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Abstract— The ability to reconfigure network applications and 

distributed systems (e.g. middleware) to adapt to changing 
network conditions is becoming more important. This paper 
describes our research efforts regarding dynamic reconfiguration 
of network applications and middleware. We first describe our 
approach to reconfigure network applications through a 
biologically-inspired evolutionary process. The current research 
status and obtained results are presented in terms of simulation 
work and empirical implementation work. Then, we describe our 
extended effort to reconfigure middleware as well as network 
applications. We also present the current status of this effort by 
listing the research issues that we have been taking into account 
for designing our mechanisms to reconfigure middleware. 
 

Index Terms—adaptive middleware, evolutionary computing, 
reconfigurable middleware, reconfigurable network applications. 
 

I. INTRODUCTION 
key observation to the current and near future 
communication systems is that dynamic reconfigurability 

to adapt to changing network conditions is a unifying theme on 
which network applications and distributed systems (e.g. 
middleware) can be constructed [1]. We believe that the future 
networks, which will be orders of magnitude more complex and 
larger than current networks, should exhibit self-organization 
with inherent support for scalability and adaptability to 
environmental changes in networks. In order to make this 
research vision a reality, we have been investigating the 
dynamic reconfigurability in terms of the following two 
different research approaches: 
 
• Network-aware applications that autonomously reconfigure 

their behaviors to adapt to dynamic network conditions (e.g. 
network load)  

• Reconfigurable middleware systems that reconfigure their 
internal components to adapt to resource availability (e.g. 
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the amount of available memory and bandwidth, and the 
kind of available communication/routing protocols) 
 
We have been designing and implementing the above two 

approaches in the Bio-Networking Architecture project [2, 3]. 
The Bio-Networking Architecture is motivated by the 
observation that the above desirable properties (such as 
scalability and adaptability) have already been realized in 
various large-scale biological systems, and it applies key 
biological principles and mechanisms for designing network 
applications. The Bio-Networking Architecture is a new 
framework for developing large-scale, highly distributed, 
heterogeneous and dynamic network applications [3]. 

The remaining sections are organized as follows: Section II 
describes our framework to implement network-aware 
applications. Section III describes our recent investigation on 
reconfigurable middleware system. In each of Section II and III, 
we present the motivations to the proposed frameworks, the 
research issues we have been trying to answer, the current 
status of our research progress, and future work. We conclude 
our research efforts in Section IV.  
 

II. RECONFIGURATION OF NETWORK APPLICATIONS 
This section overviews the design of network applications in 

the Bio-Networking Architecture (Section A), and describes 
our research efforts in simulation study (Section B) and 
empirical implementation (Section C). 

A. Network Application Design  
Due to the dynamics of networks, network applications are 

often required to reconfigure their behaviors in order to satisfy 
changing demand from users or to deal with the changing 
network characteristics (e.g., available bandwidth and network 
topology). As the network scales in its size and complexity, 
however, it is more difficult and expensive to manually 
reconfigure the application behaviors. Our approach to this 
problem is to provide autonomous reconfigurability to network 
applications by introducing biologically-inspired evolutionary 
mechanisms. We have been implementing the evolutionary 
mechanisms in the Bio-Networking Architecture, and 
evaluating the mechanisms as a means of reconfiguring 
application behaviors. 

In the Bio-Networking Architecture, a network application is 
modeled as a decentralized collection of autonomous 
distributed objects called cyber-entities. This is analogous to a 
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bee colony (a network application) consisting of multiple bees 
(cyber-entities). Each cyber-entity provides a functional 
service(s) related to the application, and performs biological 
behaviors (e.g. replication, reproduction, migration, death, etc.) 
similar to biological entities. The Bio-Networking Architecture 
allows cyber-entities to evolve by generating behavioral 
diversity among cyber-entities and executing natural selection. 

