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Abstract—As Internet applications have been rapidlybiological systems have developed the mechanisoessary
increasing in complexity and scale, they are exgbtb be to meet the above requirements (i.e., autonomy and
autonomous and adaptive to dynamic changes ingheark. adaptability) [5]. For example, bees act autonoryus
Based on the observation that various biologicadtems influenced by local conditions and local interantowith
have already overcome these requirements, this rpapether bees. A bee colony adapts to dynamic envieorah
describes a biologically-inspired framework, callidtet, to conditions. When the amount of honey in a hiveg, Imany
design autonomous and adaptive Internet applicatiohis bees leave the hive to gather nectar from flowafisen the
designed after the mechanisms behind how the immunige is full of honey, bees rest in the hive. Basedthis
system detects antigens (e.g., viruses), spetyfipabduces observation, the authors of the paper believe thagtwork
antibodies to eliminate them, and self-regulatese thapplications are designed after certain biologjwatciples
production of antibodies against its anomaly (e.g.@and mechanisms, they may be able to increaseattinomy
immunodeficiency and autoimmunity). iNet modeletac and adaptability.

environment conditions (e.g., network traffic aresaurce

availability) as an antigen and a behavior of applions BEYOND? is an architecture that applies biological pritesp
(e.g., migration and reproduction) as an antibodiet and mechanisms to design autonomous and adaptiwerke

allows each application to autonomously sense i@pplications. In BEYOND, each application is desigras a
surrounding environment conditions (i.e., an antiggo decentralized collection of software agents. Tiarialogous
evaluate whether it adapts well to the sensed ¢iomdibased t0 & bee colony (network application) consistingrfitiple

on an evaluation policy, and if it does not, adegly invoke a bees (agents). Each agent provides a particulatifunality
behavior (i.e., an antibody) suitable for the cdiudis. iNet ©Of a network application, and implements biologlehaviors
also allows each application to dynamically configits own such as migration, replication, and death.

evaluation policy so that it can trigger the bel@vi ) _ )
invocation at the right time. Simulation resulteshthat iNet  This paper focuses on a self-regulatory adaptatiechanism
allows applications to autonomously adapt to chaggi for a_lgents, called iNet. iNet is designed afterrt’rm:hanisms
environment conditions and to dynamically self-tagaithe behind how the immune system detects antigens, (e.g.

behavior invocation by configuring the evaluationlipy ~Viruses), specifically produces antibodies to efmte them,
when the evaluation fails. and self-regulates the production of antibodiesirsgats

anomaly (e.g., immunodeficiency and autoimmunitidet
models a set of environment conditions (e.g., nekwiaffic
1. INTRODUCTION and resource availability) as an antigen and a\behaf
applications (e.g., migration and death) as arbady.
Large-scale network applications such as data rcente
applications and grid computing applications faewesal iNet allows each application to autonomously seiise
critical challenges, particularly autonomy and adhitity, as  surrounding environment conditions (i.e., an amtjgéo
they have been increasing in complexity and Scaleey are evaluate whether it adapts well to the sensed tondibased
expected to autonomously adapt to dynamic envirommhe on its own evaluation policy and if it does notaptively
changes in the network (e.g., workload surges asdurce invoke a behavior (i.e., an antibody) suitable tfeg condi-
extinction) in order to improve user experiencepand tions. For example, agents may invoke the repbcati
applications' operational longevity and reduce tesiance behavior at the network hosts that accept a lacyeber of
cost [1, 2, 3, 4]. user requests for their applications. This leads the
adaptation of agent population; agents can impribnr
As inspiration for a new design paradigm for networthroughput. Also, agents may invoke the migratiehdvior
applications, the authors of the paper observe thabus to move toward network hosts that receive a langabrer of
user requests for their applications. This resittsthe
adaptation of agent locations; agents can imprdwr t
response time.

