
Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

1

Abstract— The ability to reconfigure network applications and

distributed systems (e.g. middleware) to adapt to changing
network conditions is becoming more important. This paper
describes our research efforts regarding dynamic reconfiguration
of network applications and middleware. We first describe our
approach to reconfigure network applications through a
biologically-inspired evolutionary process. The current research
status and obtained results are presented in terms of simulation
work and empirical implementation work. Then, we describe our
extended effort to reconfigure middleware as well as network
applications. We also present the current status of this effort by
listing the research issues that we have been taking into account
for designing our mechanisms to reconfigure middleware.

Index Terms—adaptive middleware, evolutionary computing,
reconfigurable middleware, reconfigurable network applications.

I. INTRODUCTION
key observation to the current and near future
communication systems is that dynamic reconfigurability

to adapt to changing network conditions is a unifying theme on
which network applications and distributed systems (e.g.
middleware) can be constructed [1]. We believe that the future
networks, which will be orders of magnitude more complex and
larger than current networks, should exhibit self-organization
with inherent support for scalability and adaptability to
environmental changes in networks. In order to make this
research vision a reality, we have been investigating the
dynamic reconfigurability in terms of the following two
different research approaches:

• Network-aware applications that autonomously reconfigure

their behaviors to adapt to dynamic network conditions (e.g.
network load)

• Reconfigurable middleware systems that reconfigure their
internal components to adapt to resource availability (e.g.

J. Suzuki, T. Nakano, K Fujii, N. Ikeda and T. Suda are with the Department

of Information and Computer Science, University of California, Irvine, Irvine,
CA 92697-3425 USA (email: {jsuzuki, tnakano, kfujii, nobby,
suda}@ics.uci.edu).

N. Ikeda is also with Systems Integration Technology Center, Toshiba
Corporation (email: ikeda@sitc.toshiba.co.jp).

This work has been supported by the National Science Foundation through
Grants ANI-0083074 and ANI-9903427, by DARPA through Grant
MDA972-99-1-0007, by AFOSR through Grant MURI F49620-00-1-0330, and
by grants from the University of California MICRO Program, Hitachi, Hitachi
America, Novell, Nippon Telegraph and Telephone Corporation (NTT), NTT
Docomo, Fujitsu, and NS Solutions Corporation.

the amount of available memory and bandwidth, and the
kind of available communication/routing protocols)

We have been designing and implementing the above two

approaches in the Bio-Networking Architecture project [2, 3].
The Bio-Networking Architecture is motivated by the
observation that the above desirable properties (such as
scalability and adaptability) have already been realized in
various large-scale biological systems, and it applies key
biological principles and mechanisms for designing network
applications. The Bio-Networking Architecture is a new
framework for developing large-scale, highly distributed,
heterogeneous and dynamic network applications [3].

The remaining sections are organized as follows: Section II
describes our framework to implement network-aware
applications. Section III describes our recent investigation on
reconfigurable middleware system. In each of Section II and III,
we present the motivations to the proposed frameworks, the
research issues we have been trying to answer, the current
status of our research progress, and future work. We conclude
our research efforts in Section IV.

II. RECONFIGURATION OF NETWORK APPLICATIONS
This section overviews the design of network applications in

the Bio-Networking Architecture (Section A), and describes
our research efforts in simulation study (Section B) and
empirical implementation (Section C).

A. Network Application Design
Due to the dynamics of networks, network applications are

often required to reconfigure their behaviors in order to satisfy
changing demand from users or to deal with the changing
network characteristics (e.g., available bandwidth and network
topology). As the network scales in its size and complexity,
however, it is more difficult and expensive to manually
reconfigure the application behaviors. Our approach to this
problem is to provide autonomous reconfigurability to network
applications by introducing biologically-inspired evolutionary
mechanisms. We have been implementing the evolutionary
mechanisms in the Bio-Networking Architecture, and
evaluating the mechanisms as a means of reconfiguring
application behaviors.

