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Abstract
Traditional Model Driven Development (MDD) frameworks have three critical is-
sues: (1) abstraction gap between modeling and programming layers, (2) a lack
of traceability between models and programs, and (3) a lack of customizability
to support various combinations of modeling technologies and implementation/de-
ployment technologies. In order to address these issues, this chapter proposes a
new MDD framework, called Matilda, which is a framework to build execution
runtime engines (or virtual machines) for software models. It directly executes
models defined with certain modeling technologies such as UML and BPMN by
automatically transforming them to executable code. Matilda is designed based on
the Pipes and Filters architectural pattern, which allows for configuring its struc-
ture and behavior flexibly by replacing one plugin with another one or changing
the order of plugins. Also, plugins can be deployed on multiple network hosts and
seamlessly connect them to form a pipeline. This facilitates distributed software de-
velopment in which developers collaboratively work at physically dispersed places.
This chapter overviews Matilda’s architectural design, describes the implementa-
tions of Matilda-based virtual machines, and evaluates their performance.

Introduction

Software modeling has advanced to the point where it can offer significant leverage to manage
complexity and improve productivity in software development. A driving force in this advance is a
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series of mature modeling technologies. For example, the Unified Modeling Language (UML) pro-
vides a wide range of modeling notations and semantics used in various types of applications (UML
Super Structure Specification 2.1.2, 2007). The Business Process Modeling Notation (BPMN) pro-
vides a set of well-defined notations and semantics for business process modeling (Business Process
Modeling Notation (BPMN) 1.0, 2004). UML and BPMN allow developers to specify and commu-
nicate their application designs at a high level of abstraction. Using these modeling technologies,
the notion of model-driven development (MDD) aims to graphically build application design models
and transform them into running applications.

A key process in MDD is automated (or semi-automated) transformation of implementation-
independent models to lower-level models (or application code) specific to particular implemen-
tation/deployment technologies such as programming languages, databases, middleware and busi-
ness process engines (Booch, Brown, Iyengar, Rumbaugh, & Selic, 2004; Sendall & Kozaczynki,
2003). Traditional MDD frameworks allow developers to model their applications with modeling
languages such as UML and BPMN, generate skeleton code in a programming language such as
Java, and manually complete the generated skeleton code by, for example, adding method code
(Figure 1). There exist three critical research issues in traditional MDD frameworks: (1) abstraction
gap between modeling and programming layers, (2) a lack of traceability between models and pro-
grams, and (3) a lack of customizability to support various combinations of modeling technologies
and implementation technologies.

The first issue is that, when programmers complete generated skeleton code to the final (com-
pilable) code, they often suffer from abstraction gap between modeling and programming layers be-
cause the granularity of skeleton code is usually much finer than that of models. Skeleton code tends
to be complicated to read and maintain. Thus, it is hard for programmers to obtain a broad view of
an application design, and they have to repeatedly go up and down abstraction gap to identify where
to implement what in skeleton code.

The second issue is that models tend to lose synchronization with programs through devel-
opment process. For example, when programmers find bugs or design/implementation alternatives
in the final (compilable) code, they often change the code directly rather than models. As a re-
sult, the program code becomes untraceable from models. Due to the above two issues, traditional
MDD frameworks do not maximize the benefits of modeling application designs at a higher level of
abstraction than programming layer.

The third issue in traditional MDD framework is that they often lack generality to support a
variety of choices in modeling technologies and lack customizability to tailor model transformation
and code generation according to the implementation/deployment technologies used in application
development. This degrades reusability and longevity of application models; it is often hard to
evolve application models for a long time by, for example, introducing new modeling technologies
and changing implementation/deployment technologies.

This chapter describes and evaluates a new MDD framework, called Matilda, which addresses
the three issues described above. Matilda is a generic framework to build execution runtime engines
(or virtual machines) for various types of software models. Each virtual machine (VM) accepts and
directory executes models defined with certain modeling technologies such as UML and BPMN
through automatically transforming them to executable code (Figure 2). Matilda addresses the ab-
straction and synchronization issues by hiding the existence of source code from developers. Using
Matilda, developers analyze, design, test, deploy and execute their applications consistently at the
modeling layer, rather than shifting between the modeling and programming layers (Figure 2). Each
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Figure 1. Traditional MDD Process
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Figure 2. Development Process with Matilda

Matilda-based VM accepts a model as an input, validates it against its metamodel, and transforms
the input model to an implementation/deployment specific model by applying a given transforma-
tion rule (Figure 2). Matilda allows developers (model transformation engineers in Figure 2) to
define arbitrary transformation rules, each of which specifies how to specialize an input model to a
particular implementation/deployment technology. For example, a transformation rule may special-
ize an input model to a database, while another rule may specialize it to a remoting middleware.

Matilda addresses the customizability issue with its architectural design using a pipeline of
plugins. Different plugins implement different functionalities in Matilda, such as visualizing, val-
idating and transforming models. The pipeline architecture allows Matilda to flexibly customize
its structure and behavior by replacing one plugin with another or changing the order of plugins.
Also, Matilda’s pipeline can be distributed over the network. Matilda can spread plugins to multiple
network hosts and seamlessly connect them to form a pipeline. This enables distributed software de-
velopment in which developers can collaboratively build, integrate and execute models at physically
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dispersed places.

Currently, Matilda provides two different VMs: UML-VM and SOA-VM. UML-VM accepts
UML 2.0 class and sequence diagrams, validates them against the UML metamodel, transforms
them to a JAST (Java Abstract Syntax Tree), generates Java bytecode and runs the generated code
on a Java VM (JVM). SOA-VM accepts BPMN and UML sequence diagrams, validate them against
the BPMN and UML metamodels, transforms a BPMN diagram to a UML class diagram, transforms
UML diagrams to JAST, generates Java bytecode and a deployment descriptor in Business Process
Execution Language (BPEL) (Web Services Business Process Execution Language, 2003), and runs
the generated code on a BPEL engine.

This chapter overviews the design and implementation of Matilda, describes how UML-VM
and SOA-VM are built on Matilda, evaluates their performance, and concludes with some discussion
on related and future work.

Design Principles in Matilda

Matilda is designed based on the following principles.

1. Avoidance of Round-Tripping. In order to address the abstraction and synchromization
issues, Matilda inherently avoids the round-trips between models and source code by hiding the
existence of source code from developers. All bug fixes and design changes are directly made on
models instead of source code (Figure 2).

2. Metamodel-Driven. Matilda performs all of its functionalities in a metamodel-driven
manner. For example, UML model validation is performed against the UML metamodel, and JAST
generation is performed with a metamodel of Java program elements. By following metamodels
consistently, plugins in Matilda avoid to perform their functionalities ambiguously. Matilda repre-
sents UML, BPMN and Java metamodels as a set of objects (APIs), and aids its plugins to implement
their functionalities on a metamodel basis.

3. Modularity and Loose Coupling. Matilda is designed to maximize the reusability of
plugins by making them modular and loosely coupled. Matilda decomposes its functionalities into
independent processing units and implements them as plugins. The functionality of each plugin
does not depend on other plugins.

4. Configurability. Matilda is intended to be used in a variety of development projects; from
in-house development, distributed open-source development to off-shore development. Different
projects use different sets of plugins in different orders. For example, a project may require a
plugin for generating Java bytecode, and another project may require a plugin for generating BPEL
deployment descriptors as well as a Java bytecode generation plugin. Therefore, Matilda is designed
to make pipelines configurable and extensible. It defines common APIs for pipelines and plugins so
that each developer can choose plugins and configure a pipeline of the plugins. Matilda also allows
developers to implement new plugins with its plugin API.

