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Abstract. This paper proposes a model-driven development (MDD) environ-
ment, called BEYONDwork, which addresses a key software engineering issue in
autonomic computing: the complexity of designing and maintaining operational
policies. BEYONDwork provides (1) a set of visual domain-specific languages
(DSLs) to graphically model the operational policies in autonomic network ap-
plications, and (2) a supporting tool that validates the operational policies defined
in the proposed DSLs and transform them to program code. BEYONDwork also
addresses an issue in DSLs: low flexibility for customization. Through the no-
tion of Multi-Staged Model Reflection (MSMR), it allows users to graphically
customize DSL’s grammar (or metamodel) in an intuitive manner. This paper de-
scribes the design and implementation details of BEYONDwork.

1 Introduction

A key software engineering issue in autonomic computing is the complexity of design-
ing and maintaining operational policies, which describe a set of administrative deci-
sions for application operations. It is often tedious and time-consuming for application
administrators to design proper operational policies because policy design involves a
large volume of information. Administrators need to consider a variety of operational
conditions (e.g., application’s internal states and external environment conditions such
as resource consumption and workload) and administrative actions (e.g., migration of
an application from one host to another). Due to this information overloading, adminis-
trators can be overwhelmed to pair operational conditions and administrative actions.

It is also expensive and error-prone to maintain operational policies when an ap-
plication’s functional and/or non-functional aspects often change. Functional changes
include introducing new application functionalities and changing existing ones. Non-
functional changes include updating service level agreements and adding new hardware
resources. Upon these changes, administrators need to consider additional operational
conditions and administrative actions and re-define the pairs of conditions and actions.

Domain-specific modeling is a promising solution for administrators to design and
maintain the operational policies of autonomic applications. In general, domain-specific



modeling provides visual domain-specific languages (DSLs) that directly capture, rep-
resent and implement the concepts in particular problem domains, rather than general-
purpose languages that are aimed at any software problems [1, 2]. A visual DSL repre-
sents each domain-specific concept as its modeling primitive. This simplifies the pro-
cess to build visual models and allows users (even non-programmers) to understand,
design and maintain models. Moreover, DSLs intentionally limit their expressiveness
to specify a particular set of domain-specific concepts; therefore, they can reduce the
chances for users to make errors by building models in invalid or unexpected ways.

This paper proposes a model-driven development (MDD) environment, called BE-
YONDwork, which consist of (1) a set of visual DSLs to model the operational poli-
cies in autonomic network applications, and (2) a supporting tool for the DSLs. The
proposed DSLs specialize in the operational policies (i.e., operational conditions and
administrative actions) in autonomic network applications, and defines those domain-
specific concepts as their language grammars (or metamodels). The DSLs allows ap-
plication administrators (i.e., non application programmers) to graphically design and
maintain the operational policies in an intuitive manner. The proposed tool validates
the operational policies defined in the proposed DSLs, and transform them to program
code. This code generation enables rapid configuration of autonomic applications.

The proposed MDD environment also addresses an issue in domain-specific mod-
eling: low flexibility for customization. Currently, DSLs assume that their grammars
(or metamodels) are stable. As far as a DSL’s metamodel does not change, users (e.g.,
application administrators) can enjoy the DSL’s ease of use. However, it is very hard, if
not impossible, for them to change the DSL’s metamodel for supporting new domain-
specific concepts or changing the semantics of existing domain-specific concepts. This
customization requires the knowledge on the DSL’s design details; how the syntax
and semantics of domain-specific concepts are defined as a metamodel with a meta-
metamodeling language (e.g., Eclipse Modeling Framework; www.eclipse.org/emf).
DSL users usually do not have such knowledge. BEYONDwork addresses this issue
through the notion of Multi-Staged Model Reflection (MSMR). In MSMR, a metamodel
of a DSL is customized with a model of another DSL. Without requiring the knowledge
on meta-metamodels, MSMR allows DSL users to graphically customize DSLs.

2 BEYOND: An Architecture for Autonomic Networking

BEYONDwork is currently intended to support an architecture for autonomic network
applications, called BEYOND3 This section briefly overviews BEYOND to better ex-
plain BEYONDwork in Section 3. See [3] for the full discussion on BEYOND.

