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Abstract

In Service Oriented Architecture, each application is of-
ten designed as a set of abstract services, which defines its
functions. A concrete service(s) is selected at runtime for
each abstract service to fulfill its function. Since different
concrete services may operate at different Quality of Ser-
vice (QoS) measures, application developers are required
to select an appropriate set of concrete services that satis-
fies a given Service Level Agreement (SLA) when a number
of concrete services are available for each abstract service.
This problem, the QoS-aware service composition problem,
is known NP-hard, which takes a significant amount of time
and costs to find optimal solutions (optimal combinations
of concrete services) from a huge number of possible so-
lutions. This paper proposes an optimization framework,
called E3, to address the issue. By leveraging a multiob-
jective genetic algorithm, E3 heuristically solves the QoS-
aware service composition problem in a reasonably short
time. The algorithm E> proposes can consider multiple
SLAs simultaneously and produce a set of Pareto solutions,
which have the equivalent quality to satisfy multiple SLAs.

1. Introduction

Service Oriented Architecture (SOA) is an emerging
style of software architectures to build, integrate and main-
tain large-scale distributed systems [1,2]. In SOA, each ap-
plication is often designed with a set of abstract services
and a business process. Each abstract service encapsulates
the function of an application component using its interface,
and a concrete service(s) is selected (bound) at runtime to
fulfill the function.

In SOA, a Service Level Agreement (SLA) is defined
upon a business process as its end-to-end QoS constraints
since a business process defines how abstract services inter-
act to accomplish a certain business goal. Since different
concrete services may operate at different QoS measures,
application developers are required to select an appropriate
set of concrete services that guarantees the fulfillment of a

Katsuya Oba
OGIS International, Inc.
San Mateo, CA 94404
oba@ogis-international.com

given SLA when a number of concrete services are available
for each abstract service.

This problem, the QoS-aware service composition prob-
lem, is a combinatorial optimization problem which en-
sures the optimal mapping between each abstract service
and available concrete services [3,4]. Since the problem is
known as NP-hard [5], it takes a significant amount of time
and costs to find optimal solutions (optimal combinations
of concrete services) from a huge number of possible so-
lutions, and several heuristics have been proposed to find
semi-optimal solutions in a reasonably short time [5-10].
However, existing heuristics assume simple service compo-
sition models. For example, they do not consider SLAs or
consider only single SLA at a time. Also, they give sin-
gle semi-optimal solution rather than a set of solutions that
exhibits the trade-offs between different solutions.

This paper proposes an optimization framework, called
E? (Evolutionary multiobjective sErvice composition op-
timizEr), to address the QoS-aware service composition
problem. E3 defines a service composition model and pro-
vides a multiobjective genetic algorithm, called E3-MOGA,
to solve the QoS-aware service composition problem. E3-
MOGA can consider multiple SLAs (e.g., Platinum, Gold
and Silver service levels) simultaneously. Also, it provides
a set of solutions of equivalent quality that give the option
to assess the trade-offs between different solutions.

This paper is organized as follows. Section 2 shows the
model of a service composition and its QoS measures that
E3 assumes. Section 3 describes the details of E3-MOGA.
Section 4 presents several simulation results to evaluate E>-
MOGA. Sections 5 and 6 conclude with some discussion on
related work.

2. Service Composition

This section describes the model of a service composi-
tion and its QoS measures that E> assumes.



2.1. Business Process and Services

As Figure 1 and Tabl 1 illustrates, a business process
consists of a series of abstract services (e.g., Abstract
Service 1 and Abstract Service 2) and defines the order
of executions of them. Although Figure 1 shows a sequence
flow (a sequence of abstract services), a business process
can split a flow into parallel flows to execute multiple ab-
stract services in parallel (see Section 2.2).

Table 1: Elements in the Business Process Model in E>

A series of abstract services
to execute

An interface of a certain func-
tion

An implementation of an ab-
stract service

A set of Service Instances se-
lected to complete a business
process

A running process of a con-
crete service

Business Process

Abstract Service

Concrete Service

Business Process Instance

Service Instance

An abstract service defines an interface of an applica-
tion’s component (e.g., homology search in bioinformatics),
and a concrete service(s) realizes the interface (i.e., pro-
vides an actual implementation) at different QoS measures
(e.g., Concrete Service 1-1 and Concrete Service 2-2).
When users (or business processes) use a certain abstract
service, they can select concrete services to use depending
on their requirements on QoS measures. For example, de-
pending on the amount of allocated computing resources, a
service operates at different QoS measures in a grid com-
puting environment such as Amazon EC2'. Amazon EC2
allows anyone to deploy and operate applications on it. It
provides three different deployment plans that allocate dif-
ferent amount of computing resources to applications’ in-
stances. For example, the low-end plan allocates a 1.0GHz
processor and 1.7GB memory to an application’s instance
at $0.1 per hour. The high-end plan allocates four 2.0GHz
processors and 15GB memory to an application’s instance
at $0.8 per hour. Different deployment plans in Amazon
EC2 correspond to different concrete services in Figure 1.

