
Extensible and Precise Modeling for Wireless Sensor
Networks

Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

Department of Computer Science
University of Massachusetts Boston

Boston, MA 02125 USA
{abakbal, pruet, jxs}@cs.umb.edu

Abstract. Developing applications for wireless sensor networks (WSN) is a
complicated process because of the wide variety of WSN applications and low-
level implementation details. Model-Driven Engineering offers an effective
solution to WSN application developers by hiding the details of lower layers
and raising the level of abstraction. However, balancing between abstraction
level and unambiguity is challenging issue. This paper presents Baobab, a
metamodeling framework for designing WSN applications and generating the
corresponding code, to overcome the conflict between abstraction and
reusability versus unambiguity. Baobab allows users to define functional and
non-functional aspects of a system separately as software models, validate them
and generate code automatically.

1. Introduction
Wireless sensor networks (WSNs) are used to detect events and/or collect data in
physical observation areas. They have been rapidly increasing in their scale and
complexity as their application domains expand, from environment monitoring to
precision agriculture, from perishable food transportation to disaster response, as just
a few examples. The increase in scale and complexity make WSN application
development complicated, time consuming and error prone [1].

The complexity of WSN application development derives from a lack of
abstraction. A number of applications are currently implemented in nesC, a dialect of
the C language, and deployed on the TinyOS operating system, which provides low-
level libraries for basic functionalities such as sensor reading, packet transmission and
signal strength sensing. nesC and TinyOS abstract away hardware-level details;
however, they do not aid developers to rapidly implement their applications.

Model-driven development (MDD) is intended to offer a solution to this issue by
hiding low-level details and raising the level of abstraction. Its high-level modeling
and code generation capabilities are expected to improve productivity in WSN
application development (e.g., [1, 2, 3]). However, there is a research issue in MDD,
particularly in metamodeling, for WSN applications: balancing generalization and
specialization in designing a metamodel for WSN applications. When metamodel
designers want their metamodels to be as much generic and versatile as possible for
various application domains, the metamodels can be over generalized (e.g., [2, 3]).
Over generalized metamodels tend to be ambiguous and type-unsafe. Metamodel

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

users do not understand how to specifically use metamodel elements and often make
errors that metamodel designers do not expect. Model-to-code transformers can fail
due to ambiguous uses and errors that metamodel users make in their modeling work.

Another extreme in metamodeling is over specialized metamodels (e.g., [1]). Over
specialized metamodels can avoid ambiguity and type unsafety; however, it lacks
extensibility and versatility. Metamodel users cannot extend metamodel elements to
accommodate requirements in their applications and cannot use them in the
application domains that metamodel designers do not expect.

Baobab is an MDD framework that addresses this research issue for WSN
applications. It provides a generic metamodel (GMM) that is versatile across different
application domains. Metamodel users can use it to model both functional and non-
functional aspects of their WSN applications. Baobab allows metamodel users to
extend GMM for defining their own domain-specific metamodels (DSMMs) and
platform-specific metamodels (PSMM). This extensibility is driven with generics to
attain the type compatibility among GMM, DSMM and PSMM elements as well as
the Object Constraint Language (OCL) [4] for avoiding metamodel users to extend
GMM in unexpected ways. These two mechanisms allow application models to be
type safe and unambiguous. Baobab’s model-to-code transformer type-checks and
validates a given application model and generates application code in nesC. It can
generate most of application code, and the generated code is lightweight enough to
operate on resource-limited sensor nodes such as Mica2 nodes.

2. Metamodels and Models for WSN Applications
In Baobab, metamodels are partitioned into different packages. GMM is defined in
the genericMetamodel package.

2.1. Generic Metamodel Elements

The element Sensor of the GMM represents sensor devices that are used in WSNs. All
sensor classes, representing a specific type of sensor, extend from the base class
Sensor. The most common sensor types that can be used in a variety of applications
are defined in the generic metamodel. As the names imply, each sensor detects the
specific phenomenon it is prefixed by.

Nodes may send data to each other in a WSN occasionally. This can be done by
packing Data (either some sensor reading value or a command) in a Message, and
sending it to other nodes by a CommunicationUnit, which consists of a
DataTransmitter and a DataReceiver. A WirelessLink represents the communication
channel between two CommunicationUnits. The sensor readings and the associated
information are represented as SensorData. Specific classes that extend from
SensorData will have their own attributes, as well as the shared attributes. For
example, AirTempData has a temperature attribute holding the air temperature
reading value. When nodes aggregate multiple SensorData instead of transmitting
them separately, an AggregatedData is created. All types of Data can be stored in and
retrieved from a DataStorage by DataWriter and DataReader, respectively.
EnergySource can be used to interrogate the remaining energy level of the node.

