
Middleware Support for Pluggable Non-functional Properties
in Wireless Sensor Networks

Pruet Boonma and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
{pruet, jxs}@cs.umb.edu

Abstract
Wireless sensor networks (WSN) imposes stringent con-

straints on efficiency, memory footprint and power con-
sumption. Since the need to satisfy these constraints of-
ten results in tightly coupled designs, WSN applications
tend to be inflexible; it is hard to flexibly reuse, intro-
duce, customize and replace various non-functional prop-
erties (e.g., data routing, concurrency, data aggregation
and event filtering) for developing and maintaining WSN
applications. In order to address this issue, this paper
proposes the TinyDDS middleware, which decouples vari-
ous non-functional properties from WSN applications and
allows those applications to flexibly reuse and transpar-
ently configure non-functional properties according to their
own requirements. Without breaking the generic architec-
ture of TinyDDS, the proposed pluggable framework al-
lows WSN applications to have fine-grained control over
non-functional properties and specialize in their own re-
quirements. Currently, TinyDDS supports two types of non-
functional properties: application-level and middleware-
level non-functional properties.

1. Introduction
Wireless sensor networks (WSNs) require per-node em-

bedded software that imposes stringent constraints on effi-
ciency, memory footprint and power consumption. Since
the need to satisfy these constraints often results in tightly
coupled designs, WSN applications tend to be inflexible; it
is hard to flexibly reuse, introduce, customize and replace
various non-functional properties (e.g., data routing, con-
currency, data aggregation and event filtering) for develop-
ing and maintaining WSN applications. This can substan-
tially increase the effort and cost of WSN application devel-
opment and maintenance.

In order to address this issue, this paper investigates
TinyDDS, which is an open-source1 and standards-based
middleware for resource and performance sensitive WSNs.

1TinyDDS is available at dssg.cs.umb.edu.

Compliant with the Data Distribution Service (DDS) stan-
dard specification [6], TinyDDS is designed and imple-
mented generic enough to aid in developing a wide range
of event detection and data collection applications.

The core of TinyDDS is a pluggable framework that de-
couples various non-functional properties from WSN ap-
plications and allows those applications to flexibly reuse
and transparently configure non-functional properties ac-
cording to their own requirements. For example, an event
detection and tracking application may require some in-
network event correlation and filtering mechanisms as its
non-functional properties in order to eliminate false positive
data in the network. A periodical data collection applica-
tion may require a data aggregation mechanism and power-
efficient routing mechanism as its non-functional proper-
ties in order to reduce traffic volume and expand the net-
work’s lifetime. Without breaking the generic architec-
ture of TinyDDS, the proposed pluggable framework allows
WSN applications to have fine-grained control over non-
functional properties and specialize in their own require-
ments. Currently, TinyDDS supports two types of non-
functional properties: application-level and middleware-
level non-functional properties.

This paper is organized as follows. Section 2 overviews
the DDS specification, and Section 3 describes the design
and implementation of TinyDDS. Section 4 discusses how
non-functional properties are decoupled from and reusable
by applications. Sections 5 and 6 conclude with some dis-
cussion on related and future work.

2. An Overview of the OMG DDS Specification

The Data Distribution Service (DSS) is an Object Man-
agement Group’s standard specification for publish/sub-
scribe middleware in distributed network systems. An ap-
plication implemented on top of DDS can publish events,
i.e. data or control messages, to the network with asso-
ciated topic and the events are captured by any network

nodes subscribe to the topic of that events. According to [6],
DDS consists of two levels, a lower Data-Centric Publish-
Subscribe (DCPS) level and an optional higher Data Lo-
cal Reconstruction Layer (DLRL). DCPS is a middleware
which allows application that want to sent out events de-
clare their intent to become Publishers of particular event’s
topics. On the other hand, applications that want to access
some particular event’s topics declare their intent to become
Subscriber. Each time a Publisher sent out new events of
particular topic into this middleware, the middleware prop-
agate the events to all interested Subscribers. DLRL au-
tomatically updates events locally from the remote updates
and allows the application to access the events ’as if’ they
were local. In this work, only DCPS is implemented be-
cause, given the sensor nodes’ limited resources, the over-
head of implementing DLRL is not worth its benefit. Figure
1 shows the DDS architecture.