! For example, Google reportedly runs over 450,080ess in its data 2 Biologically-Enhanced sYstem architecture beyondigary Network
centers [6, 7]. Designs



iNet also allows each application to dynamicallpfagure its
own evaluation policy so that it can trigger thend&eor

* Replication: Agents may make their copies in respaio
higher energy level, which indicates higher demfordthe

invocation only as needed. For example, when amtageagents. A replicated agent is placed on the platfrat its

realizes that the evaluation result of the envirentn
conditions was wrong (e.g., even though an agemptadvell
to the current environment conditions, its evahmtpolicy
may notice that it does not, and then it performe of
behavior reluctantly; or, even though an agent dbauapt
well to the current environment conditions, it magver
invoke behaviors because its evaluation policy kesgying
that it does.), the agent configures the evaluatiolicy to
regulate the behavior invocation (i.e., so thaait perform a
behavior at the right time). This may avoid therdeigtion of
agent’'s adaptability and the waste of resource wapson
and execution overhead in its behavior invocatAdeo, this
self-regulation process frees agent developers
configuring an evaluation policy for all possibleveonment
conditions at design time. This significantly siifipk the
implementation and configuration of agents.

Simulation results show that iNet allows applicasioto
autonomously adapt to changing environment conditand
dynamically self-regulate the behavior invocatiory
configuring the evaluation policy according to tletection of
defect in the policy. This paper is organized akovs.

b

Section 2 overviews the design principles in BEYQND

Section 3 describes the design details of iNetti@ed shows
a series of simulation results to evaluate the raurtwus
adaptability of agents. Sections 5 and 6 concludéh w
comparison with several related work.

2. BEYOND ARCHITECTURE

In BEYOND, agents run on a middleware platform in &

network host. Each platform provides a set of raatservices
that agents use to perform their services and liefsav here
are no central entities to control and coordinagenss.
Decentralization allows agents to be scalable amgls by
avoiding performance bottleneck and any centratdioation
in deploying them [8, 9].

Each agent consists ddttributes body and behaviors
Attributes carry descriptive information regardiag agent
(e.g., agent ID and energy level). The body implase
functional service that an agent provides. For etaman
agent may implement a web service in a data cemtate
another agent may implement a scientific simulatiadel in
a grid computing system. Behaviors implement thioas
inherent to all agents:

¢ Migration: Agents may move between platforms.

* Energy exchange and storage: Agents may storexgeche
energyas biological entities strive to gain energy bglseg
and consuming food. Each agent gain energy in exyhéor
providing services to other agents or users. Thay aiso
expend energy for services that they receive frdhero
agents and for resources available on a platformg.,(e
memory space).

parent agent resides on, and it receives the hedtiat of the
parent’s energy level.

¢ Communication: Agents may communicate with eacleroth
for the purposes of, for example, requesting aicgnor
exchanging energy.

* Death: Agents die due to energy starvation. If gyer
expenditure of an agent is not balanced with engagy, the
agent cannot pay for the resources it needs; st fdoen lack
of energy. When an agent dies, an underlying piatfo
removes the agent and releases all resourcestalibttathe
agent.

from

3. DESIGN OF NET ADAPTATION MECHANISM

3.1. Natural Immune System

The immune system is an adaptive defense mechamism
regulate the body against dynamic environmentahgbsa
such as antigen invasions. Through a number ofaate®ns
among various white blood cells (e.g., macrophaged
lymphocytes) and molecules (e.g., antibodies),iti@une
system evokes two responses to antigemsiteandadaptive
responses.

In the innate response, the immune system performs
self/non-self discrimination. This response is iatéd by
macrophages and T-cells, a type of Ilymphocytes.
Macrophages move around the body to ingest antigads
present them to T-cells. T-cells are produced ymils that
erforms the negative selection. In the negatiilecien
process, thymus removes T-cells that strongly redttt the
body's own (self) cells. The remaining T-cells ased as
detectors to identify foreign (non-self) cells. Wiree T-cell(s)
detects a non-self antigen presented by a macreplihg
T-cell(s) secrete chemical signals to activate seeond
immune response: adaptive response.