In the Bio-Networking Architecture, a network application is
modeled as a decentralized collection of autonomous
distributed objects called cyber-entities. This is analogous to a

Dynamic Reconfiguration of Network Applications and
Middleware Systems in the Bio-Networking Architecture

Junichi Suzuki, Tadashi Nakano, Keita Fujii, Nobuyuki Ikeda and Tatsuya Suda

A

Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

2

bee colony (a network application) consisting of multiple bees
(cyber-entities). Each cyber-entity provides a functional
service(s) related to the application, and performs biological
behaviors (e.g. replication, reproduction, migration, death, etc.)
similar to biological entities. The Bio-Networking Architecture
allows cyber-entities to evolve by generating behavioral
diversity among cyber-entities and executing natural selection.

Behavioral diversity among cyber-entities means that it is
likely different cyber-entities implement different policies on
their behaviors. It is generated through mutation and crossover
during replication and reproduction processes. Natural
selection is performed based on the concept of energy. Each
cyber-entity stores and expends energy for living, as biological
entities naturally strive to gain energy by seeking and
consuming food. Cyber-entities gain energy in exchange for
performing their services, and they expend energy to use
computing resources such as CPU cycles and memory space on
network nodes that they reside on. The abundance or scarcity of
stored energy affects various behaviors and contributes to the
natural selection process in evolution. For example, an
abundance of stored energy is an indication of higher demand
for the cyber-entity; thus the cyber-entity may be designed to
favor reproduction in response to higher level of stored energy.
A scarcity of stored energy (an indication of lack of demand or
ineffective behaviors) may eventually cause the cyber-entity’s
death. Therefore, through successive generations, beneficial
features are retained while detrimental behaviors become
dormant, enabling cyber-entities (i.e. network applications) to
adapt to dynamic and changing network environments.

Major behaviors that each cyber-entity has are listed below:

• Energy exchange and storage: Cyber-entities may

gain/expend and store energy as described above.
• Communication: Cyber-entities communicate with others

for requesting a service, fulfilling a service, or routing
messages (e.g. discovery messages) for other cyber-entities.

• Migration: Cyber-entities may migrate from bionet platform
to platform.

• Replication and reproduction: Cyber-entities may make
copies of themselves (replication). Two parent cyber-entities
may create a child cyber-entity (reproduction), possibly with
mutation and crossover.

• State change: Each cyber-entity may have autonomous,
active and inactive (sleeping) states during its lifetime.
Cyber-entities in different states consume resources
differently; therefore they expend energy at different rates.

• Death: Cyber-entities may die because of old age or energy
starvation.

• Relationship establishment: Cyber-entities may have their
own relationships with others.

• Discovery: Cyber-entities may discover other cyber-entities
by sending a discovery message through their relationships.

• Pheromone emission and sensing: Cyber-entities may leave
their pheromones on their local platform when it migrates to
another platform. A pheromone is a pointer to a cyber-entity,
which helps other cyber-entities to find it. Cyber-entities
may also emit their pheromones to neighboring platforms for

attracting other cyber-entities to come or establish
relationships with them.

• Resource sensing: Cyber-entities may sense the type,
amount, and unit cost of resources (e.g. CPU cycles and
memory space) available on both a local and neighboring
platforms. Each platform determines the unit cost of
resources provided on that platform based on their
availability.

Cyber-entities have their own policies for each behavior.

Each behavior policy consists of one or more functions, or
factors, which evaluate its environment and return numeric
values. Each factor is given a certain weight relative to its
importance, and behaviors are invoked if the total result of the
evaluating function (e.g. weighted sum of factor values)
exceeds a certain threshold. For example, the factors in the
migration behavior, which affect when to migrate and where to
migrate, include:

• Migration cost: A high cost for migration may discourage

migration.
• Energy seeking, which encourages cyber-entities to move

toward energy sources (i.e. end users requesting the services
provided by the cyber-entities).

• Mutual repulsion, which encourages cyber-entities to repel
with each other.

• Resource cost, which encourages cyber-entities to migrate to
a network node whose resource cost is cheaper.

Behavioral diversity is generated, through mutation and

crossover during replication and reproduction, by changing
factors and their weight values associated with behaviors. In
replication, for example, a newly replicated cyber-entity may
derive its behavior factors and weight values from its parent
with mutation. Mutation may remove/add factors and change
their weight values, thereby ensuring a sufficient degree of
behavioral diversity necessary for adaptation and evolution.