5. Transparent Distribution. Matilda supports distributed execution of plugins for dis-
tributed software development. Different plugins can run on different hosts in the network. For
example, the plugins for model visualization and validation can run at a place, and the plugins for
code generation can run at a different remote place. Plugins can be transparently distributed; each
of them does not have to know whether others reside on the same host.
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The Architecture of Matilda

There are four roles of users who involve in development process with Matilda. A modeler,
or application developer, builds application design models (M1 models) and load them to Matilda
(Figure 2). A metamodel engineer builds and/or registers metamodels (M2 models) including the
UML metamodel, UML profiles and BPMN metamodel. A plugin engineer develops and registers
plugins. A transformation engineer is a special type of plugin engineer, who defines transformation
rules and implements them as plugins (Figure 2). A VM maintenance engineer is responsible for
customizing a pipeline for a given VM.

The pipeline architecture of Matilda is designed based on the Pipes and Filters architectural
pattern (Buschmann et al., 1996; Vermeulen, Beged-Dov, & Thompson, 1995). This pattern defines
a system architecture to process data streams. The task of a system is divided into several processing
steps. These steps are connected along with a data flow in the system; an output data in a step
becomes an input to a subsequent step. Each processing step is implemented as a filter, and filters are
connected with pipes. The Pipes and Filters pattern is well applicable when a system can naturally
decompose its data processing task into independent steps and the task is likely to change over time.
This pattern increases the reusability of filters, and allows a system to be flexible for exchanges and
recombinations of filters (Buschmann et al., 1996).

In Matilda, each plugin works as a filter and implements an individual step in an application
development (Figure 3). For example, a model loader plugin accepts a UML model in the format
of XML Metadata Interchange (XMI) (MOF 2.0 XMI Mapping Specification, 2007), a model vali-
dation plugin validates a UML model against the UML metamodel, and a JAST generation plugin
transforms a validated UML model to a JAST. A pipeline contains one or more plugins on each
network host, and multiple pipelines form a distributed, composite pipeline over multiple hosts
(Figure 3). Each pipeline downloads required plugins form a plugin repository and connects them
based on a configuration file that a VM maintenance engineer defines. The configuration file speci-
fies plugins used in a pipeline and their execution order. Plugins can be executed sequentially or in
parallel. Each plugin operates on the Matilda runtime, which operates on a JVM.

Network Hosts

Blackboard ServerBlackboard

plugins

Plugin Repository
Download& InstallRead & Write

Matilda RuntimeJava RMIJava VMMatilda RuntimeJava RMIJava VM Matilda RuntimeJava RMIJava VMMatilda RuntimeJava RMIJava VM Matilda RuntimeJava RMIJava VMMatilda RuntimeJava RMIJava VM
PipelineDistributed Pipeline

Figure 3. The Behavioral Architecture of Matilda

The Pipes and Filters pattern often lacks robust error handling because multiple asynchronous
threads of execution does not share the global system state (Buschmann et al., 1996). In order
to overcome this issue, Matilda implements a shared repository, called blackboard, based on the
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Blackboard architectural pattern (Figure 3) (Buschmann et al., 1996). This pattern is organized as
a collection of independent processing units that work cooperatively on common data structures.
Each processing unit specializes to process a particular part of the overall task. It fetches data from
a blackboard, and stores a result of its data processing to the blackboard.

In Matilda, a blackboard stores data that each plugin generates (e.g., UML models and
JASTs), and makes the data available to subsequent plugins (Figure 3). It also stores a process-
ing log in each plugin (e.g., successful completion, errors, warnings and time stamp) in order to
trace the processing status in a pipeline. In Matilda, data flow between a blackboard and plugins,
and processing control flows between pipelines (Figure 3).

Figure 4 shows the structural architecture of Matilda. Matilda consists of its kernel and
plugins. The kernel is responsible for low-level house-keeping functionalities required to operate
plugins. Matilda-based VMs are defined and deployed on Matilda by choosing particular plugins in
particular configurations. Currently, Matilda’s codebase contains 18,294 lines of Java code, which
implements Matilda, UML-VM and SOA-VM.Application Models(in UML and BPMN)Application Models(in UML and BPMN)UML-VMUML-VMMatilda-based VMs SOA-VMSOA-VMMatilda PluginsPluginsMatilda Kernel

Matilda RuntimePipeline Blackboard PluginRepository
Figure 4. The Structural Architecture of Matilda

Matilda Kernel

Matilda’s kernel consists of Matilda runtime, pipeline, blackboard and plugin repository.
Figure 5 shows the class structure of Matilda’s kernel. The class Runtime instantiates and configures
Pipeline according to a given pipeline configuration file. The class Pipeline contains a set of
plugins. They are defined as subclasses of the abstract class Plugin, which provides the methods
to access a blackboard (readFromBB() and writeOnBB()). A Pipeline executes plugins by calling
their execute()methods; each plugin implements its own functionality in execute(). The interface
Blackboard defines the methods to read/write data from/on a blackboard.

The Matilda runtime (Runtime) configures a Pipeline by loading a pipeline configura-
tion file with Config::LoadFile(). Config and PluginConfig maintain the configuration at
runtime. Listing 1 shows an example pipeline configuration file that defines a sequential ex-
ecution of four plugins. Each plugin’s name and class file are specified with the plugin and
class tags, respectively. For example, a plugin called Model Loader is implemented by the class
matilda.plugins.frontend.ModelLoader. The parameter tag defines a set of parameters passed
to a plugin. The name attribute specifies the name of a parameter. The parameters in the pipeline
tag are passed to all plugins, while the parameters in the plugin tag are passed only to a plugin that
is designated by the plugin tag. For example, the parameter uml2resource can be referred by all
plugins; however, the parameter modelpath can be referred only by Model Loader. Once a Runtime
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java.rmi.server.UnicastRemoteObject
+execute( parameters : Map )+readFromBB( id : String ) : String+writeOnBB( id : String, data : Data )+setBlackboard( bb : Blackboard )Plugin

+getName() : String+getClassName() : String+getParameter( id : String ) : StringPluginConfig+LoadFile( path : String )+getParameter( id : String ) : String+getPlugins() : PluginConfig [0..*]+getBlackboardURL() : String+getRepositoryURL() : StringConfig

+write( id : String, data : Data )+read( id : String ) : DataBlackboard
+main( args : String [0..*] )BlackboardRemote

+main( args : String [0..*] )Runtime
java.io.Serializable

BlackboardProxy -data : SerializableObjectData
PipelineRemotePipelineProxy

+serialize()+deserialize()Data
+start()Pipeline

remote access
-plugins 0..* -blackboard

-plugins0..*-config
remote access

Figure 5. A Class Structure of Matilda’s Kernel

configures a Pipeline, the Pipeline downloads required plugin class files from a plugin repository
and execute them.