BEYOND is designed to address two issues in autonomic network applications:
autonomy–the ability to operate without intervention to/from human administrators, and
adaptability–the ability to adapt to dynamic environment conditions in the network
(e.g., network traffic and resource availability). Inspired by an observation that various
biological systems have developed the mechanisms to overcome these issues, BEYOND
applies key biological principles and mechanisms to design network applications.

3 Biologically-Enhanced sYstem architecture beyond Ordinary Network Designs.



2.1 Agents

In BEYOND, each network application is designed as a decentralized group of soft-
ware agents. This is analogous to a bee colony (application) consisting of multiple bees
(agents). Each agent provides a certain functionality of an application, and implements
biologically-inspired behaviors. Each agent also carries its own behavior policy, which
determines which behavior to be invoked in a given set of environment conditions. Be-
havior policies in BEYOND are equivalent to operational policies in autonomic com-
puting. Example agent behaviors are listed below.

• Energy exchange and storage: Biological entities strive to seek and consume food
for living. In BEYOND, agents store and expend energy for living. Each agent gains
energy in exchange for performing its service to other agents or human users, and
expends energy to use the resources available at the local host (e.g., memory space).

• Replication: Agents may make their copies in response to high energy level, which
indicates high demand for the agents. A replicated agent is placed on the host that
its parent agent resides on, and it inherits the parent’s behavior policy. Mutation may
occur on the inherited behavior policy.

• Reproduction: Agents may reproduce child agents with other agents (mating part-
ners). A child agent is placed on the host that its parents reside on, and it inherits
behavior policies from both parents through crossover. Mutation may occur on the
behavior policy of a child agent.

• Migration: Agents may move from one network host to another.
• Death: Agents die due to energy starvation. If an agent cannot balance its energy

expenditure with its energy gain, the agent cannot pay for the resources it needs; thus,
it dies from lack of energy.

2.2 iNet: Agent Adaptation Mechanism in BEYOND

iNet is a key component in BEYOND, which allows each agent to adaptively perform
its behaviors against dynamic environment conditions in the network. iNet is designed
after the mechanisms behind how the immune system detects antigens (e.g., viruses),
how it specifically produces antibodies to eliminate them, and how it evolves antibodies
to react to a massive number of antigens. iNet models a set of environment conditions
as an antigen and an agent behavior as an antibody. Each agent contains its own im-
mune system, and a configuration of the agent’s antibodies defines its behavior policy.
iNet allows each agent to autonomously sense its surrounding environment conditions
(i.e., antigen) for evaluating whether it adapts well to the sensed conditions, and if it
does not, adaptively invoke a behavior (i.e., antibody) suitable for the conditions. For
example, agents may invoke the replication behavior at the network hosts that accept a
large number of user requests for their services. This leads to the adaptation of agent
availability; agents can improve their throughput. Also, agents may invoke the migra-
tion behavior to move toward the network hosts that receive a large number of user
requests for their services. This results in the adaptation of agent locations; agents can
improve their response time to user requests.



2.2.1 Natural Immune System The natural immune system adaptively regulates the
body against dynamic environmental changes such as antigen invasions. Through a
number of interactions among various white blood cells (e.g., macrophages and lym-
phocytes such as T-cells and B-cells) and molecules (e.g., antibodies), the immune sys-
tem evokes two responses to antigens: T-cell activation and B-cell activation responses.

In the T-cell activation response, the immune system performs self/non-self discrim-
ination. This response is initiated by macrophages. Macrophages move around the body
to ingest antigens and present them to T-cells. T-cells are produced in thymus though the
negative selection. In this selection process, thymus removes T-cells that strongly react
to the body’s own (self) cells. The remaining T-cells are used as detectors to identify for-
eign (non-self) cells. When a T-cell detects a non-self cell presented by a macrophage,
the T-cell secretes chemical signals to induce the B-cell activation response.