B. Simulation Study
In order to evaluate and demonstrate the reconfigurability of

network applications through the evolutionary process
described in the above Section A, we have developed the
Bio-Networking Evolution Simulator [4]. The evolutionary
mechanisms are implemented on the simulator based on genetic
algorithms [5]. Each cyber-entity behavior is implemented as a
chromosome, and each factor weight associated with a
behavior is implemented as a gene.

Through the simulation study, we have been trying to answer
the following research issues:

(1) Effectiveness of energy: As we described above, the natural

selection in the Bio-Networking Architecture is designed to
improve adaptability of network applications (i.e.
cyber-entities) by removing the cyber-entities that do not fit
the current network environment well. We need to evaluate
the effectiveness of energy as a means to drive natural

Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

3

selection process.
(2) Effectiveness of crossover and mutation: Having

established the natural selection mechanism based on
energy concept, we also need to validate the effectiveness
of crossover and mutation as the mechanisms to generate
behavioral diversity.

(3) Performance of evolutionary process in dynamic networks:
We then need to investigate whether cyber-entities
successfully adapt to the dynamic environmental changes
(e.g. changes in user’s location, network load, and network
topology).

(4) Acceleration of evolutionary processes: As the network
environment becomes more complex and dynamic, it is
expected that the evolutionary process will take longer time.
We need to investigate and design the strategies to
accelerate evolutionary process.

(5) Diversity Maintenance: In order for network applications to
be more robust and adaptive against dynamic
environmental changes, it is important to maintain
behavioral diversity among cyber-entities. We need to
investigate and design a mechanism to keep the degree of
behavioral diversity, and evaluate its effectiveness.

We have already evaluated core evolutionary mechanisms

including natural selection, crossover and mutation (research
issues 1 and 2) under relatively static and simple network
environments. The simulations deployed various types of
cyber-entities (e.g., productive cyber-entity that makes children
very often to increase its availability, wandering cyber-entity
that randomly moves around network to find new end users or
network nodes whose resource cost is cheaper, etc.) to examine
which types of cyber-entities increase their fitness to the
environment. We confirmed that cyber-entities gradually
reconfigure their behavioral policies through evolution in order
to adapt themselves to the current network condition with
regard to response time, distance to users, and resource
consumption.

We have also examined if the evolution mechanisms
evaluated in the static environments still work well in dynamic
environments where end users are mobile and network
topology changes (research issue 3). We confirmed that
cyber-entities adapt themselves to dynamically changing
network condition by reconfiguring their behavioral policies
through evolution. Figure 1 depicts one of the simulation
results obtained from a simulation where end users are
configured to randomly move around network. In this figure,
the vertical axis indicates energy gain (i.e. acquired energy –
consumed energy), and the horizontal axis indicates simulation
cycle (scaled in 600 cycles). The simulation result shows that
evolutionary cyber-entities gain more energy than
non-evolutionary ones, which means evolutionary
cyber-entities adapt better to dynamic network condition by
moving toward end users and avoiding network nodes whose
resource cost is expensive (i.e. by increasing weight values of
energy seeking and resource cost factors).

As Figure 1 shows, evolutionary cyber-entities decrease
their energy gain at the early stage of simulation for exploring a

new set of factor weights that are better suited to network
environment, and then reach higher energy gain around 60,000
simulation cycles (approximately the 550th generation of
cyber-entities). We are currently investigating how to make the
evolutionary process more efficient (research issues 4) by
reducing the overhead associated with the evolutionary
mechanisms. The overhead includes energy loss and time delay
in evolutionary process (see Figure 1). We are also
investigating how to keep maintaining diversity in cyber-entity
population, which is necessary and enough for evolutionary
process (research issue 5).

C. Empirical Implementation
Given an initial set of successful simulation results, we have

been developing the Bio-Networking platform [6, 7], a
middleware system that provides reusable software
components for deploying and executing cyber-entities, in
order to evaluate the characteristics of evolutionary
reconfiguration of network applications on actual network
environment.

The architecture of the Bio-Networking platform is
organized as shown in Figure 2. The Bio-Networking platform
runs on a Java virtual machine on a network node. It consists of
four components; bionet services, bionet message transport,
bionet container and bionet class loader. The bionet services
provide a set of runtime services that cyber-entities frequently
use for performing their services, sensing the current network
conditions, and invoking their behaviors. Key bionet services
are briefly described below:

• Bionet lifecycle service; allows cyber-entities to change their

internal state, replicate, and reproduce.
• Bionet relationship management service; allows

cyber-entities to establish, examine, update and eliminate
their relationships with other cyber-entities.