Listing 1 A Pipeline Configuration File
1 <pipeline >
2 <parameter
3 name="uml2resource">jar:file:org.eclipse.uml2.uml.resources_2.0.2.jar!/</parameter >
4
5 <plugin name="Model Loader">
6 <class>matilda.plugins.frontend.ModelLoader </class>
7 <parameter name="modelpath">models/model.uml2</parameter >
8 </plugin>
9

10 <plugin name="Class to JAST Transformer">
11 <class>matilda.plugins.backend.CD2JASTTransforder </class>
12 </plugin>
13
14 <plugin name="Sequence to JAST Transformer">
15 <class>matilda.plugins.backend.SD2JASTTransformer </class>
16 </plugin>
17
18 <plugin name="Java Executor">
19 <class>matilda.plugins.backend.JavaExecutor </class>
20 <parameter name="args">-h</parameter >
21 </plugin>
22 </pipeline >

In Matilda, Pipeline and Blackboard are defined as interfaces with Java Remote Method
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[plugins]loop
[nextPipeline]opt start (via Proxy)

getPlugins execute readFromBB (via Proxy)writeOnBB (via Proxy)
LoadFile start

Figure 6. Interactions among Pipeline, Plugins and Blackboard

Invocation (RMI) so that plugins can be distributed over the network. The two inter-
faces define remotely-accessible methods, and its implementation classes (PipelineRemote and
BlackboardRemote) implement the interface methods. PipelineProxy and BlackboardProxy hide
remoting details in Java RMI and provide location transparency for callers/clients for Pipeline and
Blackboard, respectively. (These proxy classes are generated by Java RMI.)

Plugins are implemented as regular Java classes and contained in a pipeline. Then, the
pipeline allows plugins to communicate with a blackboard. This design hides remoting details
from plugins, and plugin developers do not need to know them. It makes it easy to develop and
deploy plugins.

Figure 6 shows how kernel components interacts with each other. A pipeline executes its
contained plugins one by one by calling their execute() methods. When it calls execute() on a
Plugin, it passes a set of configuration parameters as the method’s argument. According to the
parameters, the Plugin downloads necessary data from a blackboard, process the data and write
processed data to the blackboard. When all plugins are executed in a pipeline, the pipeline calls
start() on another pipeline running on another network host if multiple pipelines are connected
over the network.

Matilda UML Virtual Machine (UML-VM)

This section describes a Matilda-based VM for UML models, called UML-VM. UML-VM
accepts UML 2.0 class and sequence diagrams, validates them against the UML metamodel, trans-
forms them to a JAST (Java Abstract Syntax Tree), generates Java bytecode and runs the generated
code as a command-line application on a Java VM (JVM). UML-VM is built with a set of plugins
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as well as the Matilda UML VM profile.

Matilda UML VM Profile

The Matilda UML VM profile is a UML profile that provides modeling conventions to build
input UML models and run them as Java bytecode. A UML profile is an extension to the stan-
dard UML metamodel. The UML metamodel specifies the syntax (or notation) and semantics of
every standard (default) model element (e.g., class, interface and association) (UML Super Struc-
ture Specification 2.1.2, 2007). In addition to standard model elements, UML provides extension
mechanisms (e.g., stereotypes and tagged-values) to specialize the standard model elements to pre-
cisely describe domain or application specific concepts (Fuentes & Vallecillo, 2004). A stereotype
is applied to a standard model element, and specializes its semantics to a particular domain or ap-
plication. Each stereotyped model element can have data fields, called tagged-values, specific to
the stereotype. Each tagged-value consists of a name and value. A particular set of stereotypes and
tagged-values is called a UML profile. The Matilda UML VM profile defines a set of stereotypes
and tagged-values to precisely describe computationally-complete1 UML models for Matilda.

In Matilda, a UML input model is defined as a set of UML 2.0 class diagrams and sequence
diagrams. Class diagrams are used to define the structure of an application, and sequence diagrams
are used to define its behavior. Each sequence diagram specifies the body of a method (operation).
The model elements in a class diagram are mapped to structural elements in a Java program, such
as Java types, generalization (inheritance) relationships, data fields and method declarations. The
model elements in a sequence diagram are mapped to behavioral elements in a Java program, such
as object instantiations, value assignments, method calls and control flows.

The Matilda UML VM profile defines two types of stereotypes: (1) stereotypes for ap-
plication semantics and (2) stereotypes for Java mapping. Figure 7 shows the stereotypes for
application semantics. A message stereotyped with �UMLVMarrayelement� represents an ar-
ray access (i.e., data retrieval or insertion on an array). Its tagged-value index specifies the ar-
ray index where data retrieval or insertion is performed (Table 1). The tagged-value element
specifies a data element to be inserted to an array (Table 1). A message or comment stereo-
typed with �UMLVMexpression� has Java expressions or statements. A class stereotyped with
�UMLVMexecutable� indicates an entry point at which a model execution starts. The class must
contain a main method (public static void main (String[])). Each application has only one
class stereotyped with�UMLVMexecutable�. UML 2.0 metamodel

Matilda UML VM Profile

<<metaclass>>BasicInteractions::Message
<<stereotype>>UMLVMarrayelement+ index : Integer+ element : String

<<metaclass>>Kernel::Class<<metaclass>>Kernel::Comment
<<stereotype>>UMLVMexecutable<<stereotype>>UMLVMexpression

Figure 7. Stereotypes for Application Semantics

1“Computationally complete” means sufficiently expressive so that Matilda can interpret and execute models.
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Table 1: Tagged-values of�UMLVMarrayelement�

Name Type Description
index Integer Index of an array element to be accessed (retrieved or inserted). Must be

between 0 and (array size – 1).
element String If null is assigned, array access is data retrieval. Otherwise, it is data inser-

tion. Represents a variable that contains an element to be inserted.

abcInc: Corporation employees: Engineer[]
: Engineeremp = new Engineer()

<<UMLVMarrayelement>>{index = currIndex, element = emp}

<<create>>

<<UMLVMexpression>>currIndex++;
Figure 8. An Example Sequence Diagram using the Matilda UML VM profile

Figure 8 shows an example sequence diagram defined with the Matilda UML VM pro-
file. abcInc (an instance of Corporation) creates a new instance of Engineer, and inserts the
new Engineer instance into the array engineers (an array of Engineers). A message stereotyped
with �create� indicates that the message instantiates a class2. For data insertion on the array
engineers, a message stereotyped with �UMLVMarrayelement� specifies that abcInc inserts an
Engineer instance (contained in the variable emp) to the array at the index of currIndex. At the
end, abcInc increments currIndex by using a comment stereotyped with�UMLVMexpression�.

The Matilda UML VM profile also defines a stereotype and five tagged-values to spec-
ify a mapping between UML models and Java programs (Table 2). A class stereotyped with
�JavaInterface� represents a Java interface. JavaStrictfp indicates whether a Java class is
FP-strict. If it is true, all float and double values in the class are used in the IEEE standard float/dou-
ble size during floating point calculation. JavaStatic indicates whether a class/interface is static in
Java. JavaDimensions specifies the number of array dimensions declared by corresponding field or
parameter in Java. JavaFinal indicates whether a parameter is final in Java.

Table 2: Tagged-values in the Matilda UML VM profile

Name Type Applied To Description
JavaStrictfp Boolean Class Indicates a class is FP-strict.
JavaStatic Boolean Class or Interface Indicates a class/interface is

static.
JavaDimensions Integer Property or Parameter Indicates the number of array

dimensions.
JavaFinal Boolean Parameter Indicates a parameter is final.