Extensible and Precise Modeling for Wireless Sensor Networks

Usage of generic types in the GMM increases the extensibility of GMM elements,
as well as assuring type-safety. As an example, the Sensor in our generic metamodel
is expected to create SensorData, whereas AirTemperatureSensor creates
AirTempData. We defined the type of sensorData reference between Sensor and
SensorData as a generic type that extends from SensorData in the generic metamodel.
Thus it is feasible to associate AirTempData with AirTemperatureSensor in the
GMM, and associate BacteriaData with BacteriaSensor later in the fresh-food
domain metamodel.

There is a set of tasks that should be performed by a WSN node during each duty
cycle. By the end of the duty cycle duration the sensor nodes will go to sleep in order
to save energy. A Timer and a DutyCycleManager in the GMM manage all these
series of events. At the beginning of each duty cycle DutyCycleManager invokes a
chain of tasks to be performed, by calling the firstTask of the task chain defined. Each
task to be performed is represented as a Task in the GMM. Upon completion, each
Task will call the next Task defined. The tasks regarding the functional requirements
of the WSN system are encapsulated in FunctionalTasks, whereas the tasks regarding
the non-functional requirements of the WSN system are encapsulated in
NonFunctionalTasks.

2.1.1. Functional Requirements
GMM defines several elements to express the most common functional aspects of
WSNs. The functional tasks whose execution is bound to the fulfillment of a
condition can be modeled by using ConditionalFunctional element of the GMM. This
task can further be specialized into RepetitiveTask, which lets users to model iteration
with conditions defined by the comparison of the two attributes: repetitionNumber,
for holding the desired number of repetitions, and repeated, for keeping the number of
repetitions completed so far. DataReceipt is used to define the receipt of data from
another node in the network. In some cases, tasks need to be followed by a waiting
period before another task can be called, which can be modeled by using
WaitingTask. Another common functionality of WSNs, sensing phenomena, can be
modeled with SensingTask. This element retrieves the newly created SensorData from
the Sensor.

2.1.2. Non-Functional Requirements
Non-functional requirements represent the quality goals and constraints of a system.
The tolerance rate of service performance, and constraints of a system are likely to
change more often than the services (functional requirements) themselves in a system.
Therefore, functional and non-functional aspects of a system should be modeled
independent from each other. This separation not only enables developers to adapt the
existing systems to new non-functional requirements easily, without annulling the
whole design and creating a system from scratch, but also enables developers to reuse
services in different non-functional contexts for future systems.

The non-functional requirements of a system can be modeled explicitly by means
of NonFunctionalTask class in our GMM. The specialized non-functional tasks that
are defined in the GMM are: ClusterFormation, for dividing the network into clusters
to simplify tasks such as communication [5] and to save energy by aggregating data
within the cluster; ChangeSleepTime, for adjusting the sleep time to minimize energy

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

Fig. 1. Partial Generic Metamodel

consumption or to maximize data collection; DataAggregation, for aggregating data
to be transmitted for the sake of eliminating redundancy, minimizing the number of
transmissions and thus saving energy [6]; DataTransmission, for transmitting data
with a specific policy based on the non-functional requirements;
ConditionalNonFunctional, for specifying the activation of a NonFunctionalTask that
is bound to fulfillment of a condition; and ChangeCommunicationRange, for
adjusting the physical range of transmission to minimize energy consumption or to
maximize data collection.

W
ir
e
le

ss
L
in

k

-b
it
E
rr

o
rR

a
te

:
In

te
g
e
r

0
..
*

 S
e
n
so

rD
a
ta

C
o
m

m
u
n
ic

a
ti
o
n
U

n
it

-n
o
d
e
ID

:
In

te
g
e
r

-c
o
m

m
u
n
ic

a
ti
o
n
R
a
n
g
e
:

F
lo

a
t

 D
a
ta

R
e
ce

iv
e
r

 D

a
ta

T
ra

n
sm

it
te

r

M
e
ss

a
g
e

-s
iz

e
L
im

it
:

F
lo

a
t

0
..
*

0
..
*

D
a
ta

S
to

ra
g
e

-m
a
x
S
iz

e
:

In
te

g
e
r

-c
u
rr

e
n
tU

sa
g
e
:

In
te

g
e
r

1
..
*

1

1

0
..
*

 D

a
ta

R
e
a
d
e
r

 -
d
a
ta

:
D

D
a
ta

S
e
n
so

r

-s
e
n
si

n
g
R
a
n
g
e
:

F
lo

a
t

-m
in

im
u
m

R
e
a
d
in

g
:

F
lo

a
t

-m
a
x
im

u
m

R
e
a
d
in

g
:

F
lo

a
t

1
..
*

1

1

1
1

-p
h
e
n
o
m

e
n
o
n
T
y
p
e
:

S
h
o
rt

-n

o
d
e
ID

:
In

te
g
e
r

-t
im

e
S
ta

m
p
:

D
a
te

se
n
so

rD
a
ta

:
S
D

d
a
ta

S
to

ra
g
e

d
a
ta

T
ra

n
sm

it
te

r

d
a
ta

R
e
ce

iv
e
r

w
ir
e
le

ss
L
in

k

m
e
ss

a
g
e

m
e
ss

a
g
e

co
m

m
u
n
ic

a
ti
o
n
U

n
it
 co

m
m

u
n
ic

a
ti
o
n
U

n
it

re
ce

iv
e
r

tr
a
n
sm

it
te

r
d
a
ta

:
D

S
D
!