E3 currently assumes that each concrete service has three
QoS attributes: throughput, latency and cost (usage fee).
Cost is fixed, but throughput and latency can vary at run-
time. E> assumes that probability distributions of QoS mea-
sures are known from history data. For example, Concrete
Service 2-1 operates without any problem, i.e., through-
put is 2000 (req/sec) and latency is 30(ms), at 80% of prob-
ability, but its performance degrades at 18% and it is not
available at 2% of probability.

For each abstract service in a business process, a busi-
ness process instance (a running business process) must
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have at least one instance of a corresponding concrete ser-
vice to complete the business process. A business process
instance can have multiple service instances in parallel to
improve the availability and performance (e.g., throughput).
In case of Amazon EC2, users can deploy arbitrary number
of application’s instances at a time. For example, users can
deploy two and three instances of an application with low-
end and high-end deployment plans respectively. In Fig-
ure 1, a business process instance have multiple instances
of Concrete Service 1-1, 2-2 and 1-4 to realize Abstract
Service 1.

Given a definition of a business process and a set of con-
crete services, E> determines (1) which concrete services to
use, and (2) how many instances of each concrete services
to use, in order to create business process instances that sat-
isfies a certain SLA. For example, E> automatically finds
multiple business process instances of which throughput is
over 12000 (req/sec), latency is less than 100 (ms) and cost
is less than 1000 ($).

2.2. QoS Model

Computing overall QoS measures of a business process
instance requires to aggregate QoS measures of services in-
stances that the business process instance contains. First,
E3 calculates the expected QoS measures of each service in-
stance since each instance has multiple levels of QoS mea-
sures with certain probabilities. Let X = (xo,...,x,) be a set
of possible QoS measures and Py, = Pr{X = x;} (X py, = 1)
be the corresponding probabilities. Expected QoS measures
of a service instance are calculated as E(X) =} x;pyi.

Then, E3 calculates overall QoS measures of a business
process instance. Depending on the structure of a business
process (Fig 2) and QoS attributes, different aggregate func-
tion is applied (Table 2).

A set of service instances for an abstract service is de-
ployed in redundant parallel and instances are used with
equal probability (Figure 2). An overall throughput is the
summation of service instances’ throughput, an overall la-
tency is the average of service instances’ latency, and an
overall cost is the summation of service instances’ cost.

In a sequence of abstract services, corresponding ser-
vice instances are executed one by one. Therefore, an over-
all throughput is the minimal abstract service’s throughput
(i.e., bottleneck), an overall latency is the summation of ab-
stract services’ latency, and an overall cost is the summa-
tion of service instances’ cost. For example, in Figure 2, an
overall QoS measures of a sequence consisting of Abstract
Service 2 and Abstract Service 3is calculated as an ag-
gregation of Abstract Service 2 and Abstract Service
3’s overall QoS measures.

In a parallel of sequences, sequences of abstract services
are joined (synchronized) at the end. Therefore, an overall
throughput is the minimal sequence’s throughput, an overall
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Figure 1: Business Process Model
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Figure 2: Structure of Business Process

latency is the minimal sequence’s latency, and an overall
cost is the summation of service instances’ cost.

Since any business processes can be decomposed to
a collection of redundant parallel, sequence and parallel,
overall QoS measures of a business process is calculated
by applying aggregate functions in Table 2.

are clearly conflicting and, therefore, there is no single op-
timum to be found. Multiobjective GAs can yield a whole
set of Pareto solutions, which are all optimal in some sense,
and give the option to assess the trade-offs between different
solutions. For example, application developers can choose
different service compositions: one yields low-throughput
with low-cost, high-throughput with high-cost, or interme-
diate results.

3.1. Optimization Objectives

E3-MOGA is a multiobjective genetic algorithm de-
signed to solve the QoS-aware service composition prob-
lem. An individual is designed to represent a solution of
the QoS-aware service composition problem (i.e., a service



composition or a business process instance) through a set
of genes. For example, Figure 3 shows a set of genes that
specifies a service composition of a business process con-
sisting of three abstract services, i.e., Abstract Service 1,
Abstract Service 2 and Abstract Service 3, and each
abstract service has four or three concrete services. The
service composition in Figure 3 consists of two instances of
Concrete Service 1-1, one instance of Concrete Service
1-2, three instance of Concrete Service 2-1, two in-
stances of Concrete Service 3-2 and one instance of
Concrete Service 3-3.