In the B-cell activation response, B-cells are activated by T-cells. Some of the acti-
vated B-cells strongly react to an antigen, and they produce antibodies that specifically
kill the antigen. Antibodies form a network and communicate with each other [4]. This
immune network is formed with stimulation and suppression relationships among anti-
bodies. With these relationships, antibodies dynamically change their populations and
network structure. For example, the population of specific antibodies rapidly increases
following the detection of an antigen and, after eliminating the antigen, decreases again.

The immune system maintains approximately 109 antibodies. B-cells can increase
this repertoire further by mutating and recombining immune gene segments so that
antibodies can bind a massive number of antigens [5].

2.2.2 iNet Artificial Immune System The iNet artificial immune system consists
of the environment evaluation (EE) facility and behavior selection (BS) facility, which
implement the T-cell and B-cell activation responses, respectively (Figure 1). The EE
facility allows an agent to continuously sense a set of current environment conditions as
an antigen and classify the antigen to self or non-self. A self antigen indicates that the
agent adapts to the current environment conditions well, and a non-self antigen indicates
it does not. When the EE facility detects a non-self antigen, it activates the BS facility.
The BS facility allows an agent to choose a behavior as an antibody that specifically
matches with the detected non-self antigen.

The EE facility performs two steps: initialization and self/non-self classification.
The initialization step produces detectors (i.e., T-cells) that identify self and non-self
antigens. Each antigen is represented as a feature vector (X), which consists of a set of
environment conditions, or features, (Fi) and a class value (C): X = (F1,F2, .....,Fn,C).

C indicates whether a given antigen (i.e., a set of environment conditions) is self
(0) or non-self (1). If an agent senses resource utilization and workload (the number
of user requests) on the local host, an antigen is represented like Xcurrent = ((Low :
ResourceUtilization,Low : Workload),0).

The initialization of the EE facility is designed after the negative selection in the
immune system (Figure 2). As the immune system randomly generates T-cells first,
the EE facility generates detectors (feature vectors) randomly. Then, the EE facility
separates the detectors into self detectors, which closely match with self antigens, and
non-self detectors, which do not. This separation is performed via vector similarity
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measurement between randomly generated feature vectors (R) and self antigens (S )
that human administrators supply. After the vector matching, both self and non-self
detectors are stored in the detector table (Figure 2)4.

In self/non-self classification, the EE facility classifies a given antigen to self or
non-self. This is performed with a decision tree built from the detectors in the detector
table. Figure 3 shows an example decision tree. Each node in the tree specifies which
feature (environment condition) is considered. Based on the feature values in a given
antigen, the EE facility travels through tree branches. If the EE facility classifies the
antigen to non-self, it activates the BS facility.

The BS facility selects an antibody (i.e., agent’s behavior) suitable for a detected
non-self antigen (i.e., a set of environment conditions). Each antibody consists of three
parts: a precondition under which it is selected, behavior ID and relationships to other
antibodies. Antibodies are linked with each other using stimulation and suppression
relationships. Each antibody has its own concentration value, which represents its pop-
ulation. The BS facility identifies candidate antibodies suitable for a given non-self
antigen, prioritizes them based on their concentration values, and selects the most suit-

4 The immune system removes non-self detectors through negative selection. However, in iNet,
both self and non-self detectors are used to perform self/non-self classification.



able one from the candidates. When prioritizing antibodies, stimulation relationships
among them contribute to increase their concentration values, and suppression relation-
ships contribute to decrease it. Each relationship has an affinity value, which indicates
the degree of stimulation or suppression.

Figure 4 shows an example network of antibodies. It contains four antibodies, which
represent the migration, replication and death behaviors. Antibody 1 represents the mi-
gration behavior invoked when the distance to users is far from an agent. Antibody 1
suppresses Antibody 3 and stimulates Antibody 4. Now, suppose that a (non-self) anti-
gen indicates (1) the distance to users is far, (2) workload is heavy on the local host
and (3) resource utilization is low on a neighboring platform. This antigen stimulates
Antibodies 1, 2 and 4 simultaneously. Their populations increase, and Antibody 2’s con-
centration value becomes highest because Antibody 2 suppresses Antibody 4, which in
turn suppresses Antibody 1. As a result, the BS facility would select Antibody 2.