Fig. 1. The amount of energy gained by cyber-entities with and without
evolutionary behavior reconfiguration (i.e. mutation and crossover mechanisms)

Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

4

• Bionet resource sensing service; allows cyber-entities to
inquire the type, amount and cost of available resources
(CPU cycle and memory space).

• Bionet energy management service; keeps track of the
energy levels of cyber-entities running on a local platform,
and allows the cyber-entities to pay energy units for
receiving services from another cyber-entity, for utilizing
resources (CPU cycle and memory space), and for
performing their behaviors.

• Bionet discovery service; allows cyber-entities to search for
other cyber-entities on a remote node through their
relationships. This discovery is called cyber-entity level
discovery because the discovery is performed with the
knowledge of cyber-entities (i.e. relationships).

• Bionet cyber-entity sensing service; allows cyber-entities to
search for other cyber-entities running on a local and
neighboring platforms. This discovery is called platform
level discovery because the discovery is performed with the
knowledge of platforms (i.e. platform connectivity).

• Bionet pheromone emission service; allows cyber-entities to
emit their pheromones (traces) and to sense pheromones
emitted by other cyber-entities.

• Bionet topology sensing service; allows cyber-entities to
sense the existence of remote platforms within N hops.

• Bionet migration service; allows cyber-entities to migrate to
another platform.

The Bionet message transport abstracts low-level operating

and networking details such as I/O, concurrency, messaging
and network connection management. The Bionet container
dispatches incoming messages to cyber-entities running on a
local Bio-Networking platform. The Bionet class loader
dynamically loads class definitions of cyber-entities into a Java
virtual machine when they migrate from a Bio-Networking
platform to another. The CE context is an entry point for a
cyber-entity to access bionet services (see Figure 2). It
examines if a bionet service requested by a cyber-entity is
available on the Bio-Networking platform, and if it is, it obtains
a reference to the requested bionet service. The CE context is

created and associated with each cyber-entity implicitly
(automatically), when a cyber-entity is created, replicated,
reproduced or migrated from another host.

We have implemented bionet message transport, bionet
container, bionet class loader, CE context, and five bionet
services (lifecycle, relationship, resource sensing, energy, and
migration). We have been measuring the performance of each
of those components. We confirmed that the performance
results are competitive with those of existing distributed object
platforms and mobile agent platforms. We have been also
working actively in the Object Management Group (OMG) to
reflect the key designs of the Bio-Networking platform to the
OMG Super Distributed Objects specifications [8, 9].

We are currently implementing our evolution mechanisms,
which have been used and evaluated in simulation study, on the
Bio-Networking platform [10]. Through this empirical
implementation work, we will start evaluating the
reconfigurability of actual network applications through
evolutionary process, along with the research issues described
in the above Section B. We are planning to evaluate several
applications such as content distribution [5], decentralized
object sharing and discovery [11], smart home networks [3],
and disaster response networks [12].

III. RECONFIGURATION OF MIDDLEWARE
The previous section describes our research work to design

and implement network-aware applications that autonomously
reconfigure themselves to adapt to dynamic network conditions.
We have been expanding our research scope for making not
only network applications but also underlying middleware
system to be reconfigurable so that we can provide more
adaptable networking systems.

 Our approach to realize reconfigurable middleware is to
compose middleware as a set of components. In this approach,
middleware (1) senses its context such as available resources
and system’s configuration, (2) decides which components are
required or most desirable against the obtained context, and
then (3) loads the selected components to activate them. This
approach allows middleware to adjust its functionality,
performance and resource requirements according to the
context.

 For the initial phase to sense a context such as what kind
of resources are available on a network node, how much
bandwidth is available on a link, and which routing algorithms
are used to communicate with neighboring nodes, we have
identified the following research issues that we should address.

• Is context sensing performed when middleware is first

deployed onto a network node (static reconfiguration), or
continuously performed even after the deployment (dynamic
reconfiguration)?

• What kind of information should be sensed as context? How
does middleware sense context information?

For the second phase to determine a strategy to reconfigure

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

Fig. 2. Architecture of the Bio-Networking platform. CE stands for
cyber-entity.

Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

5

middleware according to an obtained context, the following
research issues have been identified:

• In the case of dynamic reconfiguration, what are the triggers

to start reconfiguring middleware?
• How does middleware decide its necessary functionalities or

requirements based on the obtained context information, and
determine its action(s) to satisfy these functionalities or
requirements? For example, the actions may include
determining which component to be activated/disabled or
which component to be downloaded as mobile code.

• How does middleware know the effect of disabling
components, replacing components with others, or newly
loading components? Does it need to use any constraint
specification (e.g. dependency and conflicts) to handle this
problem? If middleware uses it, how does it describe the
constraints? Also, is the constraint specification defined
statically, or dynamically as well?

• Does middleware target single or multiple goals for its
reconfiguration (e.g. minimization of resource utilization
and guarantee of a defined throughput rate, etc.)? If it targets
multiple goals, how does middleware prioritize multiple
reconfiguration strategies?

• Does middleware know a statically defined set of
components available for reconfiguration, or can
middleware administrator dynamically introduce
components? If middleware accepts newly-defined
components at runtime, how does it know their
characteristics such as functionality, performance and
resource requirement? Should each component be
self-descriptive? If it is, how does it describe its
characteristics?

• Can we apply any biological metaphors to middleware
reconfiguration process, as we did for reconfiguration of
network applications? For example, [13] successfully uses a
metaphor of the immune system to construct an adaptable
web server which continuously measures the delivered
quality of service and dynamically reconfigure its internal
components by relaxing constraints between them. Can we
apply a similar approach to reconfigurable middleware?
Alternatively, can we possibly apply techniques of
multiobjective evolutionary algorithm [14] when
middleware targets multiple goals for its reconfiguration
(see above)?

For the last phase to execute the reconfiguration strategy

decided in the previous phase, we have identified the following
research issues to address:

• How does middleware find necessary components to load?

Where does it load them from? Does middleware load them
from a local file system or download them through network
[15]?

• How does middleware coordinate and bind different
components? Can we effectively use or extend existing
techniques such as component configurator [16], aspect
weaving [17, 18], and metaobject protocols [19]?

• How small the granularity of components should be? In
general, middleware can be more reconfigurable by using
finer-grained components. However, the smaller the
granularity of components is, the more difficult it is to bind
them with each other. Can we effectively use or extend
existing techniques such as multidimensional separation of
concerns [20]?

• In the case of static reconfiguration, can we take any
model-driven approach for middleware reconfiguration
process, instead of reconfiguration through programming,
for reducing its complexity? For example, can we use UML
(Unified Modeling Language) [21] for specifying the
characteristics of components and OCL (Object Constraint
Language) [21] for specifying constraint specifications? Can
we effectively use or extend the existing research work that
tries to specify aspects and/or metaobjects in design models
[22]? Can we possibly generate middleware code
automatically from design models, for example, using UML
action semantics and languages [23, 24, 25]?

• How does middleware detect errors that occurs in
reconfiguration process (e.g. conflicts between components
and failure of loading components), and recover (e.g. roll
back) from the errors?

• How does middleware load components in a secure manner?
For example, how does it avoid loading malicious
components?

Keeping the above research issues in our minds, we have

started investigating middleware reconfiguration mechanisms
using the components implemented in the Bio-Networking
platform. We will ultimately evaluate the characteristics and
impact of the distributed system environment where both of
network applications and middleware are reconfigurable to
adapt to environment.

IV. CONCLUSION
We believe that one of the most important requirements in

the near future communication systems is dynamic
reconfigurability. This paper describes our research efforts
regarding dynamic reconfiguration of network applications and
middleware. It overviews the motivations to the proposed
frameworks, the research issues we have been addressing, the
current research status, and future work.

REFERENCES
[1] Report of Workshop on New Visions for Large-scale Networks: Research

and Applications, Large Scale Networking (LSN) Coordinating Group of
the Interagency Working Group (IWG) for Information Technology
Research and Development (IT R&D)

[2] http://netresearch.ics.uci.edu/bionet/
[3] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking Architecture: The

Biologically Inspired Approach to the Design of Scalable, Adaptive, and
Survivable/Available Network Applications,” K. Park (ed.) The Internet
as a Large-Scale Complex System, Princeton University Press, 2002.