In the adaptive response, B-cells, another type of
lymphocytes, are activated by T-cells. Some ofatigvated
B-cells who strongly react to an antigen start eplicate
themselves (called affinity maturation) and produce
antibodies that specifically react to the antiggentified by
T-cells. Antibodies form a network and communicaiiéh
each other [10]. This network is formed with stiatidn and
suppression relationships among antibodies. By ethes
relationships, antibodies dynamically change thepulation,

i.e. proliferation and death, and their networkisture. Thus,
the adaptive response is offered by multiple tymds
antibodies, although a single type of antibody (thest
matched with an antigen) may play the dominant. rdle
antibody network also helps to keep the quantiaislance

of antibodies. Through the stimulation and suppoess
interactions, the population of specific antibodiepidly
increases following the recognition of an antigewl,aafter



eliminating the antigen, decreases again. Perfolvasdd on choose a behavior as an antibody that specificafiyches
this self-regulation mechanism, the adaptive imnmesponse with the detected non-self antigen.

is an emergent product from many interactions among

antibodies. Environment Evaluation Facility (EE)

The human body may suffer from non-self antigens.{e The EE facility performs two steps: initializatioand
viruses) as well as the anomalies of the immunesysuch as  self/non-self classification. The initializationept produces
immunodeficiency and autoimmunity. Immunodeficiem®®  detectors (i.e. evaluation policy) that identifyf sed non-self
phenomenon that the immune system cannot respond gftigens. Each antigen is represented as a featater ),
foreign pathogens, so antibodies cannot be produoed which consists of a set of environment conditiciesit{ires)

eliminate them. On the other hand, autoimmunitiésfailure
of an organism to recognize its own constituentspas self.
This results in self-attacking by autoantibodiesduced by
overreaction of immunological cells. When the bddges
threats by such anomalies, the damaged or dyirg loglthe
threats produce danger signals [11] that alert imemaystem
to respond to the threats.

Some research work introduces two types of darigeals,
Uric acid [12, 13] and Heat Shock Proteins [14,. IBjo
different compound chemicals produced as dangerakig
have different functionalities. Uric acid will stitate
macrophages (or dendritic cells), which inducesattiaptive
response by activating T-cells, so that the immsystem
correctly respond to the antigens. This will acratke the
production of antibodies. On the other hand, hduicls
protein (HSP) will help other proteins fold intaethight shape
and locate the right place (called Chaperonin-figdi
[15]). For example, autoimmunity may occur duepotosis
of macrophages and cytokines dysregulation of Tdéb,
17]. HSP reforms broken proteins in macrophageslacells
so that they stop overreacting to self cells anyam®his will
suppress the antibody production.

3.2. iNet Adaptation Mechanism

The iNet artificial immune system consists of thginment
evaluation (EE) facility and behavior selection {B&ility,

which implement the innate and adaptive immunearses,
respectively (Figure 1). The EE facility allows agent to
continuously sense a set of current environmendlitions as
an antigen and classify the antigen to self or self-A self

(F) and a class valu€y.
X=(F1F2 ... O

Each environment conditiofri has a value; C indicates
whether a given antigen (i.e., a set of environncenditions)
is self (0) or non-self (1). If an agent monitoesaurce
utilization and workload (the number of user redsiesn the
local host and each value is lower than a certaieshold a
user specified, an antigen is represented as fellow

Xeurrent= ((Low: Resource UtilizationLow: Workload, 0)

The initialization step in the EE facility is desag after the
negative selection process in the immune systeguf€i2).
As the immune system randomly generates T-cels, fihe
EE facility generates detectors (feature vectoasidomly.

Then, the EE facility separates the detectors isdf

detectors, which closely match with self antigexmg] non-self
detectors, which do not closely match with selfgaris. This
separation is performed via similarity measureniettveen
randomly generated feature vectd® &nd self antigensS|

that human users supply. After the vector matchiagh self
and non-self detectors are stored in the deteabdet(Figure

2).