Publisher

Application
(Event Source)

Subscriber

Subscriber
Listener

Application
(Event Sink)

Topic B
Data ReaderData Writer

Network

DDS DDS

Event flow Data flow

Topic A Topic B

Do
m

ai
n

Pa
rti

cip
an

t

Do
m

ai
n

Pa
rti

cip
an

t

Event Source Event Sink

Figure 1. DDS Architecture

From the figure, on the event sink application, single
instance of the DomainPartipant class is instantiated in
each middleware. The instance of this class maintains
the list of all other instances initiated in the middleware.
Application first instantiate an instance of Publisher from
DomainParticipant. Then, the application instantiate a
set of instances of the Topic class depends on how many
topic interested by this application. Topic is an identifier
that uniquely identifies particular event’s content. On the
lowest level, an instance of the Subscriber class keeps
monitoring the lower-level network traffic and capture any
events from the network. Then, the Subscriber instance
checks the topic of captured events and inform the instances
of SubscriberListener and DataReader which are as-
sociated with that topic for the availability of the events.
Next, SubscriberListener informs application about the
existence of the events and the application read the events
from SubscriberListener, which internally read data
from DataReader. Figure 3 shows the sequence diagram
of publication process.

On the event source application, the application pub-

:Application

create_subscriber

Create

:DomainParticipant

:Subscriber
Listener

set_listener

:DataReader

get_datareaders

"data available"

Network

read

:Subscriber

Create

create_datareader
Create

"data available"

on_data_on_readers

"data available"

read

Figure 3. Subscription Process

lishes its events through instances of the DataWriter
class. Each topic defined in the system has an associated
DataWriter instance, thus application has to choose ap-
propriate DataWriter instance depends on topic of the
events it wants to publish. Events from all DataWriter
are published through the single instance of the Publisher
class to the lower-level network infrastructure. Figure 4
shows the sequence diagram of publication process.

:Application

create_publisher
Create

create_topic

:DomainParticipant

Create
:Topic

create_datawriter

:DataWriter
Create

write
"data available"

"data available"

Network

write

:Publisher

"data available" "data available"

Figure 4. Publication Process

Instead of receiving all events associated with a topic,
the application can create a special kind of topic which is
an instance of the ContentFilteredTopic class. This

2

enable()
set_qos()
get_qos()
set_listener()
get_listener()

Entity

name: string
QosPolicy

create_publisher()
create_subscriber()
create_topic()
create_contentfilteredtopic()

DomainParticipant

DomainEntity

get_expression_parameters()
set_expression_parameters()

filter_expression : string
ContentFilteredTopic

Topic

create_datawriter()

Publisher

write()

DataWriter

create_datareader()

Subscriber

read()
on_data_available()

DataReader

on_data_on_readers()

SubscriberListener

Data

* 1

*

* *
* *

11

*

0..1

*

Figure 2. Standard DDS Interfaces

ContentFilteredTopic indicates the subscriber does not
want to receive all events published under the topic. Rather,
it wants to see only the events whose contents satisfy cer-
tain criteria. For example, an application may be interested
in a topic called Temperature and only when the events of
this Temperature topic is in between 100 and 150; therefore,
ContentFilteredTopic sets the criteria as Temperature >
100 AND Temperature < 150. The format of criteria expres-
sion is a subset of SQL syntax. Moreover, for each DDS
components, such as Topic, DataWriter, DataReader,
Subscriber or Publisher, a QoS policy can be specify
to govern their behavior. Application developers can de-
fine the QoS policy through an instance of the QosPolicy
class. Then, QosPolicy is attached to the desired compo-
nent. The DDS middleware tries to meet the QoS policy by
adjusting its working parameters. In the other words, QoS
policy is a non-functional properties of the application run-
ning on DDS middleware.

Figure 2 shows a partial interface diagram of DDS.

3. TinyDDS

Figure 5 shows the TinyDDS components diagram. With
respect to TCP/IP reference model, TinyDDS operates in
transport layer and work on top of any network layer imple-
mentation. TinyDDS follows Layer design pattern [1] by
separating different functionalities into different layers. At

the top most layer, TinyDDS defines a subset of DDS inter-
faces to be used by applications. Then, the implementation
of those interfaces, as described in section 2, operates on
top of an overlay network for event routing. Different rout-
ing protocols can be used to implement the overlay network
by implementing in the Overlay Event Routing Protocols
(OERP) layer. This OERP layer allows application devel-
oper to choose appropriate routing protocol to suit their re-
quirements and constraints. For example, in sensor network
with very limited memory space sensor nodes, flooding-
based routing protocol may be used because it needs mini-
mal memory space to maintain routing table. On the other
hand, sensor network which try to minimize the energy con-
sumption of memory rich sensor nodes may use DHT-based
routing protocol. By using this OERP layer, TinyDDS frees
developers from the limitation of routing algorithm used in
network layer which generally depends on sensor node plat-
form such as MicaZ which based on Zigbee protocol stack.
The routing protocol in OERP layer utilizes low-level net-
work layer implementation through a transport layer inter-
face called TinyDDS L4 Adaption Layer (L4AL). L4AL al-
lows TinyOS to operates with any network and MAC layer
protocol, such as AODV and Zigbee respectively.