[4] http://netresearch.ics.uci.edu/bionet/resouces/evolution_simulator/
[5] M. Wang and T. Suda, M. Wang and T. Suda, “The Bio-Networking

Architecture: A Biologically Inspired Approach to the Design of Scalable,

Dynamic Reconfiguration of Network Applications and Middleware Systems in the Bio-Networking Architecture,
2002 IEEE Workshop on Large Scale Real-Time and Embedded Systems

6

Adaptive, and Survivable/Available Network Applications,” Proc. of the
First IEEE Symposium on Applications and the Internet (SAINT),
January 2001.

[6] http://netresearch.ics.uci.edu/bionet/resouces/platform/
[7] J. Suzuki and T. Suda, “An Overview of the Bio-Networking

Architecture,” The Super Distributed Objects Forum, Object Management
Group TC meeting at Helsinki, OMG document number: sdo/02-10-05,
Helsinki, Finland, October 2002.

[8] S. Sameshima, J. Suzuki and T. Suda, “The Initial Submission to the
Platform Independent Model (PIM) and Platform Specific Model (PSM)
for Super Distributed Objects,” Super Distributed Objects Domain SIG,
Object Management Group, September 2002.

[9] S. Sameshima, S. Arbanowski and J. Suzuki, “OMG Super Distributed
Objects White Paper,” Super Distributed Objects Domain SIG, Object
Management Group, July 2001.

[10] J. Suzuki and T. Suda, “Adaptive Behavior Selection of Autonomous
Objects in the Bio-Networking Architecture,” Proc. of the First Annual
Symposium on Autonomous Intelligent Networks and Systems, May
2002.

[11] M. Moore and T. Suda, “Distributed Discovery in Peer-to-Peer Network,”
Proc. of the First Annual Symposium on Autonomous Intelligent Networks
and Systems, January 2002.

[12] J. Suzuki and T. Suda, “Middleware Support for Disaster Response
Infrastructure,” Proc. of the First IEEE Workshop on Disaster Recovery
Networks, June 2002.

[13] J. Suzuki and Y. Yamamoto, “Biologically-inspired Autonomous
Adaptability in a Communication Endsystem: An Approach Using an
Artificial Immune System,” IEICE Transactions on Information &
System, Vol. E84-D, No. 12, pages 1782-1789, December 2001.

[14] D. A. Van Veldhuize and, G. B. Lamont, “Multiobjective Evolutionary
Algorithms: Analyzing the State-of-the-Art,” Evolutionary Computation,
Vol. 8, No. 2, pages 125-147, 2000.

[15] N. Narasimhan and V. Vasudevan, “Migratable Middleware for Mobile
Computing,” Proc. of the First Annual Symposium on Autonomous
Intelligent Networks and Systems, May 2002.

[16] F. Kon and R. H. Campbell, “Supporting Automatic Configuration of
Component-Based Distributed Systems,” Proc. of 5th USENIX
Conference on Object-Oriented Technologies and Systems (COOTS'99),
May 1999.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G.
Griswold, “An Overview of AspectJ,” Proc. of the European Conference
on Object-Oriented Programming (ECOOP), 2001.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, J. Irwin, “Aspect Oriented Programming,” Proc. of the
European Conference on Object-Oriented Programming (ECOOP),
1997.

[19] G. Kiczales, J. D. Rivieres, D. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991.

[20] P. Tarr, H. Ossher, W. Harrison, S. M. Sutton, “N degrees of Separation:
Multidimensional Separation of Concerns,” Proc. of the ACM
International Conference on Software Engineering, 1999.

[21] The Object Management Group, Unified Modeling Language
Specification 1.4., 2000.

[22] J. Suzuki and Y. Yamamoto. “Extending UML for Modeling Reflective
Software Components.” Proc. of the International Conference on Unified
Modeling Language, 1999.

[23] The Object Management Group, Action Semantics for UML Specification,
2001.

[24] G. Sunyé, F. Pennaneac, W-M. Ho, A. L. Guennec, J.-M. Jézéquel,
“Using UML Action Semantics for executable modeling and beyond,”
Advanced Information Systems Engineering, Springer LNCS 2068, 2001.

[25] S. Mellor, M. Balcer, Executable UML: A Foundation for Model Driven
Architecture, Addison Wesley, 2002.