# of instances of
Concrete Service 1-2

# of instances of
Concrete Service 3-2

# of instances of # of instances of # of instances of
Concrete Service 1-1 Concrete Service 2-1 Concrete Service 3-3

i | i
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Figure 3: Genes Representing a Business Process Instance

In fact, E3 currently supports three different service lev-
els, i.e., Platinum, Gold and Silver, simultaneously and an
individual is designed to represent three service composi-
tions for each service level. An individual is evaluated and
a set of overall QoS measures, i.e., throughput, latency and
cost of each service level and the total cost, is given as its
objective values (Figure 4).
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Figure 4: An Example of an Individual

3.2. E>-MOGA

Listing 1 is a pseudo code of E3-MOGA. In E3-MOGA,
a fitness value of an individual is calculated based on its
domination rank and density, which are calculated based
on objective values that the individual provides. The dom-
ination rank of an individual indicates how the individual
outperforms the other individuals. The density of an indi-
vidual indicates how many individuals provide similar ob-
jective values as the individual. The domination rank en-
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courages a fitness value, while the density discourages a fit-
ness value. E3-MOGA maintains a set of individuals with
higher fitness values, which is called elite population, and
they evolve their genes across generations through the use
of genetic operations (i.e., crossover and mutation).

Listing 1: £3-MOGA

g=0
P’ = Randomly generated p individuals, =0
repeat until g=gua {
repeat until |Q%] = u {
p1 = RWSelection(P8), p» = RWSelection(P%)
g = Crossover(p;, p2)
g = Mutation(gq)
0% = Q®uq if q¢ Q¢
}
P8*l = Top u of Sort(PSUQ¥)
g=g+1

}

Crossover (p;, p2){
for i=1,.,n {
center; = (p1[i] + p2lil) /2
(Fitness(py) — Fitness(p2))|p11il — p2[ill/2

} Ly = centeri + Flpu)+ F(p2)
return g
}
Table 3: Variables and Functions in E3-MOGA

Smax Maximum number of generations

7 Population size

P8 A set of individuals {pi|l < k < u} in elite
population at g-th generation

plil i-th gene of individual p, (0 <i<n)

Q8 A set of offspring that is generated at g-th
generation

Sort(P) A function sorting P based on Fitness(py)

RWSelection(P) | A function performing a roulette wheel se-
lection on P based on Fitness(py)

Fitness(px) A function returning DRanking(py) /
Density(py)

DRanking(py) A function returning py’s domination rank

Density(px) A function returning the density of pi

Mutation(py) A function randomly changing one of p;’s
genes

A domination rank indicates the excellence of an in-

dividual in the objective space [11]. Let a set of ob-

- -
jective values of an individual i be o' = (oi,m,o’ )
min

i1 in il im

(omax,...,omux,omin,...,omin) where omax and omm are sets
of objective values to be maximized and minimized re-
spectively. An individual i is said to dominate an indi-

vidual j, if both of the following conditions are true: (1)
, Jik ko ik Jik
{V(Omax,OmaX)| Omax Z Omax} and { ( lmm’ mm) |0mm - Omm}’
: Jok ko s
and 2) {3 (omax,omax) oK > ok 3 or {El(o:nm, mm) Iomm <
o’ } Moreover, E3-MOGA considers constraints of objec-

min
tives. For example, a constraint specifies that throughput



must be over 8000 (req/sec). When an individual cannot
satisfy constraints, the individual is said to be infeasible.
E3-MOGA considers a degree of violation of constraints
for infeasible individuals, in addition to objective values.
An individual i is said to constraint-dominate an individual
J, if any of the following conditions are true: (1) individual
i is feasible and j is not, (2) both i and j are feasible and
i dominates j with respect to their objective values, or (3)
both i and j are infeasible but i dominates j with respect to
their constraint violations. (Constraint violations are objec-
tive values to be minimized.)

An individual’s domination rank is assigned based on the
ascending order of the number of constraint-dominating in-
dividuals. An individual i’s domination rank is given as
u —ndom; where ndom; is the number of individuals that
are not constraint-dominated by the individual i. Therefore,
individuals that constraint-dominated by a number of other
individuals have lower domination ranks, while individu-
als that are not constraint-dominated by others, called non-
dominated individuals, are at the highest domination rank.
Then, E3-MOGA gives higher fitness to individuals with
higher domination ranks (Table 3).