2The stereotype �create� is one of the standard stereotypes defined in the UML 2.0 specification. The UML
notation of a message is an arrow in a sequence diagram.
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Plugins in Matilda UML Virtual Machine

UML-VM consists of 10 plugins: model loader, UML metamodel validator, Matilda UML
VM profile class diagram (CD) validator, Matilda UML VM profile sequence diagram (SD) valida-
tor, Integrated diagram validator, CD2JAST transformer, SD2JAST transformer, JAST validator,
JAST2Bytecode transformer and Java executor. Plugins are categorized into two groups: frontend
and backend. Frontend plugins are used to validate UML models, and backend plugins are used
to transform validated UML models to Java bytecode through JASTs. Figure 9 shows the class
structure of plugins in UML-VM. All plugins implement the Plugin interface. UML-VM provides
extra interfaces (ModelLoader, Validator and Transformer) to indicate common functionalities in
plugins.

Plugin

+execute( Map parameters )
+readFromBB( id : String ) : String
+writeOnBB( id : String, data : Data )
+setBlackboard( bb : Blackboard )

JAST2BytecodeTransformer

IntegratedDiagramValidator

UML2MetamodelValidator

MatildaProfileCDValidator

MatildaProfileSDValidator

CD2JASTTransformer

SD2JASTTransformer

Transformer

+transform()

JASTValidator

+load()

ModelLoader

JavaExecuter

Validator

+validate()

Figure 9. Class Structure of Plugins in Matilda UML VM

UML-VM accepts a UML model as an input in two ways: using UML-VM’s modeling GUI
or third-party modeling tools. UML-VM provides a modeling GUI, which allows developers to
define UML class diagrams and sequence diagrams (Figures 10(a) and 10(b)). The modeling GUI
serializes a UML model into XMI data and writes it to a blackboard (Figure 11). It is implemented
with the Eclipse Rich Client Platform (RCP), and runs on the Eclipse platform. A model loader is
a plugin used to read XMI data from third-party modeling tools and store the data in a blackboard
(Figure 11).

Each input UML model is validated with four validators: UML metamodel validator, Matilda
UML VM profile CD validator, Matilda UML VM profile SD validator and Integrated diagram
validator. A UML metamodel validator validates an input UML model against the UML metamodel
using the UML2Validator class provided by Eclipse UML23. A Matilda UML VM profile CD/SD
validator validates an input model against the Matilda UML VM profile. These validation steps are
intended to determine whether an input model is ready to be transformed to a JAST. An integrated
diagram validator examines the consistency between a class diagram and sequence diagrams. Its
major responsibility is to validate that sequence diagrams are defined for all methods of each class.

Listing 2 shows a code fragment of Matilda UML VM profile CD validator. The plugin
reads an UML model from a blackboard and executes its validation process. It examines whether
the model is compliant with the Matilda UML VM profile. For example, it validates that a model
element stereotyped with�UMLVMexecutable� is a class that has a main method.

3http://www.eclipse.org/uml2
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(a) Class Diagram (b) Sequence Diagram
Figure 10. Matilda Modeling GUI

Once frontend plugins complete validating an input UML model, UML-VM transforms the
model to a JAST with two backend plugins: CD2JAST transformer and SD2JAST transformer. They
transform a class diagram and sequence diagrams to a JAST, respectively, using the data structures
in the Eclipse Java Development Tooling (JDT). A CD2JAST transformer creates a new JAST based
on the types (class and interface), data fields and method declarations in a UML model, and then it
generates a JAST compilation unit for each type declaration. A SD2JAST transformer reads a JAST
from a blackboard and updates it with method definitions mapped from each sequence diagram.
A JAST validator validates the generated JAST, and a JAST2Bytecode transformer generates Java
bytecode (i.e., class files) using Eclipse JDT. Finally, a Java executor, reads the generated class files,
sets up a JVM, and executes the class files.

log

Blackboard

Model Loader UML MetamodelValidator Matilda UML VM ProfileCD Validator

Matilda UMLModeling GUI

3rd Party UMLModeling Tools

XMI

XMI

log loglog

CD2JASTTransformerSD2JASTTransformerJASTValidatorJAST2BytecodeTransformerJava Executor

IntegratedDiagramValidator

JAST logloglogBytecodelog

frontend

backend

Matilda UML VM ProfileSD Validator

Figure 11. A Typical Pipeline Configuration for Matilda UML Virtual Machine
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Listing 2 A Code Fragment of UML Profile CD Validator
1 class MatildaProfileCDValidator implements Plugin {
2 void execute(Map<String, String> parameters)
3 throws PluginException {
4 // read a UML model from a blackboard
5 UMLData data = (UMLData)this.readFromBB(parameters.get("uml"));
6 UMLModel model = data.getModel();
7 // validate the obtained model
8 validate( model );
9 }

10
11 void validate( UMLModel model ){
12 foreach (element in model){
13 // check if each model element is stereotyped
14 // with <<UMLVMexecutable >>
15 if( element.stereotyped( "UMLVMexecutable" ) ){
16 // checks whether
17 // - the element is a class
18 // - the class has a main method
19 // - the main method conforms a predefined signature (public void main(...))
20 } }
21 // if validation fails, an exception is thrown.
22 if( valid != true ){
23 throw new PluginException("An input UML model is invalid");
24 } } }

Figure 11 shows a typical pipeline configuration for UML-VM. In this configuration, a
pipeline executes plugins sequentially and controls their execution. For example, when a blackboard
receives an execution error log from a plugin, a pipeline stops executing plugins. Figure 12 shows
another pipeline configuration customized for distributed software development. In this configura-
tion, class diagrams and sequence diagrams are intended to be developed at physically dispersed
places. Once they are validated, an integrated diagram validator examines their consistency. Then,
the validated models are transformed to Java bytecode via JAST as shown in Figure 11.

Blackboard

Model Loader

UML MetamodelValidator

3rd Party UMLModeling Tools
XMI

UML MetamodelValidator

SD
(XMI)

Matilda UML VM ProfileCD Validator
Matilda UMLModeling GUI

Matilda UML VM ProfileSD Validator

IntegratedDiagramValidator

Class Diagram (CD) Development

Sequence Diagram (SD) Development

CD
(XMI)

Execution

Figure 12. A Pipeline Configuration for Distributed Software Development with Matilda UML Virtual
Machine
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An Example Application for Matilda UML Virtual Machine

This section shows an example application built with UML-VM. The example application is
a command-line calculator that accepts an arithmetic expression in the Reverse Polish Notation and
returns a calculation result. It supports summation, difference, division, multiplication and factorial
operations. Figure 13 shows the class diagram for the calculator application. Calculator is the
execution entry class, which is stereotyped with �UMLVMexecutable�; it has the main method to
which an input arithmetic expression is passed. An input arithmetic expression can be passed as
a part of the application’s pipeline configuration. Except local variables, all variables and meth-
ods are defined in the class diagram. (Local variables are defined in sequence diagrams.) UML
attributes and associations are mapped to Java data fields. UML operations are mapped to Java
method declarations that have empty bodies.