The second step in the EE facility
classification of an antigen (a set of current emvinent
conditions). It is performed with a decision tredltfrom
detectors (i.e. evaluation policies) in the detetable and
classifies an antigen into self or non-&efthe decision tree is
built using the information gain technique [18]isEj consider
one node as a root of decision tree, and it contldetectors
in the detector table. Then, divide the detectsedaon one of

antigen indicates that the agent adapts to theewmurr feature into two subsets of detectors. (Assume @aath

environment conditions well, and a non-self antigeficates
it does not. When the EE facility detects a noffi-aetigen, it
activates the BS facility. The BS facility allows agent to

A set of environment

Agent
s conditions (antigen)

Antibody network

Behavior

Non-self detector Self detector (antibody)
]

L ] L
Environment Evaluation  Behavior Selection
Figure 1 — Design of iNet adaptation mechanism

feature has two distinct values) Each subset goesé of two
child nodes. If the subset of detectors containly ame
detector, then the node becomes a leaf node wéthclmss
label; otherwise, divide the subset again basednenof the
other features into the subsets. Information gethnique
suggests how to select a feature at each dividey 0 that

3 The immune system removes non-self detectors gronegative
selection. However, in iNet, both self and non-shifectors are used to
perform self/non-self classification

4 The reasons for using decision trees as an antifgssifier are
implementation simplicity and algorithmic efficignc Decision trees
perform classification much faster than other atpars such as clustering,
support vector machine and Markov model algorithfh8, 19]. The
efficiency of classification is one of the most ionfant requirements in iNet
because each agent periodically senses and aiassif surrounding
environment conditions.

is self/non-self



User-defined self
environment condition (S)

Randomly generated N >T
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Figure 2 — Initialization step in the EE facility

X = (Low: F1, Heavy: F2, High: F3, Unknown

current —

F1: Energy level
F2: Workload
F3: Resource utilization

0 indicates that
Xeurrent 1S Non-self

Figure 3 — An example of classification based on dision tree

the number of paths to leaf nodes and the heigieefcan be
minimized.

Figure 3 shows an example decision tree. Eachindtie tree
specifies which feature (environment conditiorgassidered.
Based on the feature values in a given antigeriEhéacility
travels through tree branches. If the EE faciligssifies the
antigen to non-self, then it activates the BS fiiycil

Behavior Selection Facility (BS)

The BS facility selects an antibody (i.e., agebghavior)
suitable for the detected non-self antigen (i.avirenment
conditions).
precondition under which it is selectecdhehavior ID and

Each antibody consists of three pais:

Antibody 1 Antibody 1
. Antibodyi .
Antibodyj - Antibodyk
-
precondition [behavioge fiti haviol® preconditionpehavig
reconditio ClldVlO% --i
: i k H
AntibodyN -~ m AntibodyM*
precondition [behavio N preconditionpehavig
[ precondiionpetavicl [roier] o reconiionpenaniy
stimulation suppression

Figure 4 - A Generalized Antibody Network

antibody 1 antibody 2
distance to | migrate toward resource cost at| migrate to
user is far users node neighbor is high | neighboring node
[ !
antibody 3 1 l antibody 4
energy level workload at replicate
is low death local is heavy itself

stimulation

Figure 5 - An Example Antibody Network

suppression

Figure 4 shows a generalized network of antibodidse
antibody i stimulates M antibodies and suppresses N
antibodies. mi and mik denote affinity values between
antibodyj andi, and between antibodiyandk. mi is an affinity
value between an antigen and antibodyhe concentration of
antibodyi, denoted byai, is calculated with the following
equations. In Equation (1), the first and secomthsein a
bracket denote the stimulation and suppression fotimer
antibodiesmjii andmik are positive between 0 andri. is 1
when antibody is stimulated directly by an antigen, otherwise
0. k denotes the dissipation factor representing tharala
death of an antibody. Equation (2) is a sigmoicfiom used
to squash thai(t) value between 0 and 1.

1 N

dA(t) 1M
T— ﬁ% mji EJ (t)_ﬁ z_ n"ﬁkﬁk(t)ﬂ’ni -k ai(t)(l)
j=1 k=1
1
a)=—————
[ 1+exp(05-A (1))
Every antibody's concentration is calculated 20Mes
repeatedly. This repeat count is obtained from evipus

simulation experience [20]. If no antibody exceeds
predefined threshold during the 200 calculatiorpstethe

relationshipsto other antibodies. Antibodies are linked with@ntibody whose concentration value is the higreselected

each other using stimulation and suppression osliships.