As Section 2.2.1 describes, the immune system diversifies antibodies by mutating
immune genes so that antibodies can react to unanticipated antigens. Similarly, iNet
diversifies antibodies via gene operations such as mutation and crossover so that agents
can adapt to unanticipated environment conditions. In iNet, each agent encodes and
possesses its own antibody network configuration (behavior policy) as a set of genes.
When a new agent is born through a replication or reproduction process, it interprets
the genes given by its parent(s) and form an antibody network.

3 BEYONDwork: Agent Development Environment in BEYOND

BEYONDwork is an application development environment for iNet. It provides two
visual modeling DSLs and a textual programming DSL for configuring environment
conditions, detectors and behavior policies. Figure 5 shows the iNet configuration pro-
cess with BEYONDwork. BEYONDwork consists of five facilities: environment con-
figuration facility (Section 3.1), agent behavior configuration facility (Section 3.2), EE
configuration facility (Section 3.3), BS configuration facility (Section 3.4) and code
generator. Each facility except the code generator is a visual or textual development
tool specialized to a certain purpose, i.e., domain-specific model. By providing a se-
ries of modeling/textual DSLs and supporting tools specialized to certain purposes,
BEYONDwork intentionally limits the level of expressiveness of their users (domain
experts). It prevents users from defining invalid models (configurations).

The environment configuration facility allows environment condition designers to
configure environment conditions with a visual DSL. The agent behavior configura-
tion facility allows agent behavior designers to configure agent behaviors (see Section
2.1) with a visual DSL. The EE configuration facility allows agent designers to con-
figure a set of detectors to identify self and non-self antigens (Section 2.2.2) based on
environment conditions configured in the environment configuration facility. The BS
configuration facility allows agent designers to configure their agents’ behavior poli-
cies (antibody configuration) with visual or textual DSLs. Both DSLs have the same
level of expressiveness, and the artifacts of the DSLs (models and programs) are trans-
parently translatable with each other. Agent designers can configure the behavior policy
of each agent through the use of either DSL.



The EE configuration facility and the BS configuration facility are configured to
support environment conditions defined in the environment configuration facility and
agent behaviors defined in the agent behavior configuration facility. Especially, the BS
configuration facility is customized through the notion of Multi-Staged Model Reflec-
tion (MSMR).
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Once environment conditions, agent behaviors, detectors and a behavior policy are
complete in the form of visual models or textual programs, the code generator trans-
forms them to compilable source code by following a transformation rule between the
languages and source code. The transformation rules are implemented by platform de-
velopers, who know the details of platform technologies. (e.g., operating systems, mid-
dleware, simulators and programming languages) Through changing one transforma-
tion rule to another, the code generator can generate source code that are compatible
with different deployment environments such as simulators and real networks. Environ-
ment condition designers and agent designers do not have to write different models/pro-
grams for the same agent running on different platform technologies. This flexible code
generation feature improves the productivity of agent designers. Currently, BEYOND-
work supports Java code generation for a simulator in BEYOND.

3.1 BEYONDwork Environment Configuration Facility

Figure 6 shows an example environment configuration model which defined in the envi-
ronment configuration facility. As Figure 6 illustrates, the visual language visualizes an
environment condition as a rectangle. Each rectangle can contain arbitrary number of
rounded rectangles representing categories of a corresponding environment condition.
For example, in Figure 6, the LocalWorkload environment condition has two categories,
HEAVY and LIGHT. Also, each category specifies a condition to classify a corresponding
environment condition. In iNet, each environment condition is supposed to have one
representative value, e.g., workload or the number of agents, and the representative



value is used to identify the category of a corresponding environment condition. For
example, in Figure 6, the LocalWorkload environment condition is classified as HIGH
when its representative value exceeds 200, otherwise classified as LIGHT.