Operator
+ Operator()# notation: java.lang.StringOperator
+ Operator()# notation: java.lang.String+ Operand(java.lang.Double)

Operand- value: java.lang.Double

<<JavaInterface>>ExprToken{JavaStrictfp=true}+ execute(java.util.Stack) : double

<<UMLVMexecutable>>Calculator{JavaStrictfp=true}
+ Calculator()+ calculate(java.lang.String[]) : Double+ main(java.lang.String[]) : void
- operandStack: java.util.Stack

Tokenizer{JavaStrictfp=true}

+ Tokenizer(java.lang.String[])+ getNextToken() : ExprToken
-operators: java.util.HashMap-exprArr: java.lang.String[]-currIndex: int

PlusOperator+ PlusOperator()PlusOperator+ PlusOperator() MinusOperator+ MinusOperator()MinusOperator+ MinusOperator()

MultiplyOperator+ MultiplyOperator()MultiplyOperator+ MultiplyOperator() FactorialOperator+ FactorialOperator()FactorialOperator+ FactorialOperator()DivideOperator+ DivideOperator()DivideOperator+ DivideOperator()

Figure 13. Class Diagram of an Example Calculator Application

Currently, UML-VM requires developers to define a sequence diagram for each opera-
tion/method. Figure 14 shows the sequence diagram for getNextToken() of Tokenizer (see also
Figure 13). Each sequence diagram is described with the sd frame. The upper left corner of each sd
frame indicates the method signature that the frame (sequence diagram) models. getNextToken() is
used to obtain tokens of an input arithmetic expression one by one. The tokens are stored in exprArr
(an array of string data)4. Tokenizer keeps track of the index of the next token to be obtained, us-
ing currIndex, and getNextToken() returns an instance of Operator or Operand depending on the
type of the token being obtained. The entry and exit points to/from a sequence diagram is repre-
sented by an arrow (message) from/to the left most edge of the diagram. The arrow labeled with
getNextToken() shows the entry point, and the arrow labeled with nextToken shows the exit point.
(nextToken contains a value returned to a caller of getNextToken().)

4Calculator is designed to pass an input arithmetic expression to Tokenizer via its constructor. In the con-
structor, Tokenizer tokenizes the passed expression and stores tokens in exprArr.
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The object this and its lifeline represent the execution flow of a method (or sequence dia-
gram). Each sequence diagram can reference the data fields and methods declared in the class of
this. For example, the diagram in Figure 14 can reference exprArr, operators and currIndex,
which are the data fields of Tokenizer.

operators:java.util.HashMap

:java.lang.Double
:Operand

sd Tokenizer::getNextToken():ExprToken
getNextToken()

<<UMLVMarrayelement>>{ index =currIndex}String currTok = exprArr[currIndex]
get (currTok)

<<create>> nextToken = new Operand(value)
currIndex++;

opt [currIndex < exprArr.length]

alt

ExprToken nextToken = null;

<<create>> Double value = new  Double(currTok)

[operators.containsKey(currTok)]

this: Tokenizer exprArr:java.lang.String[]

nextToken

nextToken =(Operator) operators.get (currTok)
[else]

Figure 14. A Sequence Diagram of an Example Calculator Application

Matilda uses the opt, alt and loop fragments to specify control flows. Figure 14 uses the opt
and alt frames to define if and if-then control flows, respectively. Guard conditions for the frames
are represented with the expressions between [ and ].

The messages (arrows) between the objects in a sequence diagram are either synchronous,
reply or �create� messages. A synchronous message indicates a method call and parameters
associated with the call. For example, in Figure 14, calling get() on the instance operations of
HashMap is expressed with a synchronous message. A reply message represents the return from a
method call, and indicates the assignment of a return value to a variable. In Figure 14, the return
value of calling get() on operations is casted to Operator5, and the casted value is assigned to
nextToken. A �create� message represents an instantiation of a class. It points a class being
instantiated, passes parameters to the class’s constructor, and specifies the assignment of a newly
created instance to a variable. In Figure 14, an instance of Double is created, and the instance is
assigned to variable.

Local variables are defined as the notes attached to sd frames or fragments (e.g., ExprToken
nextToken in Figure 14), within a reply message (e.g., Token nextToken, or within a �create�

5operations maintains pairs of a string and object representing an operator (e.g., a pair of “+” and an instance of
PlusOperator)
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message (e.g., Double valueST)). The scope of each local variable is limited to the innermost frag-
ment or sd frame.

Empirical Evaluation of Matilda UML Virtual Machine

This section empirically evaluates the execution overhead and memory footprint of UML-
VM. Its pipeline is sequentially configured with eight plugins in order to (1) load an input UML
model with a model loader (ML), (2) validate the input model with a UML Metamodel Validator
(MV), a Matilda UML VM profile CD validator (CDV) and a Matilda UML VM profile SD val-
idator (SDV), (3) transform the validated model to a JAST with a CD2JAST transformer (CDJ)
and a SD2JAST transformer (SDJ), (4) transform the generated JAST to Java bytecode with a
JAST2Bytecode transformer (JBC), and (5) execute the generated bytecode with a Java executor
(JE). All measurements used a Sun J2SE 5.0.4 VM running on a Windows 2000 PC with an AMD
Sempron 3.0 Ghz CPU and 512 MB memory space. Plugins are executed on the same process in
the PC, and a blackboard run on a different process on the same PC.

Figure 15 shows the overhead to execute each plugin. The overhead includes the time for
each plugin to process an input model, which contains varying numbers of classes (from 1 to 100
classes)6 and read/write the input model from/to a blackboard. The proportion of each plugin’s
overhead to total overhead does not change significantly by varying the number of classes in an
input model. The overhead of MV is extremely larger than those of other plugins. It occupies
over 60% of total overhead. This result comes from the performance of UML2Validator in Eclipse
UML2, which UML-VM uses to validate input UML models. The execution of MV can be omitted
to improve the total overhead by extending the Matilda modeling GUI (Figure 10) so that it validates
an input model in background while developers draw the model.

Table 3: Execution Overhead of UML-VM’s Frontend and Backend
Matilda (sec)

# of classes Frontend Backend Total javac (sec)
10 15.2 4.4 18.4 1.0
25 37.3 11.0 45.2 1.2
50 76.7 21.6 92.1 1.4
70 108.2 30.4 129.9 1.5
100 153.9 45.9 187.2 1.7

Table 3 shows the overhead to execute frontend plugins (ML, MV, CDV and SDV) and back-
end plugins (ML, CDJ, SDJ and JBC) as well as the overhead of javac to compile Java code equiva-
lent to input models. By comparing the backend overhead and javac overhead, because javac does
not validate UML model elements, Table 3 shows that UML VM’s performance is comparable with
javac when the number of classes is less than 25 in an input model. (UML-VM’s overhead is less
than 10 times of the javac overhead.)

Figure 16 shows the breakdown of plugin execution overhead. Each plugin’s overhead is
divided to the time to process an input model containing 25 classes and the time to access a black-

6Each class has a method that contains message sequences corresponding to 100 lines of code (LOC) in Java. This
LOC is obtained from the average per-class LOC (101.2) in major development environments such as J2SE 5.0 standard
library, JBoss 4.0.4, Mule ESB 1.2, ArgoUML 0.20 and Teamwork 3.0.
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Figure 15. Execution Overhead of Plugins

board to write/read the model. Every plugin is efficient enough to process an input model except
MV. Since it is relatively heavyweight to transform XMI data to an in-memory model representa-
tion7, the time to access a blackboard is much longer than the time to process an input model (except
the case of MV). For example, in CDV, blackboard access takes 23 times longer than processing an
input model. Note that JBC reads a JAST from a blackboard; however, the blackboard access over-
head is very small (less than 0.1 second) because JBC simply transforms the JAST to Java bytecode
rather than transforming it to an in-memory model representation.