D
!

M
e
ss

a
g
e
<

D
a
ta

>

<
<

b
in

d
>

>
 D

::
D

a
ta

D
!

D
a
ta

R
e
a
d
e
r<

D
a
ta

>

<
<

b
in

d
>

>
 D

::
D

a
ta

 E

n
e
rg

y
S
o
u
rc

e

-e
n
e
rg

y
L
e
v
e
l:
In

te
g
e
r

 A
g
g
re

g
a
te

d
D

a
ta

-s
e
n
so

rN
o
d
e
s:

 I
n
te

g
e
r[

]
-n

e
w

D
a
ta

:
D

[]

S
e
n
so

r<
S
e
n
so

rD
a
ta

>

<
<

b
in

d
>

>
 S

D
::

S
e
n
so

rD
a
ta

D

a
ta

W
ri
te

r

-d
a
ta

:
D

1
..
*

d
a
ta

S
to

ra
g
e

D
a
ta

W
ri
te

r<
D

a
ta

>

<
<

b
in

d
>

>
 S

D
::

D
a
ta

D
!

m
e
ss

a
g
e

1

T
im

e
r

-i
n
te

rv
a
l:
 I

n
te

g
e
r

 D

u
ty

C
y
cl

e
M

a
n
a
g
e
r

1

Ta
sk

0
..
*

n
e
x
t

fi
rs

tT
a
sk

:
T
 0
..
1

 N

o
n
F
u
n
ct

io
n
a
lT

a
sk

ti
m

e
r

T
!

D
u
ty

C
y
cl

e
M

a
n
a
g
e
r<

Ta
sk

>

<
<

b
in

d
>

>
 T

::
Ta

sk

-c
lu

st
e
rH

e
a
d
ID

:
In

te
g
e
r

-i
sC

lu
st

e
rH

e
a
d
:

B
o
o
le

a
n

-c
lu

st
e
rS

iz
e
:

In
te

g
e
r

 F
u
n
ct

io
n
a
lT

a
sk

0
..
1

p
re

v
io

u
s

tr
a
n
sm

it
te

rE
n
d

1

D
!

A
g
g
re

g
a
te

d
D

a
ta

<
D

a
ta

>

<
<

b
in

d
>

>
 D

::
D

a
ta

d
u
ty

C
y
cl

e
M

a
n
a
g
e
r

1

co
m

m
u
n
ic

a
ti
o
n
U

n
it

1

e
n
e
rg

y
S
o
u
rc

e

1

Extensible and Precise Modeling for Wireless Sensor Networks

Fig. 2. Functional Aspects of the Generic Metamodel

ClusterFormation has a reference to a ClusteringAlgorithm, which can be one of

the specialized clustering algorithms [5]. ChangeSleepTime and
ChangeCommunicationRange tasks can be used to adjust the sleep time and
communication range, respectively, by a given rate.
DataAggregation task has the attribute domain to specify whether the aggregation
will be a TEMPORAL aggregation or a SPATIAL aggregation. The other attributes of
DataAggregation are: hop, to specify how many hops away neighbors’ data will be
aggregated (only if SPATIAL aggregation domain is selected); dutyCycleNumber, to
specify the number of duty cycles’ collected data to be aggregated (only if
TEMPORAL aggregation domain is selected); aggregatingNodes, the list of nodeIDs
of the neighboring nodes to aggregate data with (only if SPATIAL aggregation domain
is selected); and dataList, the list of the collected data to be aggregated. The types of
aggregation supported in GMM are Average, Minimum, Maximum, Mean, Variance,
MinimumAndMaximum, StandardDeviation, Suppression (eliminating redundant data,
e.g. if the temperature readings of all neighboring sensors in a region are same, only
one packet containing the single sensor reading will be forwarded to the base station),
and Packaging (combining similar data into a single message). When using
Packaging, either of the timeWindow or numberOfData attributes should be set. Using

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

Fig. 3. Non-Functional Aspects of the Generic Metamodel

the attribute timeWindow denotes that exactly the same kind of data is packed together
(e.g. temperature readings for the last 10 minutes), while using numberOfData

T
im

e
r

-i
n
te

rv
a
l:
 F

lo
a
t

D
u
ty

C
y
cl

e
M

a
n
a
g
e
r

1

Ta
sk

0
..
*

n
e
x
t

fi
rs

tT
a
sk

0
..
1

F
u
n
ct

io
n
a
lT

a
sk

 N

o
n
F
u
n
ct

io
n
a
lT

a
sk

D

a
ta

T
ra

n
sm

is
si

o
n

-d
o
m

a
in

:
A
g
g
re

g
a
ti
o
n
D

o
m

a
in

-h
o
p
:

In
te

g
e
r

-d
u
ty

C
y
cl

e
N

u
m

b
e
r:

 I
n
te

g
e
r

-a
g
g
re

g
a
ti
n
g
N

o
d
e
s:

 I
n
te

g
e
r[

]

-d
a
ta

L
is

t:
 D

[]

A
g
g
re

g
a
ti
o
n
T
y
p
e

A
v
e
ra

g
e

V
a
ri
a
n
ce

1

a
g
g
re

g
a
ti
o
n
T
y
p
e

ti
m

e
r

P
a
ck

a
g
in

g

-t
im

e
W

in
d
o
w

:
In

te
g
e
r

-n
u
m

b
e
rO

fD
a
ta

:
In

te
g
e
r

M
a
x
im

u
m

M

in
u
m

u
m

A
n
d
M

a
x
im

u
m

M
in

im
u
m

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

S
u
p
p
re

ss
io

n

D
a
ta

A
g
g
re

g
a
ti
o
n

-a
v
e
ra

g
e
:

F
lo

a
t

-m
e
a
n
:

F
lo

a
t

M
e
a
n

-m
a
x
im

u
m

:
F
lo

a
t

-m
in

im
u
m

:
F
lo

a
t

-m
in

A
n
d
M

a
x
:

In
te

g
e
r[

]

!
E
n
u
m

e
ra

ti
o
n
"

A
g
g
re

g
a
ti
o
n
D

o
m

a
in

D
!

D
a
ta

A
g
g
re

g
a
ti
o
n
<

D
a
ta

>

<
<

b
in

d
>

>
 D

::
D

a
ta

-c
lu

st
e
rH

e
a
d
ID

:
In

te
g
e
r

C
lu

st
e
rF

o
rm

a
ti
o
n
 C
!

 C

lu
st

e
ri
n
g
A
lg

o
ri
th

m

1

cl
u
st

e
ri
n
g
A
lg

o
ri
th

m
:

C

L
C
A

L
C
A
2

H
C
A

W
C
A

-m
e
tr

ic
s:

 I
n
te

g
e
r[

]

-w
e
ig

h
ts

:
F
lo

a
t[

]
-c

o
m

b
in

e
d
w

e
ig

h
t:

 I
n
te

g
e
r

L
E
A
C
H

T
L
_
L
E
A
C
H

E
E
C
S

H
E
E
D

F
U

Z
Z
Y

C
lu

st
e
rF

o
rm

a
ti
o
n
<

C
lu

st
e
ri
n
g
A
lg

o
ri
th

m
>

<
<

b
in

d
>

>
 C

::
C
lu

st
e
ri
n
g
A
lg

o
ri
th

m

-c
lu

st
e
rH

e
a
d
ID

:
In

te
g
e
r

-i
sC

lu
st

e
rH

e
a
d
:

B
o
o
le

a
n

-c
lu

st
e
rS

iz
e
:

In
te

g
e
r

U
n
ic

a
st

M
u
lt
ic

a
st

B
ro

a
d
ca

st

A
n
y
ca

st

C
P
!

C
o
m

m
u
n
ic

a
ti
o
n
P
o
lic

y

1

co
m

m
u
n
ic

a
ti
o
n
P
o
lic

y
:

C
P

<
<

b
in

d
>

>
 C

P
::

C
o
m

m
u
n
ic

a
ti
o
n
P
o
lic

y

D
a
ta

T
ra

n
sm

is
si

o
n
<

C
o
m

m
u
n
ic

a
ti
o
n
P
o
lic

y
>

 C

h
a
n
g
e
S
le

e
p
T
im

e

-s
le

e
p
T
im

e
:

F
lo

a
t

-c
h
a
n
g
e
R
a
te

:
F
lo

a
t

 C

h
a
n
g
e
C
o
m

m
u
n
ic

a
ti
o
n
R
a
n
g
e

-c
o
m

m
u
n
ic

a
ti
o
n
R
a
n
g
e
:

F
lo

a
t

-c
h
a
n
g
e
R
a
te

:
F
lo

a
t

C
o
n
d
it
io

n
a
lN

o
n
F
u
n
ct

io
n
a
l

-c
o
n
d
it
io

n
:

S
tr

in
g

-s
ta

n
d
a
rd

D
e
v
ia

ti
o
n
:

F
lo

a
t

a
lt
e
rn

a
ti
v
e

T
E
M

P
O

R
A
L

S
P
A
T
IA

L

0
..
*

p
re

v
io

u
s

0
..
1

-v
a
ri
a
n
ce

:
F
lo

a
t

 A
g
g
re

g
a
te

d
D

a
ta

-s
e
n
so

rN
o
d
e
s:

 I
n
te

g
e
r[

]
-n

e
w

D
a
ta

:
D

a
ta

[]

0
..
1

a
g
g
re

g
a
te

d
D

a
ta

d
u
ty

C
y
cl

e
M

a
n
a
g
e
r

1

Extensible and Precise Modeling for Wireless Sensor Networks

denotes that different kind of but related data is packed together (e.g.temperature
readings and air flow readings).