Fig. 6: BEYONDwork Environment Configuration Facility

The details of representative values, e.g., how and when to obtain the value, are
hidden from environment condition designers and agent designers. Platform developers
implement such details on skeleton code generated by the code generator. For example,
Listing 1.1 is a fragment of Java source code generated from the LocalWorkload envi-
ronment condition in Figure 6. The class edu.umb.inet.simulator.EnvironmentCondition
is a parent class for environment conditions working on a simulator, and it provides
a facility to access to states of a simulator, e.g., a request rate and CPU load. Plat-
form developers implements the getRepValue method by leveraging APIs provided
by edu.umb.inet.simulator.EnvironmentCondition, e.g., returns a request rate, CPU
load, or the summation of them, a representative value of an environment condition is
retrieved and evaluated against conditions specified by each category.

Listing 1.1: An Example Generated Code

1 public class LocalWorkload
2 extends edu.umb.inet.simulator.EnvironmentCondition
3 implements EnvironmentCondition {
4
5 enum Category{ HIGH, LOW };
6 public Category evaluate(){
7 double repValue = getRepValue();
8 if( repValue > 200 ){ return Category.HIGH; }
9 else{ return Category.LOW; }

10 }
11 private double getRepValue(){
12 // TODO: platform developers add code here
13 }
14 }

Figure 7 shows the meta-model of environment configuration models. Any environ-
ment configuration model, e.g., Figure 6, is defined as an instance of this metamodel,



and any subsequent tools, e.g., a metamodel generator for BS configuration facility and
code generator, access environment configuration model through this metamodel.

The metamodel has three metaclasses, EnvironmentConditions, EnvironmentCondition
and Category. EnvironmentConditions represents a set of environment conditions.
This metaclass has no corresponding graphical notation since its instance is an envi-
ronmental configuration model itself. An instance of EnvironmentCondition metaclass
represents an environment condition, e.g., LocalWorkload in Figure 6, and its name at-
tribute is a name of an instance. An instance of EnvironmentCondition metaclass can
contains arbitrary number of instances of Condition metaclasses, which represents a
category of an environment condition. The name attribute is a name of an instance, and
the expression attribute maintains a string representing a condition, e.g., "> 200" in
the Heavy category of the LocalWorkload in Figure 6.

Fig. 7: Metamodel of Environment Configuration Model

The metamodel for environmental configuration models is defined in Eclipse Mod-
eling Framework (EMF; http://www.eclipse.org/emf/), and the environment configura-
tion facility is implemented on Eclipse Graphical Modeling Framework (GMF; http://www.eclipse.org/gmf/).
GMF takes an metamodel defined in EMF as an input, and generate a skeleton for a GUI
application5 which is specialized to the input metamodel.

A transformation from visual models and Java source code running on a simula-
tor is implemented with a model-code transformation engine in openArchitectureware
(oAW; http://www.openarchitectureware.org/), an open-source MDD tool. Listing 1.2
is a fragment of the transformation rule.

Listing 1.2: A Fragment of Transformation Rule

1 <<DEFINE ExpandEnvCondition FOR EnvironmentCondition >>
2 <<FILE name + ".java">>
3 public class <<name>>
4 extends edu.umb.inet.simulator.EnvironmentCondition
5 implements EnvironmentCondition {
6
7 enum Category{
8 <<EXPAND RetrieveCategoryName FOREACH (List[Category])ownedAttribute >> };
9 public Category evaluate(){

10 double repValue = getRepValue();
11 <<EXPAND ExpandCondition FOREACH (List[Category])ownedAttribute >>
12 }
13 ...
14 }
15 <<ENDFILE>>

5 Application developers need to define notations for each metamodel elements by hand



16 <<ENDDEFINE >>
17
18 <<DEFINE RetrieveCategoryName FOR Category >>
19 <<name>>,
20 <<ENDDEFINE >>
21
22 <<DEFINE ExpandCondition FOR Category >>
23 // transform a category to a if statement
24 // according to its condition
25 <<ENDDEFINE >>

A rule for a certain metaclass is defined by the keyword DEFINE with the rule’s
name (line 1). Each instance of EnvironmentCondition is transformed into a Java class
of which name is the same as the instance’s name. (<<name>> will be replaced with
a name of an instance.) A Java enumeration type is defined according to categories
defined in a environment condition (line 7). The enumeration type is completed by
calling the RetrieveCategoryName rule (defined from line 18 to 20) and set the names
of categories as its elements. The evaluate() method is also completed by calling the
ExpandCondition rule on each categories.