0.05.010.015.020.025.030.0

Executi
on Ove
rhead (
sec)

Time to process models 2.3 25.9 0.1 1.1 0.2 2.6 0.5 0.1 Time to access a blackboard 0.8 2.3 2.3 2.3 2.4 2.4 0.0 2.4 ML MV CDV SDV CDJ SDJ JBC JE
Figure 16. Breakdown of UML VM Plugin Execution Overhead

7When a plugin reads XMI data from a blackboard, it compresses the data with the zip encoding to reduce the
data transmission overhead between the plugin and blackboard. For example, the XMI data containing 100 classes is
compressed from 15.7 MB to 1.0 MB. This significantly reduces the data transmission overhead between plugins and a
blackboard. However, it is still a heavyweight process to transform XMI data to an in-memory model representation.
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Figure 17. Memory Consumption of UML VM Plugins

In order to eliminate the blackboard access overhead, UML-VM can deploy multiple plugins
in a single process so that they can pass an in-memory model representation between them. Table 4
shows a variation of Table 3; it measures the frontend and backend overhead when all the eight plu-
gins run in the same process. As shown in this table, UML-VM’s backend overhead is comparable
with javac’s overhead when the number of input classes is less than 70. Tables 3 and 4 show that
UML-VM works efficiently in small to medium scale applications.

Table 4: Execution Overhead of the Frontend and Backend
Matilda (sec)

# of classes Frontend Backend Total javac (sec)
10 12.2 2.4 13.7 1.0
25 29.7 5.7 33.1 1.2
50 61.8 11.2 68.2 1.4
70 87.3 15.6 96.2 1.5
100 123.8 24.7 138.8 1.7

Figure 17 shows the cumulative memory consumption of each plugin to execute an input
model containing 70 classes. In this measurement, Java VM’s garbage collection is disabled. There-
fore, the memory consumption includes the footprint of each plugin and the amount of data the
plugin generates. Compared with the size of XMI data each plugin reads from a blackboard (11
MB in the case of 70 classes in an input model), UML-VM’s memory consumption is acceptable in
small to medium scale applications. ML consumes memory space most because it loads an input
model and the UML metamodel and Matilda UML VM profile, and validates the model against the
UML metamodel definitions.

Matilda SOA Virtual Machine (SOA-VM)

This section describes another Matilda-based VM: SOA-VM. SOA is an emerging style of
software architectures to build, integrate and maintain distributed applications (Bichler & Lin, 2006;
Papazoglou & Heuvel, 2007). In SOA, each application is often designed with a set of services and
a business process. Each service encapsulates the function of an application component, and each
business process defines how services interact to accomplish a certain business goal. SOA-VM
allows developers to model their service oriented applications in BPMN and UML and and directly
execute the models.
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Plugins in Matilda SOA Virtual Machine

SOA-VM (1) accepts a BPMN model that defines a business process (i.e., control and data
flows among services) and UML sequence diagrams that define behaviors of services, (2) transforms
the input models to Java code implementing services and a BPEL script, (3) deploys the generated
Java code as XML web services on an application server, and (4) deploys the generated BPEL script
on a BPEL engine to establish a workflow between the XML web services.

SOA-VM consists of 7 plugins: model loader, BPMN2CD transformer, CD2Java trans-
former, SD2Java transformer, Java integrator, BPMN2BPEL transfomer and deployer. Figure 18
shows a typical pipeline configuration. First, a model loader loads a BPMN model and UML se-
quence diagrams into a blackboard.

Blackboard
ModelLoader BPMN2CDTransformer

3rd PartyUML and BPMNModeling Tools plugins
UMLSD BPMN

UMLSD BPMN CD2JavaTransformer
UMLCD Java

Deployer BPMN2BPELTransformer JavaIntegrator SD2JavaTransformer
JavaJavaBPEL

Figure 18. A Typical Pipeline Configuration for Matilda SOA VM

A BPMN2CD transformer extracts the structural aspect of an input BPMN model and gener-
ates a UML class diagram that defines the structure of services. A BPMN model generally consists
of pools, tasks and sequence/message flows. A pool, represented by a rectangle, denotes a partic-
ipant in a business process; for example, Client and Server in Figure 19. A task, represented as
a rounded-corner rectangle, denotes a task performed by a participant; for example, Send Query in
Client. A sequence flow, represented as a solid arrow, denotes the order of tasks performed by a
participant. For example, Client executes Send Query and Show Results in order. A message flow
is represented as a dashed arrow between two participants. A participant starts its process from a
message start event (a circle with an envelope icon), when it receives a message from other partic-
ipants. Also, a participant returns a message to a caller when its process ends with a message end
event (a bold circle with an envelope icon). Sequence/message flows also define parameters that
they carry. (Their graphical representations are not available in BPMN.) In Figure 19, Send Query
returns a String value that is delivered to Server. Show Results takes a String value as a pa-
rameter. Process Query takes and returns a String value. A BPMN2CD transformer transforms a
BPMN pool to a UML class and transforms a BPMN task to a UML method. Listing 3 shows a code
fragment of a BPMN2BPEL transformer. This transformer transforms a BPMN model in Figure 19
to a UML diagram in Figure 20. Method parameters in a UML class are generated according to the
parameter definitions in a BPMN model.
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Listing 3 A Code Fragment of BPMN to Class Diagram Transformer
1 class BPMN2CD implements Plugin {
2 void execute(Map<String, String> parameters)
3 throws PluginException {
4 // read a BPMN model from a blackboard
5 BPMNData bpmndat = (BPMNData)this.readFromBB(parameters.get("bpmn"));
6 BPMNModel bpmnmodel = bpmndat.getModel();
7
8 // transform to BPMN
9 UMLModel umlmodel = toUML(bpmnmodel);

10 UMLData umldat = new UMLData(umlmodel);
11
12 // write a UML model on a blackboard
13 this.writeOnBB(parameters.get("umlclass"), umldat);
14 }
15
16 UMLModel toUML(BPMNModel bpmnmodel){
17 UMLModel umlmodel = ... // create a new UML model
18 // check each model element in a BPMN model
19 foreach (element in bpmnmodel){
20 if( element instanceof Pool ){ // if an element is Pool
21 Class c = ... // create a new UML class
22 umlmodel.add(c); // add a class to a UML model
23 foreach (ce in element.ownedElements){ // check all nested elements
24 if(ce instanceof Task){ // if a Pool contains a Task
25 Method m = ... // create a corresponding UML method
26 c.add(m); // add a method to a UML class
27 }
28 }
29 }
30 }
31 return umlmodel;
32 } }

Show ResultsShow ResultsSend QuerySend Query
Process QueryProcess Query

Figure 19. An Example BPMN Model

+processQuery( query : String )Server+sendQuery() : String+showResults( query : String )Client
Figure 20. A Generated UML Class Diagram

A CD2Java transformer transforms a generated UML class diagram into Java code. Methods
are empty in the generated Java code because a BPMN model does not define behaviors of tasks.
A SD2Java transformer transforms input UML sequence diagrams, which are defined with the
Matilda UML VM profile, into Java code (method implementations). A Java integrator integrates
Java code generated by a CD2Java transformer and a SD2Java transformer in order to complete
Java implementations of services.

A BPMN2BPEL Transformer transforms a BPMN model into a BPEL script. After a BPEL
script is generated, a deployer deploys the BPEL script and services on an application server. SOA-
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VM currently uses Apache Axis8 and Apache Orchestration Director Engine (ODE)9 to operate
XML Web services and a BPEL script, respectively. Listing 4 shows a code fragment of a deployer.
First, it obtains a BPEL script from a blackboard and writes it as a file to be deployed on Apache
ODE. Then, it obtains Java classes (i.e., services) from a blackboard and deploys them on Apache
Axis. Finally, it downloads WSDL interfaces generated for deployed services, and copies the WSDL
interfaces to a directory where a BPEL script is deployed. The BPEL script requires the WSDL
interfaces to access services.

