision tree 
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Figure 5 - An Example Antibody Network 
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antigen stimulates Antibodies 1, 2 and 4 simultaneously. Their 
populations increase, and Antibody 2's concentration value 
becomes the highest because Antibody 2 suppresses Antibody 
4, which in turn suppresses Antibody 1. As a result, the BS 
facility would select Antibody 2. 

Self-regulation Process 
 
As Section 3.1 describes, the immune system may suffer from 
its own anomalies such as immunodeficiency and 
autoimmunity. The damaged or dying cells caused by the 
anomalies produce danger signals that alert the immune 
system to get rid of the anomalies. Similarly, iNet allows each 
agent to self-regulate the behavior invocation by configuring 
the EE facility when it detects anomalies. In iNet, the 
degradation of agent’s fitness caused by failure of 
self/non-self classification is considered as the anomaly. 

Figure 6 describes the flow of self-regulation process in each 
agent. Corresponding to danger signals such as Uric acids and 
Heat shock proteins, each agent responds to two types of 
signals. Signal 1 is produces when the current fitness 
decreases by classifying the current environment conditions as 
Self and by not performing any behaviors even though an 
agent does not adapt well to the conditions (i.e. this 
corresponds to immunodeficiency). Signal 2 is produces when 
the current fitness decreases by classifying the current 
environment conditions as Non-self and by performing 
inappropriate behaviors although there is no necessity to 
perform behaviors because an agent adapts well to the 
conditions (i.e. this corresponds to autoimmunity). 

When an agent receives either of signals, it flips (Self <-> 
Non-self) the class value of the detector, which indicates the 
miss-classified environment conditions. The strength of the 
danger signals is represented as a probability that an agent 
configures the class value. The probability is calculated the 
weighted sum of the agent’s previous fitness (i.e., the degree 
of adaptation) and the decay of the current fitness as follow: 

)}()1({)1()1( tFitnesstFitness-αtFitnessαyProbabilit −−∗+−∗=  

Fitness of an Agent 

Each agent periodically keeps track of its fitness, which 
quantifies how much it adapts to the current environment 
conditions. Agents strive to increase their fitness values by 
performing their behaviors. Fitness is calculated as a weighted 
sum of fitness factors (fi): 

)3(       .....  wi * fi Fitness ∑=  

Currently, iNet considers the following six fitness factors.  
Each factor value is non-negative between 0 and 1.  
 
Response time (f1): The response time of an agent for users. R 
is the time for each agent to process a single user request.  

)4(.....         
Time  Response

R
f1 =  

Throughput (f2): indicates how many user requests agents 
process.  

)5(.....   
requests user of # Total

agents allby  processed requests user of #
f2 =  

Energy utility (f3): indicates the rate of an agent's energy 
expenditure to its energy gain.  

)6(1 .....      
agent an of gain Energy

agent an of eexpenditur Energy
 f3 −=  

Load balance (f4): indicates how user requests (workload) are 
distributed over agents. m denotes the number of user requests 
that an agent processes in a unit time. um denotes the average 
number of user requests that each agent is expected to process. 
Mmax denotes the maximum number of user requests that an 
agent can process in a unit time. 

)7(,1
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m
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m
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Resource utilization balance (f5): indicates how resource 
utilization is distributed over hosts. r denotes the resource 
utilization rate on the local host that an agent resides on. This 
is measured as the ratio of the amount of resources consumed 
by agents on the host to the amount of resources available on 
the host. ur denotes the expected average of resource 
utilization rate over all hosts that agents reside on. 
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Age (f6): denotes the lifetime of an agent. $S$ is the total 
simulation time. 

)9( .....     
S

agent an of Lifetime
f6 =  

Environment Sensing
(monitor a set of

environment conditions,
i.e. an antigen)

The set of
environment conditions

is Self or Non-self?

Flip the class value
of the monitored environment
conditions with the probability

Fitness value
is improved?