By changing a rule to apply, e.g., rules for different platform technologies, an appro-
priate code is generated without changing an input environment configuration model. It
makes easy to reuse an input model and implement applications on different platform
technologies.

3.2 BEYONDwork Agent Behavior Configuration Facility

Figure 8 shows an example agent behavior configuration model which defined in the
environment configuration facility. As Figure 8 illustrates, the visual language visu-
alizes an agent behavior as a rectangle. Each rectangle can contain arbitrary num-
ber of rectangles representing parameters of a corresponding agent behavior. For ex-
ample, in Figure 8, the Reproduction behavior has three parameters, mutationRate,
partnerSelectionPolicy and crossoverPolicy. Each parameter consists of its name
and data type. The agent behavior configuration facility allows defining enumeration
types, e.g., PartnerSelectionPolicy in Figure 8

Fig. 8: BEYONDwork Agent Behavior Configuration Facility

Figure 9 shows the meta-model of agent behavior configuration models. The meta-
model consists of four metaclasses, Behaviors, Behavior, Parameter and Enumeration.
Behaviors represents a set of behaviors, i.e., agent behavior configuration model itself.
An instance of Behavior metaclass represents an agent behavior, e.g., Reproduction in



Figure 8, and it can contain arbitrary number of instances of Parameter metaclasses,
which represents parameters.

Fig. 9: Metamodel of Behavior Configuration Model

As well as the environmental configuration facility, the metamodel for agent behav-
ior configuration models is defined in EMF and the agent behavior configuration facility
is implemented on GMF.

3.3 BEYONDwork EE Configuration Facility

Figure 10 shows the EE configuration facility appears as one of windows in BEYOND-
work, located below the BS configuration facility (Figure 12). Each column in the table
represents an environment condition configured in the environment configuration facil-
ity (Section 3.1) and each row represents a detector. The EE configuration facility allows
agent designers to add and remove detectors, and configure detectors by selecting the
categories of each environment condition. For example, in Figure 6, the NumOfAgents
environment condition is configured to have three categories, MANY, MID and FEW, and
cells in the corresponding column in Figure 10 allows agent designers to select its value
from MANY, MID and FEW. From a set of detectors, BEYONDwork automatically create a
decision tree and deploys it in agents (see Section 2.2.2).

Fig. 10: BEYONDwork EE Configuration Facility

The EE configuration facility configures itself, i.e., names of columns and values
each sell can select, by retrieving information on environment conditions and their cat-
egories from an environment configuration model defined in the environment configu-
ration facility (Section 3.1) through the use of the metamodel of environment configu-
ration model (Figure 7).



3.4 BEYONDwork BS Configuration Facility

Figure 12 and 13 show the visual modeling and textual programming environments in
the BS configuration facility, respectively. They are configured to support environment
conditions defined in the environment configuration facility (Section 3.1) and agent be-
haviors defined in the agent behavior configuration facility (Section 3.2) through the no-
tion of MSMR, i.e., an environment configuration model and an agent behavior model
are used as a part of the metamodel in the BS configuration facility (Figure 11). This
mechanism allows users, even domain experts, to customize a DSL without knowing
the details of the DSL’s metamodel.
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Fig. 11: Multi-Staged Metamodel Reflection in BEYONDwork

As Figure 12 illustrates, the visual language visualizes an antibody as a rounded
rectangle. Each rectangle consists of three compartments: (1) the name and the initial
concentration of an antibody, (2) an environment condition to which an antibody reacts,
and (3) an agent behavior and its properties. For example, in Figure 12, AntibodyA’s ini-
tial concentration value is 5, and it represents the reproduction behavior. The behavior is
invoked when LocalWorkload is high. A stimulation/suppression relationship between
antibodies is visualized as an solid arrow between rounded rectangles. Each arrow has
value, which represents affinity value of a relationship. As Figure 12 demonstrates, the
visual language supports all the concepts in antibody configurations as built-in model
elements, and agent designers can configure antibodies (agent behavior policies) in an
intuitive and rapid manner.