Listing 4 A Code Fragment of BPMN to Class Diagram Transformer
1 class Deployer implements Plugin {
2 void execute(Map<String, String> parameters)
3 throws PluginException {
4 // obtain a directory to deploy a BPEL script.
5 // For example, /tomcat/webapps/ode/WEB-INF/processes/SOAVM/
6 String bpelPath = this.readFromBB(parameters.get("bpelpath"));
7
8 // obtain a BPEL script from a blackboard and write it in bpelPath
9 String bpelPath = this.readFromBB(parameters.get("bpel"));

10 FileWriter writer = ...
11
12 // obtain a directory to deploy services.
13 // For example, /tomcat/webapps/axis/services/
14 String deployPath = this.readFromBB(parameters.get("deploypath"));
15
16 // obtain Java classes from a blackboard
17 String[] classes = (String[])this.readFromBB(parameters.get("java"));
18 // deploy each services
19 foreach(class in classes){
20 FileWriter j = ... // write a Java class in deployPath
21 String wsdl = ... // read a WSDL file corresponding to a Java class
22 FileWriter w = ... // write a WSDL file in bpelPath
23 }
24 } }

Figure 21 shows a pipeline configuration customized for distributed software development
with SOA-VM. In this configuration, BPMN and UML sequence diagrams are intended to be de-
veloped at physically dispersed places. A network host accepts a BPMN model and transforms it
into a BPEL script, and another network host accepts UML sequence diagrams and generates Java
classes. Then, a deployer deploys generated Java classes and a BPEL script.

An Example Application for Matilda SOA Virtual Machine

This section shows an example application build with SOA-VM: an electronic travel ar-
rangement application. Figure 22 shows a international travel arrangement process in BPMN.
This input BPMN model contains four participants: Travel Agent, Airline Reservation, Hotel
Reservation and Currency Converter. Once a travel agent receives an itinerary from a cus-
tomer with the Receive Itinerary task, the travel agent calls Airline Reservation and Hotel
Reservation in parallel to search airline tickets and hotel rooms according to the itinerary. Each
itinerary contains the departure date, return dates, travel destination and currency that a customer
uses. Airline Reservation and Hotel Reservation start their processes with Message events.

8ws.apache.org/axis/
9ode.apache.org
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BPMN2BPEL

BPMN2CD
BPMN Deployer

Java Development

BPEL Development
UMLSD BPELUMLCD JavaJavaJava

CD2Java SD2Java JavaIntegratorModelLoader
UMLSD

BPMN Model Loader
Figure 21. A Pipeline Configuration for Distributed Software Development with Matilda SOA Virtual Ma-
chine

The Search task searches airline tickets or hotel rooms. The Convert Currency task converts air-
fare and room charge to the currency a customer uses by sending a message to Currency Converter.
Once Currency Converter receives a message, it executes Convert and returns a result to a caller.
Travel Agent returns search results of airline tickets and hotel rooms to a customer by executing
Send Results.

Figure 23 shows a fragment of a UML class diagram that a BPMN2CD Transformer generates
from a BPMN model in Figure 22.

SearchRoomSearchRoomReceiveItineraryReceiveItinerary SearchAirlineSearchAirline SendResultsSendResults

ConvertCurrencyConvertCurrencySearchSearch
ConvertCurrencyConvertCurrencySearchSearch

ConvertConvert
Figure 22. A Travel Arrangement Process in BPMN

+receiveQuery( results : Result [0..*], currency : String ) : Result [0..*]+convert( results : Result [0..*], currency : String ) : Result [0..*]CurrencyConverter+convertCurrency( results : Result [0..*] ) : Result [0..*]+search( itinerary : Itinerary ) : Result [0..*]AirlineReservation+receiveItinerary( itinerary : Itinerary ) : Itinerary+searchAirline( itinerary : Itinerary )+searchHotel( itinerary : Itinerary )+sendResults( results : Result [0..*] )TravelAgent +destination+departureDate+currency+returnDateItinerary
+price+currency+descriptionResult

Figure 23. Generated UML Classes

Figure 24 shows one of input UML sequence diagrams, which defines the behavior of the
Convert task in Currency Converter. This task takes two parameters, a set of search results
(results) and the currency that a customer uses (currency), and converts the currency that each of
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results uses (from USD to EUR, or from EUR to USD).

sd CurrencyConverter::convert():Result[]
convert(results, currency)

<<UMLVMarrayelement>>{ index =currIndex}Result result = results[currIndex]

currIndex++;Result.currency = currency

loop [currIndex < results.length]

alt [result.currency == “EUR” &&currency == “USD”]

this: CurrencyConverter results:Result[]

results

currIndex = 0;

result.price *= 1.4;
[result.currency == “USD” &&currency == “EUR”]result.price *= 0.7;

Result result = null;

Figure 24. An Input Sequence Diagrams

Empirical Evaluation of Matilda SOA Virtual Machine

This section empirically evaluates the execution overhead and memory footprint of SOA-VM.
Matilda’s pipeline is sequentially configured with seven plugins in order to (1) load input models
with a model loader (ML), (2) transform a BPMN model to a UML class diagram with a BPMN2CD
transformer (B2C), (3) transform a UML class diagram to Java code with a CD2Java transformer
(C2J), (4) validate UML sequence diagrams with a Matilda UML VM profile SD validator (SDV),
(5) transform UML sequence diagrams to Java code with a SD2Java transformer (S2J), (6) inte-
grate Java code with a Java integrator (JI), (7) transform a BPMN model to a BPEL script with a
BPMN2BPEL transformer (B2B), and (8) deploy Java code and a BPEL script on Apache Axis and
Apache ODE with a deployer (DE).

Figure 25 shows the breakdown of plugin execution overhead of each plugin when SOA-
VM processes a BPMN model in Figure 22. Plugins and a blackboard are deployed on the same
host. Each plugin’s overhead is divided to the time to process a model and the time to access a
blackboard to write/read the model. As Figure 25 illustrates, every plugin runs efficient enough; the
total overhead is 9.9 second. Similar to UML-VM, a model loader has a relatively large overhead to
transform XMI data to in-memory model representations. Also, a deployer’s overhead is the largest
because it involves in downloading and uploading Java classes and WSDL interfaces.

Since SOA-VM uses Apache Axis and Apache ODE to deploy applications, it requires a host
where both software installed beforehand. Since plugins in Matilda-based virtual machine can be
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Figure 25. Breakdown of SOA VM Plugin Execution Overhead

distributed over a network, SOA-VM can use a deployer on a remote host with Apache Axis and
Apache ODE via a distributed pipeline. It allows multiple SOA-VMs to share a host for deploying
the final applications and frees application developers to prepare a host themselves. Depending on
requirements, a configuration of a distributed pipeline can be altered. For example, when a machine
where application developers work is not powerful enough, all plugins except a model loader are
deployed on a remote host and all processes are performed on a remote host.