A density indicates the diversity of individuals in the ob-
jective space. Maintaining the diversity of individuals is
an important consideration in MOGA to obtain individu-
als uniformly distributed over the objective space. Without
taking preventive measures, the population tends to form
relatively few clusters and cannot yield a whole set of po-
tential solutions. E3-MOGA follows the simple hyper-grid
based scheme from PESA [12] to assign density for each in-
dividual. The objective space is divided into certain size of
K-dimensional cells. (K is the number of objectives.) The
number of individuals in each cell is defined as the density
of the cell, and the density of an individual is equal to the
density of the cell where the individual is located. Then,
E3-MOGA gives higher fitness to individuals with lower
densities to improve the diversity of individuals (Table 3).

Individuals evolve their genes across generations
through genetic operations. Once two parents are selected
from the elite population by using roulette wheel selection
based on fitness values [13], they crossover to generate an
offspring. As in Listing 1, the offspring’s gene values are
calculated based on the proportion of fitness values of its
two parents, i.e., gene values are assigned close to a par-
ent that provides higher fitness value. After that, one of
offspring’s genes is randomly changed. After /mu of off-
spring are created, they are added to the elite population.
Then, the top /mu individuals with respect to their fitness
values are preserved as the next generation’s elite popula-
tion. E3-MOGA repeats this process until g,,..-th genera-
tion, and gives a set of feasible and non-dominated solutions
as Pareto solutions.

4. Simulation Evaluation

This section describes simulation configurations and a
set of simulation results.

4.1. Simulation Configurations

This simulation study simulates a business process con-
sists of four abstract services as shown in Figure 5. Each
abstract service has three concrete services at different QoS
measures: one for high-end (i.e., high performance but high
cost), one for low-end (i.e., low performance and low cost)
and intermediate one (Table 4).

Table 5 shows a set of SLAs. Platinum and Gold service
levels define the worst case throughput and latency. Silver
service level defines only the worst case throughput. Plat-
inum and Gold service levels have no limit on the cost (bud-
get), but Silver service level has a severe constraint. More-
over, there is a constraint on the total cost of three service
compositions. E? is expected to find solutions (i.e., service
compositions for Platinum, Gold and Silver service levels)
that satisfy all constraints.

Abstract
/’ Service 2 \
>
\ Abstract /1
Service 3

Figure 5: A Business Process in a Simulation Study

Abstract
.9[ Service 1 ]

Abstract
|9[ Service 4 ]9©

4.2. Simulation Results

In this simulation study, the population size (mu) is 300
and the maximum generation (g,,) is 1000. Figure 6 to 17
show simulation results.

Figure 6, 7 and 8 show throughput of service composi-
tions for Platinum, Gold and Silver service levels respec-
tively. Since initial service compositions are randomly gen-
erated and use excessive number of service instances, they
achieve unnecessarily high throughput. E3-MOGA, there-
fore, reduces the number of service instances as well as the
cost during the first 25 generations drastically. The worst
case of each level’s throughput reaches to its lower bound
at around 170th generation.

Figure 9, 10 and 11 show latency of service composi-
tions for each service level. Silver service level’s latency
increases since it has no constraint. The worst cases of Plat-
inum and Gold service levels’ throughput reach to their up-
per bounds at around 170th generation.

Figure 12, 13 and 14 show cost of service compositions
for each service level. The average of Silver service level’s
cost reaches to its upper bound at around 40th generation.
After that, E> evolves individuals to find better solutions
and the average keeps decreasing. The worst case of Silver
service level’s cost reaches to their upper bounds at around
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Table 4: QoS Measures of Concrete Services