In the textual language (Figure 13), each antibody is defined with the built-in key-
word antibody. The program in Figure 13 and the model in Figure 12 define the se-
mantically same antibody configuration. As Figure 13 shows, the textual programming
environment in BEYONDwork shows built-in keywords in boldface, automatically per-
forms a syntax check, and reports syntax errors while antibody designers configure an-
tibodies. In Figure 13, a syntax error is reported as a cross mark. (The textual language
does not support keyword energylevel but EnergyLevel because of the environment
conditions defined in Figure 6.)

Listing 1.3 is a fragment of Java source code generated from the visual model or
textual program in Figure 12 or 13.



Fig. 12: Visual Modeling Environment in BEYONDwork BS Conf. Facility

Listing 1.3: An Example Generated Code

1 void setupAntibodiesOfINet(){
2 Antibody antibodyA =
3 new Antibody( "AntibodyA", 5, LocalWorkload.HIGH,
4 new Reproduction(
5 2.3, CROSSOVER.FITNESSBASED , PARTNER.FITNESSBASED ) );
6 Antibody antibodyD =
7 new Antibody( "AntibodyD", 1, EnergyLevel.HIGH,
8 new Migration( DirectionPolicy.USER ) );
9

10 ImmuneNetwork inet = getImmuneNetwork();
11 inet.add( antibodyA );
12 inet.add( antibobyD );
13 antibodyA.addAffinity( antibodyD , 5.3 );
14 }

Without the BS configuration facility, agent designers need to know the details on
how to implement agents in Java (e.g., how to define new agents, where to imple-
ment antibody configuration code, and which iNet API to use.) For example, agent
designers need to define a new class extending the Agent class provided by a simu-
lator in BEYOND. Also, as the above code fragment shows, they need to write the
setupAntibodiesOfINet() method using iNet API in order to configure the agent’s an-
tibodies. The visual and textual DSLs hide these implementation details and allow agent
designers to focus on the design of antibody configurations. In addition, compared with
the Java code shown above, a model or program in the BS configuration facility is easier
to read and understand.

Figure 14 shows a metamodel of BS configuration model which is partly generated
from an environment configuration model in Figure 6. The metamodel consists of five
generic metaclasses, i.e., AntibodyNetwork, Antibody, Affinity, EnvironmentCondition



Fig. 13: Textual Programming Environment in BEYONDwork BS Conf. Facility

and Behavior, and four metaclasses for certain behaviors, i.e., Reproduction, Replication,
Migration and Death.
AntibodyNetwork represents an antibody network, and its instance is an behav-

ior policy itself, e.g., Figure 12. Antibody represents an antibody, and the name and
initialConcentration attributes are its name and the initial concentration value re-
spectively. Affinity represents an affinity between Antibodys, i.e., the direction and
the affinity value. EnvironmentCondition represents an environment condition when
an antibody invoking its behavior. As described in Section 3.1, the envionment configu-
ration facility defines an envronment configuration model; what environment conditions
exist, e.g., LocalWorkload, and what categories each environment condition has, e.g.,
HEAVY and LIGHT. According to an environment configuration model, two enumeration
types, i.e., Environment and Category are automatically generated through the notion
of MSMR. These two enumeration types are used to configure the visual modeling en-
vironment (Figure 12), and allows agent designers to configure antibodys’ environment
conditions.
Behavior is a parent metaclass of all agent behaviors. In order to introduce a new

agent behavior, administrators define a metaclass representing the new behavior by
inheriting the Behavior metaclass. Addition/Customization of new behaviors is per-
formed through a MSMR from an agent behavior model to a metamodel in the BS con-
figuration facility. Reproduction, Replication, Migration and Death metaclasses are
automaitcally generated from an agent behavior model in Section 3.2. Each represents
reproduction, replication, migration and death behaviors respectively (see Section 2.1).
Reproduction invokes a reproduction behavior with its mutationRate, partnerSelectionPolicy
and crossoverPolicy attributes. Replication invokes a replication behavior. Migration
invokes a migration behavior with its directionPolicy attribute. Death invokes a death
behavior.