For DataTransmission task, GMM defines four possible communication policies.
Unicast delivers a message to a single specified node, Broadcast delivers a message
to all nodes in the network, Multicast delivers a message to a group of nodes that have
expressed interest in receiving the message and Anycast delivers a message to any one
out of a group of nodes, typically the one nearest to the source.

2.2. Domain-Specific Metamodel Elements

The GMM defined in Section 2 can serve wide variety of purposes across a broad
range of domains for WSNs. However, every domain may use different terminology,
concepts, abstractions and constraints. Using GMM for all domains can yield to
ambiguous models. The purpose of Domain-Specific Modeling is to align code and
problem domain more closely. By having Domain-Specific Metamodel (DSMM)
elements, Baobab helps application developers to maintain the balance between high
level of abstraction and unambiguity. The GMM elements and the associated
transformation rules remain the same, thus the existing models created based on the
previous version of the metamodel will not be affected.

Fig. 4 shows an example DSMM for fresh food domain. In an application scenario
for monitoring temperature, airflow and bacteria growth rate in a warehouse where
tens to hundreds of rows of pallets of fresh meat stocked, there are several key entities
and limitations that the application developers should take care of. The ambient
temperatures should not be less than –1.5°C or more than +7°C throughout the cold
chamber [7]. Airflow rate in the cold chamber affects the distribution of the cooled
air, and setting the default air velocity to 1 m/s is ideal. The bacterial performance is
measured by colony forming units (cfu/cm2) on the surface of the meat. For the
bovine meat, the acceptable range is 0 to 2 log cfu/cm2, whereas the marginal range is
between 3 to 4 log cfu/cm2 and above 5 log cfu/cm2 is unacceptable [8].

For creating such models, a new package of fresh food domain elements should be
added to the metamodel. The user can achieve this by creating a new package named
as freshFood under the same directory as GMM, and populating it with the necessary
metamodel elements. The GMM already has AirTemperatureSensor and
AirTempData so the user does not have to define them again. However, there are no
sensors or specific data types defined for airflow and bacteria in the GMM. So, they
are added into this new DSMM package. Possible corrective actions to be taken by
the base station are: changing the airflow speed and air temperature in the cold
chamber. Based on this knowledge, two new functional tasks can be defined.

2.3. Platform Specific Metamodel Elements

The GMM and the DSMM explained in the previous sections are platform-
independent, in other words, they do not capture the details of the implementation
language, the operating system to be deployed on, or the architecture of the
application. This section explains the usage of Platform-Specific Metamodel (PSMM)
elements. Separating the DSMM and PSMM results in highly re-usable models. For
example, one may want to design a system by using the fresh food DSMM for mica

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

nodes (built upon nesC and TinyOS combination) as the target platform, using a
biologically inspired architecture, and then the same domain-specific model can be re-
used to design an application to work on SunSPOT (built upon Java and JVM
combination), using a database-centric architecture. The metamodel elements and the
transformation rules used for the fresh food domain remains the same, but the target
platform specifications change.

Fig. 4. Fresh Food Domain-Specific and BiSNET Platform-Specific Metamodel elements

BiSNET (Biologically-inspired architecture for Sensor NETworks) is a middleware
architecture for multi-modal WSNs [9]. The two software components in BiSNET are
agents and middleware platforms. Agents sense their local environments, and take
actions according to sensed conditions. Upon a significant change in sensor reading
an agent (a stationary agent that resides on a platform all the time) emits a pheromone
to stimulate replicating itself and its neighboring agents. Each agent replicates only
when enough types and concentration of pheromones become available on the local
node. A replicated agent (a migratory agent) migrates toward a base station on a hop-
by-hop basis to report sensor data.

PSMM elements can be added to GMM just as DSMM elements are added. A new
package for each platform should be created under the same directory as GMM, and
then the new package can be populated with the necessary PSMM elements extending
from GMM elements. Fig. 4 depicts the resulting BiSNET PSMM.

Extensible and Precise Modeling for Wireless Sensor Networks

The middleware platform and agent concepts in BiSNET are mapped to PSMM
elements Platform and Agent, respectively. Since there is no entity to model software
agents in GMM, Agent defined in bisnet package does not extend from any element
of the GMM. The two types of agents, stationary agents and migratory agents, are
mapped to StationaryAgent and MigratoryAgent in the bisnet PSMM, respectively.

2.4. Creating a Model Based on the Metamodel

There are four types of sensor nodes in the application scenario explained above:
bacteria node, air temperature node, airflow node and the base station. Since Baobab
considers modeling the components and functionalities of each type of node
separately, four different models should be created. Fig. 5 depicts the model created
for bacteria node.

3. Model Validation with OCL
Baobab allows metamodel designers to specify OCL constraints on metamodel
elements so that they are extended to DSMMs and PSMMs and instantiated in models
in unambiguous manner. OCL constraints can set restrictions on property values and
specify dependencies between property values of an element, or different elements.
Then, Baobab validates models with a given set of OCL constraints. Listing 1 shows
some of the OCL constraints that are checked against the model depicted in Fig. 5.