(i.e., winner-takes-all selection). If one or mametibodies’

Each antibody has its own concentration value, whicconcentration values exceed the threshold, an auibs
represents its population. The BS facility ideetificandidate Selected based on the probability proportional be t

antibodies (behaviors) suitable for a given nofi-aatigen
(environment conditions), prioritizes them based tbair
concentration values, and selects the most suitaidefrom
the candidates. When prioritizing antibodies (bétay,
stimulation relationships between them contribotentrease
their concentration values, and suppression relstips
contribute to decrease it. Each relationship hasféinity
value, which indicates the degree of stimulation
suppression.

or

concentration values (i.e., roulette-wheel sel@gtio

Figure 5 shows an example network of antibodiesoiitains
four antibodies, which represent the migrationlication and
death behaviors. Antibody 1 represents the migndtehavior
invoked when the distance to users is far from gena
Antibody 1 suppresses Antibody 3 and stimulatesbaly 4.
Now, suppose that a (non-self) antigen indicates tiie
distance to users is far, (2) workload is heavihenocal host
and (3) resource utilization is low on a neighbgtimst. This



antigen stimulates Antibodies 1, 2 and 4 simultasgo Their
populations increase, and Antibody 2's concentatialue
becomes the highest because Antibody 2 suppresdidy
4, which in turn suppresses Antibody 1. As a reshi BS
facility would select Antibody 2.

Self-regulation Process

As Section 3.1 describes, the immune system mdgrdudm
its own anomalies such as
autoimmunity. The damaged or dying cells causedhey
anomalies produce danger signals that alert theuimem
system to get rid of the anomalies. Similarly, ildbdws each
agent to self-regulate the behavior invocation dfiguring

the EE facility when it detects anomalies. In iNéte

degradation of agent's fitness caused by failure

self/non-self classification is considered as thenaaly.

Figure 6 describes the flow of self-regulation mxin each
agent. Corresponding to danger signals such asadidis and
Heat shock proteins, each agent responds to twestgb
signals. Signal 1 is produces when the currentedin
decreases by classifying the current environmemtlitions as
Self and by not performing any behaviors even thoag
agent does not adapt well to the conditions (il@s t
corresponds to immunodeficiency). Signal 2 is poasguvhen
the current fithess decreases by classifying theent

environment conditions as Non-self and by perfogmin

inappropriate behaviors although there is no négess

perform behaviors because an agent adapts welhdo t

conditions (i.e. this corresponds to autoimmunity).

When an agent receives either of signals, it f(ipslf <->

Non-self) the class value of the detector, whidfidates the
miss-classified environment conditions. The strengft the

danger signals is represented as a probability ahaagent
configures the class value. The probability is giaited the
weighted sum of the agent’s previous fitness (tte,degree
of adaptation) and the decay of the current fitresstollow:

Probability = o C Fitnesgt —1) + (1-a) [{ Fitnesgt —1) — Fitnesgt)}
Fitness of an Agent

Each agent periodically keeps track of fisess which
quantifies how much it adapts to the current emitent
conditions. Agents strive to increase their fitheatues by
performing their behaviors. Fitness is calculated aveighted
sum of fithess factordif:

Fitness = " wi * fi

Currently, iNet considers the following six fitnefactors.
Each factor value is non-negative between 0 and 1.

Response timdX): The response time of an agent for users.
is the time for each agent to process a singlenasgrest.

immunodeficiency an

(

Environment Sensing
(monitor a set of
environment conditions,
i.e. an antigen)

BS Facility

The set of
environment conditions
is Self or Non-self2

3 Fitness value
: is improved?
Sig”la' .ﬂ

Flip the class value
of the monitored environment
conditions with the probability

al 2

! EE Facility

Figure 6 — The flow of self-regulation process

fz= R
Responsg&ime

Throughput f2): indicates how many user requests agents
process.

_ #of userrequestgrocessedyall agents
fozrnr—m0————————— . ®)
Total#of userrequests

Energy utility ¢3): indicates the rate of an agent's energy
expenditure to its energy gain.

_ Energyexpenditueof anagent
Energygainof anagent

fa= 1

...(6)

Load balancefd): indicates how user requests (workload) are
distributed over agents denotes the number of user requests
that an agent processes in a unit tiome.denotes the average
number of user requests that each agent is expecpedcess.
Mmaxdenotes the maximum number of user requests that a
agent can process in a unit time.