The visual modeling and textual programming facilities are implemented on GMF
and oAW respectively. The transformations from visual model/textual programs to Java



Fig. 14: Metamodel of BS Model

source code are implemented with a model-code transformation engine in oAW as well
as the environment configuration facility. MSMR, a model transformation from an en-
vironment configuration model and an agent behavior model to a metamodel in the
BS configuration facility, is implemented with a model-model transformation engine in
oAW.

The BS configuration facility allows agent designers to not only configure an an-
tibody configuration (behavior policy) from scratch, but also investigate and fine tune
existing antibody configurations in running agents. In iNet, antibody configurations are
evolved automatically via genetic operations (see Section 2.2.2). The BS configuration
facility helps agent designers to understand evolved antibody configurations by showing
it in a visual manner, and experienced agent designers can fine-tune them by hand.

4 Related Work
Several researches have investigated model-driven development techniques for auto-
nomic computing based on UML, i.e., a general-purpose modeling language [6–9].
Their model tends to be complicated and not easy for application administrators to
use. [10] proposes an XML-based language, called Autonomic Computing Policy Lan-
guage (ACPL), to describe policies for autonomic computing. ACPL is designed as
a general-purpose policy language. For example, it provides Condition and Action
tags to describe a condition and an action to take. It can describe any types of policies,
but not specialized to certain mechanisms. As well, [11] allows describing pairs of an
environment condition and an action through the use of general-purpose textual policy



language. The proposed visual DSLs make it easy to understand, define and maintain
policies (i.e., agent behavior policies) in autonomic applications rather than general-
purpose policy languages.

There are several DSLs to model biological systems such as biochemical networks
for simulating and understanding biological systems (e.g., [12, 13]). However, the ob-
jective of the DSLs in BEYONDwork is different from theirs; DSLs in BEYONDwork
aim to model biological (immunological) mechanisms for building autonomous and
adaptive network applications. This work is the first attempt to investigate a DSL for
biologically-inspired networking.

[14] provides a DSL, called J2EEML, to configure QoS aspects of Enterprise Java
Beans such as response time and message scheduling algorithms in a visual manner.
It assumes a stable domain-specific metamodel, and do not address the issue of cus-
tomization of DSLs, i.e., do not provide means to customize metamodels. BEYOND-
ware allows application administrators not only to use DSLs to model policies, but also
to customize DSLs through the notion of Multi-Staged Model Reflection (MSMR).
This mechanism allows even application administrators to customize DSLs to reflect
the changes in the semantics of domain concepts.

[15] proposes a technique, called Metamodel Composition, to extend domain-specific
metamodels by reusing and combining existing domain concepts through inheritance.
It aims to provide a set of operators to extend domain-specific metamdoels without
changing existing metamodels in order to avoid invalidating existing models that com-
forms to the existing metamodels. The objective of MSMR is different from metamodel
composition; MSMR aims to customize domain-specific metamodels through the use
of domain-specific models. BEYONDwork currently changes a domain-specific meta-
model directly and does not consider the reuse of existing metamodels, however, meta-
model composition can be used as a strategy to customize a domain-specific metamodel
in BEYONDwork.

A model transformation from a lower-level (e.g., model) to a higher-level (e.g.,
metamodel) is called promotion. [16] leverages this technique to create a new domain-
specific metamodel from a model, but they uses a general-purpose modeling language to
describe a model that to be promoted to a metamodel. MSMR also leverages promotion,
but uses a DSL to customize other DSLs. It simplifies the customization of DSLs and
allows even application administrators to customize DSLs.

5 Conclusion

BEYONDwork is an MDD environment to reduce the complexity for designing and
maintaining the operational policies in autonomic network applications. It provides (1)
visual and textual DSLs to graphically model the operational policies in biologically-
inspired autonomic network applications, and (2) a supporting tool that validates the
operational policies defined in the proposed DSLs and transform them to program code.
BEYONDwork enables rapid and intuitive configuration of operational policies. In ad-
dition, BEYONDwork addresses an issue in DSLs: low flexibility for customization.
Through the notion of Multi-Staged Model Reflection (MSMR), it allows users (even
non-programmers) to graphically customize DSL’s grammar (or metamodel).
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