4. Model-to-Code Transformation
This section describes how Baobab transforms a model created with GMM, DSMMs,
and PSMMs into nesC code for TinyOS. Currently, Baobab assumes that all
metamodels and models are defined on Eclipse Modeling Framework1 and uses
openArchitectureware2 to implement its model-to-code transformer.

Listing 3 is a code snippet that Babab generates from the model depicted in Fig. 5.
The code performs five tasks starting with PheromoneSensingTask.
PheromoneSensingTask is performed in the code by calling a BiSNET-specific
function, pheromoneSensing(), with pheromoneType specified in Fig. 5 as a
parameter. DataAggregation is performed by calling getAggregatedData() of the
DataAggregation interface with relevant parameters specified in Fig. 5.
getAggregatedData() takes a parameter on aggregationType. AgentMigrationTask is
performed by calling migrationTask(), which is another BiSNET-specific function.

As for AgentReplicationTask, a conditional expression is generated as a comment
in an if-statement. The actual value to be checked if it is greater than two is
aggregatedData[0] of the previous task (DataAggregation). However, the generated
code does not keep the previous for a task because it can be any Task subtype, but
nesC is not an object-oriented language and it does not support polymorphism. Thus,

1 www.eclipse.org/modeling/emf
2 www.eclipse.org/gmt/oaw

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

this conditional expression is left as a comment and a programmer should replace it

with a real Boolean expression to reflect what is meant in the model.

Fig. 5. Model based on fresh food domain and BiSNET platform

ti
m

e
r

fi
rs

tT
a
sk

:S
e
n
si

n
g
Ta

sk

-s
e
n
so

rD
a
ta

 =

:T
im

e
r

-i
n
te

rv
a
l
=

 2
0

n
e
x
t

:C
o
n
d
it
io

n
a
lF

u
n
ct

io
n
a
l

-c
o
n
d
it
io

n
 =

“p

re
v
io

u
s.

p
re

v
io

u
s

 .
se

n
so

rR
e
a
d
in

g
V
a
lu

e
 >

 2
”

:P
h
e
ro

m
o
n
e
S
e
n
si

n
g
Ta

sk

-p
h
e
ro

m
o
n
eT

y
p
e
 =

 R
E
P
L
IC

A
T
IO

N

-p
h
e
ro

m
o
n
e
s

=

:A
g
e
n
tR

e
p
lic

a
ti
o
n
Ta

sk

-c
o
n
d
it
io

n
 =

 “
p
re

v
io

u
s.

 a

g
g
re

g
a
te

d
D

a
ta

[0
]

>
 2

”

:B
a
ct

e
ri
a
S
e
n
so

r

-s
e
n
si

n
g
R
a
n
g
e
 =

 0
.5

-m
in

im
u
m

R
e
a
d
in

g
 =

 0
.0

-m
a
x
im

u
m

R
e
a
d
in

g
 =

 1
0
.0

se
n
so

r

:B
a
ct

e
ri
a
D

a
ta

-p
h
e
n
o
m

e
n
o
n
T
y
p
e
 =

 1

-n
o
d
e
ID

 =
 0

-t
im

e
S
ta

m
p
 =

-c
o
lo

n
y
F
o
rm

in
g
U

n
it
sP

g
 =

 0

se
n
so

rD
a
ta

n
e
x
t

:R
e
p
e
ti
ti
v
eT

a
sk

-r
e
p
e
ti
ti
o
n
N

u
m

b
e
r

=
 3

-r
e
p
e
a
te

d
 =

 0

-c
o
n
d
it
io

n
 =

 “
re

p
e
a
te

d
 <

 r
e
p
e
ti
ti
o
n
N

u
m

b
e
r”

a
lt
e
rn

a
ti
v
e

:S
ta

ti
o
n
a
ry

A
g
e
n
t

:P
la

tf
o
rm

-n
o
d
e
ID

 =

-i
sC

lu
st

e
rH

e
a
d
 =

 F
a
ls

e

-c
lu

st
e
rS

iz
e
 =

-a
g
e
n
ts

 =
 A

g
e
n
ts

[:
S
ta

ti
o
n
a
ry

A
g
e
n
t]

:P
h
e
ro

m
o
n
e
E
m

is
si

o
n
Ta

sk

p
h
e
ro

m
o
n
eT

y
p
e
 =

 R
E
P
L
IC

A
T
IO

N

h
o
p
 =

 1

se
n
so

rR
e
a
d
in

g
V
a
lu

e
 =

n
e
x
t

n
e
x
t

n
e
x
t

:D
a
ta

A
g
g
re

g
a
ti
o
n

-d
o
m

a
in

 =
 T

E
M

P
O

R
A
L

-h
o
p
 =

 0

-d
u
ty

C
y
cl

e
N

u
m

b
e
r

=
 3

-a

g
g
re

g
a
ti
n
g
N

o
d
e
s

-d
a
ta

L
is

t[
]