Behavioral diversity among cyber-entities means that it is 
likely different cyber-entities implement different policies on 
their behaviors. It is generated through mutation and crossover 
during replication and reproduction processes. Natural 
selection is performed based on the concept of energy. Each 
cyber-entity stores and expends energy for living, as biological 
entities naturally strive to gain energy by seeking and 
consuming food. Cyber-entities gain energy in exchange for 
performing their services, and they expend energy to use 
computing resources such as CPU cycles and memory space on 
network nodes that they reside on. The abundance or scarcity of 
stored energy affects various behaviors and contributes to the 
natural selection process in evolution. For example, an 
abundance of stored energy is an indication of higher demand 
for the cyber-entity; thus the cyber-entity may be designed to 
favor reproduction in response to higher level of stored energy. 
A scarcity of stored energy (an indication of lack of demand or 
ineffective behaviors) may eventually cause the cyber-entity’s 
death. Therefore, through successive generations, beneficial 
features are retained while detrimental behaviors become 
dormant, enabling cyber-entities (i.e. network applications) to 
adapt to dynamic and changing network environments. 

Major behaviors that each cyber-entity has are listed below: 
 
• Energy exchange and storage: Cyber-entities may 

gain/expend and store energy as described above. 
• Communication: Cyber-entities communicate with others 

for requesting a service, fulfilling a service, or routing 
messages (e.g. discovery messages) for other cyber-entities. 

• Migration: Cyber-entities may migrate from bionet platform 
to platform.  

• Replication and reproduction: Cyber-entities may make 
copies of themselves (replication). Two parent cyber-entities 
may create a child cyber-entity (reproduction), possibly with 
mutation and crossover. 

• State change: Each cyber-entity may have autonomous, 
active and inactive (sleeping) states during its lifetime. 
Cyber-entities in different states consume resources 
differently; therefore they expend energy at different rates. 

• Death: Cyber-entities may die because of old age or energy 
starvation. 

• Relationship establishment: Cyber-entities may have their 
own relationships with others. 

• Discovery: Cyber-entities may discover other cyber-entities 
by sending a discovery message through their relationships. 

• Pheromone emission and sensing: Cyber-entities may leave 
their pheromones on their local platform when it migrates to 
another platform. A pheromone is a pointer to a cyber-entity, 
which helps other cyber-entities to find it. Cyber-entities 
may also emit their pheromones to neighboring platforms for 

attracting other cyber-entities to come or establish 
relationships with them. 

• Resource sensing: Cyber-entities may sense the type, 
amount, and unit cost of resources (e.g. CPU cycles and 
memory space) available on both a local and neighboring 
platforms. Each platform determines the unit cost of 
resources provided on that platform based on their 
availability. 

 
Cyber-entities have their own policies for each behavior. 

Each behavior policy consists of one or more functions, or 
factors, which evaluate its environment and return numeric 
values. Each factor is given a certain weight relative to its 
importance, and behaviors are invoked if the total result of the 
evaluating function (e.g. weighted sum of factor values) 
exceeds a certain threshold. For example, the factors in the 
migration behavior, which affect when to migrate and where to 
migrate, include: 
 
• Migration cost: A high cost for migration may discourage 

migration. 
• Energy seeking, which encourages cyber-entities to move 

toward energy sources (i.e. end users requesting the services 
provided by the cyber-entities). 

• Mutual repulsion, which encourages cyber-entities to repel 
with each other. 

• Resource cost, which encourages cyber-entities to migrate to 
a network node whose resource cost is cheaper. 

 
Behavioral diversity is generated, through mutation and 

crossover during replication and reproduction, by changing 
factors and their weight values associated with behaviors. In 
replication, for example, a newly replicated cyber-entity may 
derive its behavior factors and weight values from its parent 
with mutation. Mutation may remove/add factors and change 
their weight values, thereby ensuring a sufficient degree of 
behavioral diversity necessary for adaptation and evolution. 
 

B. Simulation Study 
In order to evaluate and demonstrate the reconfigurability of 

network applications through the evolutionary process 
described in the above Section A, we have developed the 
Bio-Networking Evolution Simulator [4]. The evolutionary 
mechanisms are implemented on the simulator based on genetic 
algorithms [5]. Each cyber-entity behavior is implemented as a 
chromosome, and each factor weight associated with a 
behavior is implemented as a gene. 

Through the simulation study, we have been trying to answer 
the following research issues: 
 
(1) Effectiveness of energy: As we described above, the natural 

selection in the Bio-Networking Architecture is designed to 
improve adaptability of network applications (i.e. 
cyber-entities) by removing the cyber-entities that do not fit 
the current network environment well. We need to evaluate 
the effectiveness of energy as a means to drive natural 
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selection process. 
(2) Effectiveness of crossover and mutation: Having 

established the natural selection mechanism based on 
energy concept, we also need to validate the effectiveness 
of crossover and mutation as the mechanisms to generate 
behavioral diversity. 