Total #of userrequests
Total #of agents

m= g

max

fa=1-

,Wwheregm=

(7

Resource utilization balancd5); indicates how resource
utilization is distributed over hosts.denotes the resource
utilization rate on the local host that an agesides on. This

is measured as the ratio of the amount of resowaesumed

by agents on the host to the amount of resourcaitable on

the host.ur denotes the expected average of resource
utilization rate over all hosts that agents reside

fs=1—(r —r)
_ Thesumof resourcautilizationrateonall hosts
#of hostshatagentgesideson

wheregr

..

Age (f6): denotes the lifetime of an agent. $S$his total
simulation time.

fo = Lifetimeof anagent
— e
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4. SlMULAT|ON RESULTS Manual ——Random + Self-reg —— Random ‘
This section presents a series of simulation resolevaluate lgg
the autonomous adaptability of agents by measuwfnipe 80 ﬁﬁgg@%
number of agents in the network, response timeders, and 2 70/ £
agent throughput according to the workload tracke T S 28 L ' L.
simulations are carried out on the BEYOND simulakagure ug 40 {I
7 shows a simulated network as a server farm dimgisf # 30 3 .
network hosts connected in a 10x10 grid topologchEagent ig fé‘
implements a web service that receives an HT TP resgrest 0
and returns a certain HTML file. User requests g@tdvom 000 100 200 300 400 500 600
users to agents via user access point (see Figuréhis Simulation Time
simulation study assumes that a single (emulategh) wns on Figure 9 — Agent population
the access point and sends user requests to agenltss
simulation study, a user issues requests for agendsscribed | - Manual -+ Random + Seffreg _——Random |
in Figure 8. At the beginning of each simulatiom,if agents S
are deployed on the network, and each agent centain 8 2 I : i E
antlpody network in thg BS faC|I|ty, which is matiya g ) _!_T
configured as described in Section 3.2. = X }?
(%]
In order to investigate how a self-regulation psscanpacts § 2 i ; % 4
the adaptability of agents, three types of agemt®waluated. § 1 e R
(1) Manual an agent with the manually configured EE facility 0
as described in Section 3.2., andom an agent with the 000 100 200 300 400 500 600
randomly configured EE facility, and (3Random+ Simulation Time
Self-regulation an agent with the randomly configured EE Figure 10 — Response time

facility and self-regulatory mechanism (i.e. it peads to

environment conditions (e.g. workload is high) asf,Sso
danger signals and dynamically configure the EHifigc Vi " (e.g. w s high)

agents could not perform replication behavior. Alsefore
Figure 9 shows how adents autonomously adapt th 3|:00, even though they did not adapt well to thérenment

9 . 9 y P Ebnditions (e.g. resource utilization at local hasthigh),
population to the workloa(_j changes. When agentel\re_c agents could not perform migration behavior becaliseEE
requests, the)f/ start to proxlde ttzelr serwgter:] ftzﬁm and g‘i'n facility evaluated the conditions as Self. At thate, agents
more energy from users. Agentdanua) wi € manually respond to danger signals and dynamically configueeEE

gonﬂgured EE facility successfully a'dapt their PM|on n facility. Once the agents regulate the behavioodation, they
timely manner. For example, at 2:00 and 4:00 wHhen t g ; S
adaptively perform their behaviors in timely manner

workload surges, they increase their populatiobhsequently,

at 6:00 when the workload drops, they immediatelgrdase Figure 10 shows how agents autonomously reducemesp
their population by performing death behavior. @e other time for a user. At the beginning of simulatiorspense time
hand, agentsRandonm with the randomly configure EE becomes very high because only four agents pra2€€o

facility could not perform any behavior and did adgapt their user requests a minute and a distance betweeryéme and
population because the EE facility classified theimnment users is long. However, after the agents accumelaceigh
conditions as Self although the workload dramdical energy from users and start to replicate themsehres
changed. However, agentRgndom+Self-regulationwith migrate toward the user location, they rapidly dease
self-regulation process dyna_lmically configure_: tIEfE_rfaciIity response time. For example, Ager’maﬁuab successfully
so that they perform behaviors to adapt their patprt. For reduce response time by increasing their populatien,

example, before 0:30, the EE facility classifiede thincreasing service availability) even when the Vaak



increases at 2:00 and 4:00. On the other hand,tsagen
(Randonm did not perform any behaviors because the EE

facility did not evaluate the environment condisarorrectly,

so they could not reduce response time. Howevegnwh
agents Random+Self-regulation recognize that the EE

facility wrongly evaluated the environment condiiso(i.e.,
respond to danger signals), they try to configure EE
facility and regulate the behavior invocation sattthey
perform behaviors to reduce response time at l8®Ba00.