3

TinyDDS L4 Adaptation Layer (L4AL)

AODV

Zigbee

Flooding-
based

DHT-
based

Directed
Diffusion

Overlay Event
Routing Protocols

(OERP) Layer
Transport (L4)

Layer

Network (L3)
Layer

MAC (L2)
Layer

DDS Interfaces

Applications

TinyDDS

...

......

......

Figure 5. Architectural Components in Tiny-
DDS

3.1. DDS Interfaces

In the top most layer, TinyDDS provides an API for ap-
plication developers. This API provides a subset of DDS
interfaces which is implemented as shown in the interface
diagram in figure 2. TinyDDS provides interfaces for creat-
ing topics, subscribe to events of topics and publish events
for particular topics. For each interfaces, the implementa-
tion is provided so application developers do not need to im-
plement those interfaces themselves. In particular, Bridge
design pattern [2] is used to hide low-level implementation
from application developers. The implementation for the
DDS interfaces is written in nesC programming language
and optimized for small sensor nodes platform such as Mi-
caZ using several design pattern such as dispatcher is used
to handle Topic interface. In particular, instead of instanti-
ating different Topic into different nesC components, only
single nesC complement is used to handle all topics. Then,
application developers can follow the sequence diagram on
figure 3 and 4 for subscribing and publishing events respec-
tively. Listing 1 shows a fragment of an event sink appli-
cation which subscribe to a topic called ”TempSensor”, i.e.,
temperature sensor reading.

1 Subscriber_t subscriber;
2 Topic_t ts_topic;
3 DataReader_t data_reader;
4 SubscriberListener_t listener;
5 command result_t StdControl.start() {
6 subscriber = call DomainParticipant.create_subscriber();
7 ts_topic = call DomainParticipant.create_topic("TempSensor");
8 listener = call SubscriberListener.create(ts_topic);
9 call Subscriber.set_listener(listener);

10 data_reader = call Subscriber.create_datareader(
11 ts_topic , listener);
12 }
13
14 event ReturnCode_t SubscriberListener.data_available(
15 Topic_t topic) {
16 Data event;

17 if(topic == ts_topic) {
18 event = call SubscriberListener.read();
19 // processing event..
20 }
21 }

Listing 1. Event Sink Application

From the listing, in the method StdControl.start()
which is called when the sensor node starts, the ap-
plication creates an instance of the Subscriber,
Topic, and DataReader class and also register
an SubscriberListener. Then, in the method
SubscriberListener.data available(), which
is called when the underlying Subscriber receives an event
with topic ”TempSensor”, the application can get that event
from SubscriberListener.

1 Publisher_t publisher;
2 Topic_t topic;
3 DataWriter_t data_writer;
4 Data data;
5 command result_t StdControl.start() {
6 publisher = call DomainParticipant.create_publisher();
7 topic = call DomainParticipant.create_topic("TempSensor");
8 data_writer = call Publisher.create_datawriter(
9 publisher , topic);

10 // Get sensor reading, and put to data variable
11 call DataWriter.write(data_writer , data);
12 }

Listing 2. Event Source Application

Listing 2 shows a fragment of an event source
application. From the source code in the method
StdControl.start(), the application create an instance
of the Publisher, Topic, and DataReader class. Then, it
publishes a data through the DataWriter.

3.2 Overlay Event Routing Protocols
(OERP)

This OERP layer provides an overlay network over sen-
sor network’s physical ad-hoc networks. The overlay net-
work is used for transporting published events, i.e. sensor
data, to all nodes who subscribes to the events. The pub-
lished event is routed to each subscribers according to the
routing protocols deployed within OERP layer. Applica-
tion developers can specify the deployed routing protocols
to suit their need. The OERP layer encapsulates the over-
lay network algorithm and implementation from DDS in-
terfaces and the lower level physical network. Routing pro-
tocols in OERP layer work with lower-level network pro-
tocol through the L4AL. In the other words, routing proto-
cols can be seen as a non-functional properties of TinyDDS
which can be deployed to meet application developers’ non-
functional requirements. For example, application develop-
ers who want to reduce the price and size of sensor nodes
by using small-memory sensor nodes may choose to use
flooding-based routing protocol which will use very small
memory space. The routing protocols used in this OERP
framework are developed by library developers and can be

4

used in any TinyDDS-based applications.