(3) Performance of evolutionary process in dynamic networks: 
We then need to investigate whether cyber-entities 
successfully adapt to the dynamic environmental changes 
(e.g. changes in user’s location, network load, and network 
topology). 

(4) Acceleration of evolutionary processes: As the network 
environment becomes more complex and dynamic, it is 
expected that the evolutionary process will take longer time. 
We need to investigate and design the strategies to 
accelerate evolutionary process. 

(5) Diversity Maintenance: In order for network applications to 
be more robust and adaptive against dynamic 
environmental changes, it is important to maintain 
behavioral diversity among cyber-entities. We need to 
investigate and design a mechanism to keep the degree of 
behavioral diversity, and evaluate its effectiveness. 

 
We have already evaluated core evolutionary mechanisms 

including natural selection, crossover and mutation (research 
issues 1 and 2) under relatively static and simple network 
environments. The simulations deployed various types of 
cyber-entities (e.g., productive cyber-entity that makes children 
very often to increase its availability, wandering cyber-entity 
that randomly moves around network to find new end users or 
network nodes whose resource cost is cheaper, etc.) to examine 
which types of cyber-entities increase their fitness to the 
environment. We confirmed that cyber-entities gradually 
reconfigure their behavioral policies through evolution in order 
to adapt themselves to the current network condition with 
regard to response time, distance to users, and resource 
consumption. 

We have also examined if the evolution mechanisms 
evaluated in the static environments still work well in dynamic 
environments where end users are mobile and network 
topology changes (research issue 3). We confirmed that 
cyber-entities adapt themselves to dynamically changing 
network condition by reconfiguring their behavioral policies 
through evolution. Figure 1 depicts one of the simulation 
results obtained from a simulation where end users are 
configured to randomly move around network. In this figure, 
the vertical axis indicates energy gain (i.e. acquired energy – 
consumed energy), and the horizontal axis indicates simulation 
cycle (scaled in 600 cycles). The simulation result shows that 
evolutionary cyber-entities gain more energy than 
non-evolutionary ones, which means evolutionary 
cyber-entities adapt better to dynamic network condition by 
moving toward end users and avoiding network nodes whose 
resource cost is expensive (i.e. by increasing weight values of 
energy seeking and resource cost factors).  

As Figure 1 shows, evolutionary cyber-entities decrease 
their energy gain at the early stage of simulation for exploring a 

new set of factor weights that are better suited to network 
environment, and then reach higher energy gain around 60,000 
simulation cycles (approximately the 550th generation of 
cyber-entities). We are currently investigating how to make the 
evolutionary process more efficient (research issues 4) by 
reducing the overhead associated with the evolutionary 
mechanisms. The overhead includes energy loss and time delay 
in evolutionary process (see Figure 1). We are also 
investigating how to keep maintaining diversity in cyber-entity 
population, which is necessary and enough for evolutionary 
process (research issue 5). 
 

C. Empirical Implementation 
Given an initial set of successful simulation results, we have 

been developing the Bio-Networking platform [6, 7], a 
middleware system that provides reusable software 
components for deploying and executing cyber-entities, in 
order to evaluate the characteristics of evolutionary 
reconfiguration of network applications on actual network 
environment. 

The architecture of the Bio-Networking platform is 
organized as shown in Figure 2. The Bio-Networking platform 
runs on a Java virtual machine on a network node. It consists of 
four components; bionet services, bionet message transport, 
bionet container and bionet class loader. The bionet services 
provide a set of runtime services that cyber-entities frequently 
use for performing their services, sensing the current network 
conditions, and invoking their behaviors. Key bionet services 
are briefly described below: 
 
• Bionet lifecycle service; allows cyber-entities to change their 

internal state, replicate, and reproduce.  
• Bionet relationship management service; allows 

cyber-entities to establish, examine, update and eliminate 
their relationships with other cyber-entities. 