Perform a behavior

Self

Non-self

Yes

No

BS Facility

EE Facility

Signal 2Signal 1

 
Figure 6 – The flow of self-regulation process 



 

 

4. SIMULATION RESULTS 

This section presents a series of simulation results to evaluate 
the autonomous adaptability of agents by measuring of the 
number of agents in the network, response time for users, and 
agent throughput according to the workload trace. The 
simulations are carried out on the BEYOND simulator. Figure 
7 shows a simulated network as a server farm consisting of 
network hosts connected in a 10x10 grid topology. Each agent 
implements a web service that receives an HTTP user request 
and returns a certain HTML file. User requests travel from 
users to agents via user access point (see Figure 7). This 
simulation study assumes that a single (emulated) user runs on 
the access point and sends user requests to agents. In this 
simulation study, a user issues requests for agents as described 
in Figure 8. At the beginning of each simulation, four agents 
are deployed on the network, and each agent contains an 
antibody network in the BS facility, which is manually 
configured as described in Section 3.2. 

In order to investigate how a self-regulation process impacts 
the adaptability of agents, three types of agents are evaluated. 
(1) Manual: an agent with the manually configured EE facility 
as described in Section 3.2., (2) Random: an agent with the 
randomly configured EE facility, and (3) Random+ 
Self-regulation: an agent with the randomly configured EE 
facility and self-regulatory mechanism (i.e. it responds to 
danger signals and dynamically configure the EE facility). 

Figure 9 shows how agents autonomously adapt their 
population to the workload changes. When agents receive 
requests, they start to provide their service for users and gain 
more energy from users. Agents (Manual) with the manually 
configured EE facility successfully adapt their population in 
timely manner. For example, at 2:00 and 4:00 when the 
workload surges, they increase their population; subsequently, 
at 6:00 when the workload drops, they immediately decrease 
their population by performing death behavior. On the other 
hand, agents (Random) with the randomly configure EE 
facility could not perform any behavior and did not adapt their 
population because the EE facility classified the environment 
conditions as Self although the workload dramatically 
changed. However, agents (Random+Self-regulation) with 
self-regulation process dynamically configure their EE facility 
so that they perform behaviors to adapt their population. For 
example, before 0:30, the EE facility classified the 

environment conditions (e.g. workload is high) as Self, so 
agents could not perform replication behavior. Also, before 
3:00, even though they did not adapt well to the environment 
conditions (e.g. resource utilization at local host is high), 
agents could not perform migration behavior because the EE 
facility evaluated the conditions as Self. At that time, agents 
respond to danger signals and dynamically configure the EE 
facility. Once the agents regulate the behavior invocation, they 
adaptively perform their behaviors in timely manner.  

Figure 10 shows how agents autonomously reduce response 
time for a user. At the beginning of simulation, response time 
becomes very high because only four agents process 2,000 
user requests a minute and a distance between the agent and 
users is long. However, after the agents accumulate enough 
energy from users and start to replicate themselves and 
migrate toward the user location, they rapidly decrease 
response time. For example, Agents (Manual) successfully 
reduce response time by increasing their population (i.e., 
increasing service availability) even when the workload 
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Figure 9 – Agent population 
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Figure 10 – Response time 
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increases at 2:00 and 4:00. On the other hand, agents 
(Random) did not perform any behaviors because the EE 
facility did not evaluate the environment conditions correctly, 
so they could not reduce response time. However, when 
agents (Random+Self-regulation) recognize that the EE 
facility wrongly evaluated the environment conditions (i.e., 
respond to danger signals), they try to configure the EE 
facility and regulate the behavior invocation so that they 
perform behaviors to reduce response time at 0:30 and 3:00. 