=

:A
v
e
ra

g
e

-l
is

tO
fD

a
ta

 =

n
e
x
t

a
g
g
re

g
a
ti
o
n
T
y
p
e

:A
g
e
n
tR

e
p
lic

a
ti
o
n
Ta

sk

-c
o
n
d
it
io

n
 =

 “
tr

u
e
”

n
e
x
t

:A
g
e
n
tM

ig
ra

ti
o
n
Ta

sk

-s
u
cc

e
ss

fu
l
=

:C
o
n
d
it
io

n
a
lN

o
n
F
u
n
ct

io
n
a
l

-c
o
n
d
it
io

n
 =

 “
p
re

v
io

u
s.

su
cc

e
ss

fu
l
=

=
 t

ru
e
”

n
e
x
t

p
re

v
io

u
s

:P
h
e
ro

m
o
n
e
E
m

is
si

o
n
Ta

sk

p
h
e
ro

m
o
n
eT

y
p
e
 =

 M
IG

R
A
T
IO

N

h
o
p
 =

 1

se
n
so

rR
e
a
d
in

g
V
a
lu

e
 =

:P
h
e
ro

m
o
n
e
E
m

is
si

o
n
Ta

sk

p
h
e
ro

m
o
n
eT

y
p
e
 =

 A
L
E
R
T

h
o
p
 =

 1

se
n
so

rR
e
a
d
in

g
V
a
lu

e
 =

a
lt
e
rn

a
ti
v
e

:A
g
e
n
tM

ig
ra

ti
o
n
Ta

sk

-s
u
cc

e
ss

fu
l
=

:C
o
n
d
it
io

n
a
lN

o
n
F
u
n
ct

io
n
a
l

-c
o
n
d
it
io

n
 =

 “
p
re

v
io

u
s.

su
cc

e
ss

fu
l
=

=
 t

ru
e
”

n
e
x
t

p
re

v
io

u
s

:P
h
e
ro

m
o
n
e
E
m

is
si

o
n
Ta

sk

p
h
e
ro

m
o
n
eT

y
p
e
 =

 A
L
E
R
T

h
o
p
 =

 1

se
n
so

rR
e
a
d
in

g
V
a
lu

e
 =

a
lt
e
rn

a
ti
v
e

n
e
x
t

:P
h
e
ro

m
o
n
e
E
m

is
si

o
n
Ta

sk

p
h
e
ro

m
o
n
eT

y
p
e
 =

 M
IG

R
A
T
IO

N

h
o
p
 =

 1

se
n
so

rR
e
a
d
in

g
V
a
lu

e
 =

n
e
x
t

n
e
x
t

a
lt
e
rn

a
ti
v
e

:C
o
n
d
it
io

n
a
lN

o
n
F
u
n
ct

io
n
a
l

-c
o
n
d
it
io

n
 =

 “
d
u
ty

C
y
cl

e
M

a
n
a
g
e
r.
ti
m

e
r.

in

te
rv

a
l
<

 2
0
”

:C
h
a
n
g
e
S
le

e
p
T
im

e

-c
h
a
n
g
e
R
a
te

 =
 2

n
e
x
t

p
re

v
io

u
s

p
re

v
io

u
s

p
re

v
io

u
s

p
re

v
io

u
s

p
re

v
io

u
s

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

re
p
lic

a
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

b
a
se

st
a
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

m
ig

ra
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

a
le

rt
 =

 0

:M
ig

ra
to

ry
A
g
e
n
t

n
e
w

A
g
e
n
t

:D
a
ta

A
g
g
re

g
a
ti
o
n

-d
o
m

a
in

 =
 S

P
A
T
IA

L

-h
o
p
 =

 1

-d
u
ty

C
y
cl

e
N

u
m

b
e
r

=

-a
g
g
re

g
a
ti
n
g
N

o
d
e
s

-d
a
ta

L
is

t[
]

=

:A
v
e
ra

g
e

-l
is

tO
fD

a
ta

 =

a
g
g
re

g
a
ti
o
n
T
y
p
e

n
e
x
t

p
re

v
io

u
s

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

re
p
lic

a
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

b
a
se

st
a
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

m
ig

ra
ti
o
n
 =

 0

-m
ig

ra
ti
o
n
_
w

e
ig

h
t_

a
le

rt
 =

 0

:M
ig

ra
to

ry
A
g
e
n
t n
e
w

A
g
e
n
t

 :
A
g
g
re

g
a
te

d
D

a
ta

-s
e
n
so

rN
o
d
e
s

=

-n
e
w

D
a
ta

 =

a
g
g
re

g
a
te

d
D

a
ta

a
g
g
re

g
a
te

d
D

a
ta

 :
A
g
g
re

g
a
te

d
D

a
ta

-s
e
n
so

rN
o
d
e
s

=

-n
e
w

D
a
ta

 =

:C
h
a
n
g
e
S
le

e
p
T
im

e

-c
h
a
n
g
e
R
a
te

 =
 0

.5

n
e
x
t

Extensible and Precise Modeling for Wireless Sensor Networks

Listing 1

-- All Data created by a Sensor should be for the same phenomenon.
context Sensor
inv sensorData->forAll(a1, a2 | a1 <> a2 and

a1.phenomenonType = a2.phenomenonType)