 
Fig. 1. The amount of energy gained by cyber-entities with and without
evolutionary behavior reconfiguration (i.e. mutation and crossover mechanisms)
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• Bionet resource sensing service; allows cyber-entities to 
inquire the type, amount and cost of available resources 
(CPU cycle and memory space). 

• Bionet energy management service; keeps track of the 
energy levels of cyber-entities running on a local platform, 
and allows the cyber-entities to pay energy units for 
receiving services from another cyber-entity, for utilizing 
resources (CPU cycle and memory space), and for 
performing their behaviors. 

• Bionet discovery service; allows cyber-entities to search for 
other cyber-entities on a remote node through their 
relationships. This discovery is called cyber-entity level 
discovery because the discovery is performed with the 
knowledge of cyber-entities (i.e. relationships).  

• Bionet cyber-entity sensing service; allows cyber-entities to 
search for other cyber-entities running on a local and 
neighboring platforms. This discovery is called platform 
level discovery because the discovery is performed with the 
knowledge of platforms (i.e. platform connectivity). 

• Bionet pheromone emission service; allows cyber-entities to 
emit their pheromones (traces) and to sense pheromones 
emitted by other cyber-entities.  

• Bionet topology sensing service; allows cyber-entities to 
sense the existence of remote platforms within N hops.  

• Bionet migration service; allows cyber-entities to migrate to 
another platform.  

 
The Bionet message transport abstracts low-level operating 

and networking details such as I/O, concurrency, messaging 
and network connection management. The Bionet container 
dispatches incoming messages to cyber-entities running on a 
local Bio-Networking platform. The Bionet class loader 
dynamically loads class definitions of cyber-entities into a Java 
virtual machine when they migrate from a Bio-Networking 
platform to another. The CE context is an entry point for a 
cyber-entity to access bionet services (see Figure 2). It 
examines if a bionet service requested by a cyber-entity is 
available on the Bio-Networking platform, and if it is, it obtains 
a reference to the requested bionet service. The CE context is 

created and associated with each cyber-entity implicitly 
(automatically), when a cyber-entity is created, replicated, 
reproduced or migrated from another host. 

We have implemented bionet message transport, bionet 
container, bionet class loader, CE context, and five bionet 
services (lifecycle, relationship, resource sensing, energy, and 
migration). We have been measuring the performance of each 
of those components. We confirmed that the performance 
results are competitive with those of existing distributed object 
platforms and mobile agent platforms. We have been also 
working actively in the Object Management Group (OMG) to 
reflect the key designs of the Bio-Networking platform to the 
OMG Super Distributed Objects specifications [8, 9]. 

We are currently implementing our evolution mechanisms, 
which have been used and evaluated in simulation study, on the 
Bio-Networking platform [10]. Through this empirical 
implementation work, we will start evaluating the 
reconfigurability of actual network applications through 
evolutionary process, along with the research issues described 
in the above Section B. We are planning to evaluate several 
applications such as content distribution [5], decentralized 
object sharing and discovery [11], smart home networks [3], 
and disaster response networks [12]. 
 

III. RECONFIGURATION OF MIDDLEWARE 
The previous section describes our research work to design 

and implement network-aware applications that autonomously 
reconfigure themselves to adapt to dynamic network conditions. 
We have been expanding our research scope for making not 
only network applications but also underlying middleware 
system to be reconfigurable so that we can provide more 
adaptable networking systems. 

 Our approach to realize reconfigurable middleware is to 
compose middleware as a set of components. In this approach, 
middleware (1) senses its context such as available resources 
and system’s configuration, (2) decides which components are 
required or most desirable against the obtained context, and 
then (3) loads the selected components to activate them. This 
approach allows middleware to adjust its functionality, 
performance and resource requirements according to the 
context.  

 For the initial phase to sense a context such as what kind 
of resources are available on a network node, how much 
bandwidth is available on a link, and which routing algorithms 
are used to communicate with neighboring nodes, we have 
identified the following research issues that we should address. 
 
• Is context sensing performed when middleware is first 

deployed onto a network node (static reconfiguration), or 
continuously performed even after the deployment (dynamic 
reconfiguration)? 

• What kind of information should be sensed as context? How 
does middleware sense context information?  