Table 5 shows the overhead when plugins and a blackboard are deployed on different hosts.
Figure 26 shows the breakdown of plugin execution overhead when plugins and a blackboard are
distributed over a network. Plugins exchange data via a blackboard deployed on a remote host that
connected via 802.11g wireless router. Since an input model (i.e., a BPMN model and sequence
diagrams) are same as in the previous measurement study, the overhead to process models are almost
same. Although the overhead to access to a blackboard increases 250% when a blackboard is
deployed on a remote host, the total overhead increases only 7 % since the overhead to access to a
remote blackboard is quite small compare to compared to the overhead to process models. It shows
that Matilda works efficiently in distributed environment as well as in a non-distributed environment.

Table 5: Overhead of SOA-VM
Process Models (ms) Access to a Blackboard (ms) Total (ms)

SOA-VM on a single host 10.78 0.28 11.02
SOA-VM on distributed hosts 10.82 0.98 11.80

Figure 27 shows the cumulative memory consumption of each plugin. (Java VM’s Garbage
collection is disabled.) As well as in UML-VM, a model loader consumes memory space most
because it loads a BPMN model and UML sequence diagrams, however SOA-VM’s memory con-
sumption is small enough and acceptable.

Table 6 shows a set of artifacts consisting of the final deployed application. As the table
shows, even a simple service-oriented application requires application developers to learn various
technologies and tools. SOA-VM, however, hides the details of these implementation technologies
and tools. This way, SOA-VM removes the existence of a programming layer and allows application
developers to work on only a modeling layer.
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Figure 26. Breakdown of SOA-VM Plugin Execution Overhead (Distributed Pipeline)
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Figure 27. Memory Consumption of SOA-VM Plugins

Related Work

This chapter describes a set of extensions to the authors’ prior work (Wada, Babu, Mali-
nowski, Suzuki, & Oba, 2006). One extension is to investigate a new application of Matilda, i.e.,
SOA-VM, which (Wada et al., 2006) does not consider.

There are several work to investigate UML virtual machines. (Riehle, Fraleigh, Bucka-
Lassen, & Omorogbe, 2001) addresses the issues of validating models and generating executable
code. It maintains causal connections among four meta layers in UML (M0 to M3 layers), and uses
the connections to validate models and propagate changes between models. For example, the con-
nections can be used to validate the consistency between M1 and M2 models and reflect changes in
an M2 model to M1 models. Although Matilda implements model validation, it does not explicitly
maintains causal connections among different meta layers. (Riehle et al., 2001) does not support be-
havioral modeling, and it is not clear how to transform models to executable code. Matilda supports
behavior modeling, and provides workable plugins to generate executable code.

Table 6: Artifacts consisting of an Application

Artifacts LOC
6 Java Classes 145
4 WSDL Interfaces 94
A BPEL Script 60
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ASM virtual machine (Shen, Compton, & Huggins, 2003) and USE (UML-based Specifi-
cation Environment) (Gogolla, Bohling, & Richters, 2003) address the issue of validating models.
They support Object Constraint Language (OCL) (UML Super Structure Specification 2.1.2, 2007)
to validate the consistency and integrity of models. Matilda is similar to ASM VM and USE in that
it also supports model validation; however, the model validation logic in Matilda is hard coded in
model validator plugins rather than using OCL. Matilda currently puts a higher priority on model
execution through operating plugins in distributed environments. Matilda validates the consistency
and integrity of class diagrams and sequence diagrams, while ASM VM and USE checks those of
class diagrams only. They do not focus on model execution.

Similar to Matilda, executable UML (xUML) focuses on directly executing models. In
xUML, developers use class diagrams for structural modeling, and statechart diagrams and textural
action languages for behavioral modeling (Mellor & Balcer, 2002; Raistrick, Francis, & Wright,
2004; Balcer, 2003). Action languages implement the UML action semantics, defined as a part of
the UML specification (UML Super Structure Specification 2.1.2, 2007). However, the UML ac-
tion semantics does not provide the standard language syntax; therefore, different action languages
have different syntax with different (proprietary) extensions (e.g., BridgePoint10 and iUML11). This
means that developers need to learn action language syntax every time they use different xUML
tools. Also, there is no interoperability of models between different xUML tools because different
xUML tools assume different subsets of the UML metamodel. Thus, an xUML tool cannot cor-
rectly interpret a model that is defined with other xUML tools. On the other hand, Matilda uses the
UML metamodel and its standard extensions (profiles) for both structural and behavioral modeling.
(Matilda does not require developers to use non-standard mechanisms to build and execute models.)
It is more open for future extensions and integration with third party tools such as code generators
and optimizers. Furthermore, Matilda inherently supports the distributed execution of plugins. No
xUML tools do not address this issue.

openArchitectureWare12 is similar to Matilda in that it provides a set of plugins (e.g., model
loader, validators and transformers) and allows developers to form a sequence of plugins using its
workflow language. However, unlike Matilda, it does not support executing models and deploying
plugins in a distributed manner.

The current common practice in MDD is to model application designs with modeling lan-
guages and transform them to skeleton source code. For example, OptimalJ13, Rose XDE14, To-
gether15, UMLX (Willink, 2002), KMF (Patrascoiu, 2004) and J3 (White, Schmidt, & Gokhale,
2005) support UML. Visual Paradigm16, Intalio17 and eClarus18 support BPMN. (Gardner, 2003;
Chowdhary et al., 2006) leverages UML for modeling business processes. Unlike them, Matilda fo-
cuses on direct execution of UML models so that no manual programming is necessary (see Figures
1 and 2).

Several research and products facilitate the simulation of business processes such as TIBCO

10www.mentor.com/products/sm/uml_suite/
11www.kc.com
12www.openarchitectureware.org/
13www.compuware.com/products/optimalj/
14www.ibm.com/software/awdtools/developer/rosexde/
15www.borland.com/together/architect/
16www.visual-paradigm.com/
17bpms.intalio.com/
18www.eclarus.com/
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Business Studio19, activeBPEL20 and (Jansen-Vullers & Netjes, 2006). Matilda SOA-VM is sim-
ilar to them in that it also supports direct model execution; however, SOA-VM generates artifacts
required for the final applications (e.g., WSDL interfaces and Java classes) and actually deploys on
an application server. Therefore, SOA-VM verifies not only business process models but also whole
systems including artifacts and runtime environment. Verification through SOA-VM is more com-
prehensive and it reduces the cost and time for verifying and testing the final applications compared
to business process simulators.

Conclusion

This chapter describes and empirically evaluates a new MDD framework, Matilda, which is
a framework to build virtual machines for software models. Matilda allows developers to analyze,
design and execute their applications consistently at the modeling layer by hiding the existence
of programming layer. It also enables distributed software development in which developers can
collaboratively build, integrate and transform software models at physically dispersed places. Em-
pirical measurement results show that Matilda-based virtual machines work efficiently with small
memory consumption in small to medium scale applications.

Several extensions to Matilda are planned as future work. One of them is to implement
and evaluate additional plugins. They include a model debugging plugin. It is being designed to
intercept transformation errors of input models and runtime errors of generated Java bytecode, and
identify the sources of the errors in textual and graphical manners. For example, the error sources
will be graphically displayed on input BPMN/UML diagrams so that developers can intuitively
understand and fix the errors. The design of the model debugging plugin will follow the Model-level
Testing and Debugging Specification (Model-level Testing and Debugging Specification, Revised
Submission, 2006), which Object Management Group standardizes.

An extended set of empirical measurements is also planned to provide additional performance
implications of Matilda. Matilda will be evaluated with larger scale of applications on larger size
of network environments (e.g., PlanetLab (Bavier et al., 2004)) to identify the impacts of applica-
tion/network size on Matilda’s performance.
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