-- AirTempSensor can only generate AirTempData.
context AirTempSensor
inv: sensorData->forAll(self.oclIsTypeOf(AirTempData))

-- dutyCycleNumber is used only when aggregation domain is TEMPORAL.
-- hop and aggregatingNodes should be only used when domain is SPATIAL.

context DataAggregation
inv: dutyCycleManager <> null implies domain = TEMPORAL
 and hop <> null implies domain = SPATIAL
 and aggregatingNodes <> null implies domain = SPATIAL

-- If aggregation domain is SPATIAL, aggregatingNodes and hop are non-full.
context DataAggregation
inv: domain = SPATIAL implies
 (hop <> null) xor (aggregatingNodes <> null)

-- If aggregation domain is TEMPORAL, dutyCycleNumber cannot be null.
context DataAggregation
inv: domain = TEMPORAL implies dutyCycleNumber <> null

Listing 3

//:PheromoneSensingTask
pheromones = pheromoneSensing(REPLICATION);
//:DataAggregation
aggregatedData = call DataAggregation.getAggregatedData(
 SPATIAL, 1, 0, AVERAGE);
//:AgentReplicationTask
if(/* previous.aggregatedData[0] > 2 */) {

int weight[4] = {0, 0, 0, 0};
call Agent.setWeight(weight);
agent = replicationTask(
 aggregatedData.sensorData[0].colonyFormingUnitsPg,1);
// :ChangeSleepTimeTask
Timer_interval *= 0.5;
//:AgentMigrationTask
migrationTask(agent); }

5. Preliminary Evaluation

This section discusses preliminary results to evaluate Baobab. Baobab generates
1,279 lines of nesC code from the model depicted in Figure 5. It takes 544
milliseconds to generate the code. After the code is generated, there are 12 lines of
code to be manually written by a programmer, which takes approximately 2 minutes.
Baobab generates 99.1% of the total code; it can significantly simplify the
development of WSN applications. The generated code can be deployed on the Mica2
sensor node as well as the TOSSIM simulator [10]. Table 1 shows memory footprint
of the generated code on the two deployment environments. Baobab generates

 Bahar Akbal-Delibas, Pruet Boonma and Junichi Suzuki

lightweight nesC code that can operate on sensor nodes with severely limited
resources. For example, a Mica2 node has 4 KB in RAM and 128 KB in ROM.

Table 1. Memory Footprint of a Generated WSN application

 ROM (bytes) RAM (bytes)
Mica2 19,496 1,153
PC (TOSSIM) 72,580 179,188

6. Conclusion

This paper proposes an MDD framework, called Baobab, for WSN application
development. Baobab provides a metamodel that includes the most common
components and behaviors of WSN nodes, in a platform-independent way. Besides, it
can be extended easily for new application domains and platforms without impairing
the existing elements and rules. This metamodel also enables users to model non-
functional aspects of WSN systems as well as their functional aspects. Applications
can be constrained further by a set of OCL rules, and the models can be validated
against these rules. The model-to-code generator creates runnable code from the input
models with a little modification by the programmers.

References
1. Wada, H., Boonma, P., Suzuki, J., Oba, K.; Modeling and Executing Adaptive Sensor

Network Applications with the Matilda UML Virtual Machine. Proc. of IASTED
International Conference on Software Engineering and Applications (2007)

2. Vicente-Chicote, C., Losilla, F., Álvarez, B., Iborra, A., Iborra, P.: Applying MDE to the
Development of Flexible and Reusable Wireless Sensor Networks. International Journal of
Cooperative Information Systems, 16(3), 393–412 (2007)

3. Sadilek, D.A.: Prototyping Domain-Specific Languages for Wireless Sensor Networks. Proc.
of International Workshop on Software Language Engineering (2007)

4. The Object Management Group, Unified Modeling Language (UML) Superstructure and
Infrastructure, version 2.1.2 (2007)

5. Dechene, D.J., El Jardali, A., Luccini, M., Sauer, A.: A Survey of Clustering Algorithms for
Wireless Sensor Networks. Project Report (2006)

6. Krishnamachari, B., Estrin, D., Wicker, S.: The Impact of Data Aggregation in Wireless
Sensor Networks. Proc. of Int’l Workshop of Distributed Event Based Systems (2002)

7. United Nations Economic Commission for Europe: UNECE Standard Bovine Meat
Carcasses and Cuts. 2007 Edition, United Nations, New York and Geneva (2007)

8. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological
criteria for foodstuffs. Official Journal of the European Communities (2005)

9. Boonma, P., Suzuki, J.: BiSNET: A biologically-inspired middleware architecture for self-
managing wireless sensor networks. Computer Networks, 51 (2007)

10. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. ACM Conf. on Embedded Networked Sensor Systems (2003)