 
For the second phase to determine a strategy to reconfigure 
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Bionet Container

CE

CE Context 

Java VM

Bionet Message Transport

CE

Bionet Class Loader

Bionet Services
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Java VM

Bionet Message Transport

CE

Bionet Class Loader

 
 
Fig. 2. Architecture of the Bio-Networking platform. CE stands for 
cyber-entity.  
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middleware according to an obtained context, the following 
research issues have been identified: 

 
• In the case of dynamic reconfiguration, what are the triggers 

to start reconfiguring middleware?  
• How does middleware decide its necessary functionalities or 

requirements based on the obtained context information, and 
determine its action(s) to satisfy these functionalities or 
requirements? For example, the actions may include 
determining which component to be activated/disabled or 
which component to be downloaded as mobile code. 

• How does middleware know the effect of disabling 
components, replacing components with others, or newly 
loading components? Does it need to use any constraint 
specification (e.g. dependency and conflicts) to handle this 
problem? If middleware uses it, how does it describe the 
constraints? Also, is the constraint specification defined 
statically, or dynamically as well? 

• Does middleware target single or multiple goals for its 
reconfiguration (e.g. minimization of resource utilization 
and guarantee of a defined throughput rate, etc.)? If it targets 
multiple goals, how does middleware prioritize multiple 
reconfiguration strategies?  

• Does middleware know a statically defined set of 
components available for reconfiguration, or can 
middleware administrator dynamically introduce 
components? If middleware accepts newly-defined 
components at runtime, how does it know their 
characteristics such as functionality, performance and 
resource requirement? Should each component be 
self-descriptive? If it is, how does it describe its 
characteristics? 

• Can we apply any biological metaphors to middleware 
reconfiguration process, as we did for reconfiguration of 
network applications? For example, [13] successfully uses a 
metaphor of the immune system to construct an adaptable 
web server which continuously measures the delivered 
quality of service and dynamically reconfigure its internal 
components by relaxing constraints between them. Can we 
apply a similar approach to reconfigurable middleware? 
Alternatively, can we possibly apply techniques of 
multiobjective evolutionary algorithm [14] when 
middleware targets multiple goals for its reconfiguration 
(see above)? 

 
For the last phase to execute the reconfiguration strategy 

decided in the previous phase, we have identified the following 
research issues to address: 
 
• How does middleware find necessary components to load? 

Where does it load them from? Does middleware load them 
from a local file system or download them through network 
[15]? 

• How does middleware coordinate and bind different 
components? Can we effectively use or extend existing 
techniques such as component configurator [16], aspect 
weaving [17, 18], and metaobject protocols [19]?  

• How small the granularity of components should be? In 
general, middleware can be more reconfigurable by using 
finer-grained components. However, the smaller the 
granularity of components is, the more difficult it is to bind 
them with each other. Can we effectively use or extend 
existing techniques such as multidimensional separation of 
concerns [20]? 

• In the case of static reconfiguration, can we take any 
model-driven approach for middleware reconfiguration 
process, instead of reconfiguration through programming, 
for reducing its complexity? For example, can we use UML 
(Unified Modeling Language) [21] for specifying the 
characteristics of components and OCL (Object Constraint 
Language) [21] for specifying constraint specifications? Can 
we effectively use or extend the existing research work that 
tries to specify aspects and/or metaobjects in design models 
[22]? Can we possibly generate middleware code 
automatically from design models, for example, using UML 
action semantics and languages [23, 24, 25]? 

• How does middleware detect errors that occurs in 
reconfiguration process (e.g. conflicts between components 
and failure of loading components), and recover (e.g. roll 
back) from the errors? 

• How does middleware load components in a secure manner? 
For example, how does it avoid loading malicious 
components? 
 
Keeping the above research issues in our minds, we have 

started investigating middleware reconfiguration mechanisms 
using the components implemented in the Bio-Networking 
platform. We will ultimately evaluate the characteristics and 
impact of the distributed system environment where both of 
network applications and middleware are reconfigurable to 
adapt to environment. 

 

IV. CONCLUSION 
We believe that one of the most important requirements in 

the near future communication systems is dynamic 
reconfigurability. This paper describes our research efforts 
regarding dynamic reconfiguration of network applications and 
middleware. It overviews the motivations to the proposed 
frameworks, the research issues we have been addressing, the 
current research status, and future work.  
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