Figure 11 shows how three different types of agents

dynamically adapt their throughput to the workldeete. It is
measured as the number of responses that a usives@

minute from agents. Agents@nual) autonomously maintain

high throughput by dynamically adjusting their plation
and locations through migration and replication dhetrs

while agents Randonm) cannot improve their throughput

because they did not increase their population, (&ervice
availability). However, by self-regulation processgents

(Random +Self-regulatignrecognize the defect of the EE

facility and dynamically configure the EE facilit%s a result,
they start to increase their population and impitbveughput
(e.g., at 0:30 and 3:00) according to the workload.

Finally, Figure 12 shows the average fithess valuagents

(i.e., the degree of adaptation to the environmentjescribed

in Section 3.2. AgentdManual) improve their fithess value to
about 0.6 from 0.3 during the simulation while agen
(Randony could not improve the fitness value (although th

fitness value slightly increases because of enetigjyy (f3)
and agef6) factors). AgentsRandom+Self-regulatiorkeep
trying to improve the fitness value by regulatinigeit
behavior invocation; eventually improve their fissevalue to
that ofManualagents.

5. RELATED WORK

This paper describes several extensions to the waok on

iNet [21, 22]. [21] mainly focus on the antibodytwerk in the
BS facility and its evolutionary mechanism; howevtdoes
not investigate the iNet EE facility. [22] does hiotestigate
the self-regulation process in the EE facility. $hagent
designers needed to manually and carefully cordiglie EE
facility by anticipating all possible self/non-selfivironment
conditions at the design time. In contrast, thet iNigh the

self-regulatory mechanism allows agents to autonaiyo
adjust their EE facility configurations at runtiméyet

requires no manual configurations for agent desgne

The Bio-Networking Architecture (BioNet) [23, 24] similar
to BEYOND in that it applies biological principleand
mechanisms to allow network applications (agents)
autonomously adapt to dynamic changes in the n&twidre
BEYOND architecture employs a different approactisign
the adaptation mechanism for agents. It implemexts
artificial immune system as its adaptation mechanigile
[23, 24] uses a factor-based weighted sum equaltiof23,
24], a behavior selection strongly depends on tilaes of

‘ Manual —— Random + Self-reg —— Random
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weights and threshold, which are hard to configréhe scale
of environment conditions varies. In [23, 24], eagent does
ot have a mechanism equivalent to the EE faciityeach
agent may periodically performs one of its behavidrthe
configuration was not appropriate. This resultswiasting
resources caused by unnecessary behavior seledtion.
BEYOND, each agent contains the EE facility, which
examines whether it adapts well to the current renwment
conditions. It activates the BS facility only whéme agent
does not adapt to the current environment conditidrhis
way, agents can reduce resource consumption aruitexe
overhead in their adaptation activities.

Artificial immune systems have been proposed aretl us
various application domains such as anomaly detedf25]
and pattern recognition [26]. [25] focuses on thaagation of
detectors for self/non-self classification and i@ the
negative selection process of the artificial immuystem.
[26] focuses on the accuracy for the matchmakingamf
antigen and antibody. Unlike those work, this pgmeposes
an artificial immune system to improve autonomous
adaptability of network applications.

In addition, some research work [27] using arifiégmmune
systems extend their work with the concept of dasgmals.
t[27] proposes the mechanism to detect misbehavidgsas
antigens based on event sequences of routing pracesd
hoc network. Danger signals contribute to redueenimber
of false positives (i.e., the system evaluates eecty
working node as a misbehaving node) by dynamically
updating the definition of normal event sequencedf); On
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