Figure 11 shows how three different types of agents 
dynamically adapt their throughput to the workload trace. It is 
measured as the number of responses that a user receives a 
minute from agents. Agents (Manual) autonomously maintain 
high throughput by dynamically adjusting their population 
and locations through migration and replication behaviors 
while agents (Random) cannot improve their throughput 
because they did not increase their population (i.e., service 
availability). However, by self-regulation process, agents 
(Random +Self-regulation) recognize the defect of the EE 
facility and dynamically configure the EE facility. As a result, 
they start to increase their population and improve throughput 
(e.g., at 0:30 and 3:00) according to the workload. 

Finally, Figure 12 shows the average fitness value of agents 
(i.e., the degree of adaptation to the environment) as described 
in Section 3.2. Agents (Manual) improve their fitness value to 
about 0.6 from 0.3 during the simulation while agents 
(Random) could not improve the fitness value (although the 
fitness value slightly increases because of energy utility ( f3) 
and age (f6) factors). Agents (Random+Self-regulation) keep 
trying to improve the fitness value by regulating their 
behavior invocation; eventually improve their fitness value to 
that of Manual agents. 

5. RELATED WORK 

This paper describes several extensions to the prior work on 
iNet [21, 22]. [21] mainly focus on the antibody network in the 
BS facility and its evolutionary mechanism; however, it does 
not investigate the iNet EE facility. [22] does not investigate 
the self-regulation process in the EE facility. Thus, agent 
designers needed to manually and carefully configure the EE 
facility by anticipating all possible self/non-self environment 
conditions at the design time. In contrast, the iNet with the 
self-regulatory mechanism allows agents to autonomously 
adjust their EE facility configurations at runtime; iNet 
requires no manual configurations for agent designers.  
 
The Bio-Networking Architecture (BioNet) [23, 24] is similar 
to BEYOND in that it applies biological principles and 
mechanisms to allow network applications (agents) to 
autonomously adapt to dynamic changes in the network. The 
BEYOND architecture employs a different approach to design 
the adaptation mechanism for agents. It implements an 
artificial immune system as its adaptation mechanism while 
[23, 24] uses a factor-based weighted sum equation. In [23, 
24], a behavior selection strongly depends on the values of 

weights and threshold, which are hard to configure as the scale 
of environment conditions varies. In [23, 24], each agent does 
not have a mechanism equivalent to the EE facility, so each 
agent may periodically performs one of its behaviors if the 
configuration was not appropriate. This results in wasting 
resources caused by unnecessary behavior selection. In 
BEYOND, each agent contains the EE facility, which 
examines whether it adapts well to the current environment 
conditions. It activates the BS facility only when the agent 
does not adapt to the current environment conditions. This 
way, agents can reduce resource consumption and execution 
overhead in their adaptation activities. 
 
Artificial immune systems have been proposed and used in 
various application domains such as anomaly detection [25] 
and pattern recognition [26]. [25] focuses on the generation of 
detectors for self/non-self classification and improve the 
negative selection process of the artificial immune system. 
[26] focuses on the accuracy for the matchmaking of an 
antigen and antibody. Unlike those work, this paper proposes 
an artificial immune system to improve autonomous 
adaptability of network applications. 

In addition, some research work [27] using artificial immune 
systems extend their work with the concept of danger signals. 
[27] proposes the mechanism to detect misbehaving nodes as 
antigens based on event sequences of routing process in ad 
hoc network. Danger signals contribute to reduce the number 
of false positives (i.e., the system evaluates a correctly 
working node as a misbehaving node) by dynamically 
updating the definition of normal event sequences (self). On 
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Figure 11 – Throughput 
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the other hand, iNet self-regulation process allows agents to 
respond false positives as well as false negatives (i.e. the 
system cannot catch unknown non-self antigens). 

6. CONCLUSION 

This paper describes and evaluates an immunologically 
inspired adaptation mechanism, called iNet, which allows 
network applications to autonomously adapt to dynamic 
changes in the network. iNet also allows each network 
application to self-regulate the behavior invocation by 
dynamically configuring the EE facility when the adaptability 
drops. Simulation results show that iNet agents improve the 
performance such as response time for user request and 
throughput according to the workload by adapting their 
location and population.   
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