is designed to obtain individuals uniformly distributed over
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1 1 085 9000 ) 90 efficient of variations of each objective values. (The more
0.05 10000 50 diverse objective values are, the higher the coefficient of
0.05 6000 80 . . .
0.05 0 0 variation is.) As shown in Figure 17, even after all indi-
2 8-?2 iggg ?80 50 viduals being feasible and non-dominated, E3 evolves indi-
0.05 0 0 viduals to obtain diverse solutions.
3 o o o 10 Figure 18 shows examples of feasible and non-
0.20 1500 250 dominated individuals obtained at 1000th generation. As
. : 8'38 2000 20 < shown in the Figure, a service composition for Platinum
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2 8'3(5) gggg }g 100 a service composition for Silver service level tends to use
0.05 3000 20 low-end concrete services. Moreover, the three individuals
3 g;g 2‘888 %2 70 are distributed, and it shows that E> gives a set of diverse
0.05 2500 30 individuals that exhibits the trade-offs. The first one in Fig-
0.05 0 0 ure 18 optimizes Platinum service level’s performance, the
3 1 0.70 1500 30 30 - . ,
0.30 2000 20 second one optimizes Gold service level’s performance, and
2 8?8 2888 ;(2) 80 the third one optimizes the total cost. If developers want to
0.10 500 80 improve QoS measures as long as budget allows, they can
3 0.50 1000 60 10 select the first or the second individuals depending on which
030 500 50 . . .
0.20 0 0 service levels, i.e., Platinum or Gold, to focus. Developers
4 1 0.75 2500 50 20 can select the third one if they want to save budget as long
025 3000 55 .
2 0.90 6000 15 =0 as SLAs are satisfied.
0.05 4000 20 Platinum Users Gold Users Silver Users
0.05 3000 20 —— N i .
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Silver | 2000 - 250 Gold 115000 | 109.1 840.0 1940.0
Silver 2090.0 340.0 150.0
170th generation. Platinum and Gold service levels do not . . . , . . , , ;
have constraints on their cost, but Platinum service level’s [1]1]of6]o[o]2]3]0]o]3[o[o[2]o}2]0] 1]2]os|o[2[o I E L
constraints on throughput and latency are more severe than ) _ _ _ ' ; ' ' _
. s . Throughput | Latency Cost Total Cost
Gold service level’s ones (Table 4). Thus, a service com- ::> Pt 121500 983 9500
position for Platinum service level tends to use large num- Gold 6550.0 118.4 520.0 1610.0
ber of instances of high-end concrete services, and it re- Silver 2090.0 310.3 140.0

sults in higher cost compare with Gold service level. Fig-
ure 15 shows the total cost of three service compositions.
The average of the total cost reaches to its upper bound at
around 50th generation. After that, E3 evolves individu-
als to find better solutions and the average keeps decreas-
ing. The worst case of the total cost reaches to their upper
bounds at around 160th generation.

Figure 16 shows the number of (1) feasible individuals
and (2) feasible and non-dominated individuals. All indi-
viduals become feasible at around 170th generation, and
become feasible and non-dominated at around 230th gen-
eration. At that time all individuals represent optimal so-
lutions, however they may form few clusters. E3-MOGA

Figure 18: Feasible and Non-Dominated Individuals

5. Related Work

[5-7] leverage genetic algorithms to solve the QoS-
aware service composition problem. Since they use single-
objective genetic algorithms, they can provide only a single
optimal solution. Also, they define aggregate functions to
combine multiple objective values into a single objective
value, and the quality of solutions highly depends on the
design of the aggregate functions. For example, a weighted
sum is widely used as an aggregate function, however it is



not easy to define weight values for each objective in a fairly
manner since objectives have different value ranges and pri-
orities. In contrast, E* leverages a multiobjective genetic
algorithm. It gives multiple solutions of equivalent quality,
i.e., the option to assess the trade-offs between different ser-
vice compositions. Also, E3-MOGA eliminates the need of
aggregate functions and compare individuals through a set
of objective values rather than aggregated values.

[8-10] leverage multiobjective genetic algorithms to
solve the QoS-aware service composition problem. Al-
though their approach is similar to £3, their models are rel-
atively simple. They do not consider the notion of SLA.
Moreover, [9, 10] do not consider the notion of service in-
stances and the probability distribution of QoS measures.
In contrast, £° considers the notion of SLA, service in-
stances and the probability distribution of QoS measures.
The model in E* well reflects the realities of SOA applica-
tions especially in grid computing environments.

6. Conclusion

This paper proposes an optimization framework, called
E3, to address the QoS-aware service composition prob-
lem. E> defines a service composition model and provides
a heuristic algorithm, called E3-MOGA, to solve the QoS-
aware service composition problem. E3-MOGA considers
multiple SLAs simultaneously and provides a set of solu-
tions of equivalent quality.

Several extensions are planned as future work. E> will
be extended to support QoS of connections among service
instances. When a grid computing environment consists
of several server farms distributed over the world, latency
and data transmission cost among service instances varies
depending on server farms where service instances are lo-
cated. For example, latency between service instances in
the same server farm is small, while latency between dif-
ferent server farms are large. Also, E? will be extended to
support the notion of computing resources, such as hosts.
When considering in-house applications, multiple service
instances may be deployed on one host and it lowers their
QoS measures compare with the case that a certain amount
of computing resources are guaranteed for each service in-
stances. This extension enables > to solve in-house SOA
applications’ optimization problem. For example, to find
appropriate number of hosts to purchase and how many ser-
vice instances to deploy on which hosts.
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