3.3 TinyDDS L4 Adaptation Layer
(L4AL)

To access to low level physical network, the routing pro-
tocols in OERP make use of low level physical network
through a network abstract layer called TinyDDS L4 Adap-
tation Layer (L4AL). This L4AL utilize Bridge design pat-
tern to separate the real low level physical network imple-
mentation from the higher level overlay network. Thus,
TinyDDS can be portable among different sensor platform.
In particular, L4AL provides an interface to access physical
network functions such as how to get the list of neighbor-
ing nodes, how to get the link quality to each neighboring
node and also how to send/receive data to/from particular
nodes in the network. These functions are used by the rout-
ing protocols on the OERP layer and implemented by the
Network Layer implementation. Internally, L4AL contains
a set of tables that maintains the information of network,
such as neighbor list and link quality, and a set of event
queues. There are two types of event queues, incoming
queues and outgoing queues. The events submitted from
OERP for sending out to physical network is put to the end
of outgoing queue while the events collected from physical
network are put to the end of incoming queue, waiting to be
processed by the routing protocol in OERP.

3.4. Application Development with Tiny-
DDS

dds.idl
(IDL) IDL2nesc

Intermediate
Interface

Representation
(XML)

TinyDDS
interfaces

(nesC)

Application
Specification

(XML)

Middleware Level
 Non-Functional

Properties (nesC)

Application
Implementation

(nesC)

nesC compiler

Executable
Code

Application
Configuration

(nesC)

TinyDDS

TinyDDS Library Application

Application Level
 Non-Functional

Properties (nesC)

TinyDDS
Implementations

(nesC)

Figure 6. Application Development Model

Figure 6 shows the development model of an TinyDDS

application. There are three main components of the de-
velopment model, TinyDDS middleware, TinyDDS Library
and the application. The TinyDDS middleware comprises
of two parts, the DDS interfaces definition and the Tiny-
DDS implementation of the interfaces. The DDS interfaces
definition is directly generated from the dds.idl, which is the
official DDS interfaces definition in IDL format from OMG.
The dds.idl is first converted into XML format. Then,
IDL2nesc converts the DDS interfaces definition from XML
format to TinyDDS interfaces and Application Configura-
tion. The Application Configuration follows Facade design
pattern [2] and describes how to connect each interfaces and
implementation together. IDL2nesc also uses an Applica-
tion Specification, written in XML, in order to generates
appropriate Application Configuration, for example, Appli-
cation Specification specifies which routing protocol will be
used in OERP layer, then Application Configuration con-
nects the implementation of the routing protocol into OERP
interface.

The second components is the TinyDDS Library. Tiny-
DDS Library consists of two non-function properties im-
plementation, namely, application-level and middleware-
level non-functional properties. The application-level non-
function properties provides a set of services which can be
used by application, such as data aggregation and event de-
tection. The middleware-level non-function properties pro-
vide the services inside the middleware, for example, rout-
ing protocols in OERP layer. Library developer develops
these functionality in the TinyDDS Library and the Tiny-
DDS Library can be used in any application on any hard-
ware platform.

The third components is the Application itself. The Ap-
plication consists of two parts, the Application Specifica-
tion which is used by the IDL2nesc compiler and the Ap-
plication Implementation. The Application Implementation
is developed by application developer and perform a cer-
tain task such as data collection and event detection. The
examples of Application Implementation are shown on the
Listing 1 and 2. The Application Specification describes the
overview of the application, for example, what is the target
platform, or which routing protocol will be used in OERP
layer. Listing 3 shows an example of the Application Spec-
ification.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>
2 <configuration platform="micaz" threading="per-event">
3 <includes >
4 <header name="BaseUART" />
5 <header name="DDS_utils" />
6 <component name="DDS_DataAggregation" />
7 <component name="LedsC" />
8 <component name="Flooding" />
9 </includes >

10 <implementations >
11 <implementation component="Flooding" interface="OERP" />
12 </implementations >
13 <connections >
14 <connection from="Main.StdControl" to="*" />
15 <connection from="Application.DataAggregation"
16 to="DDS_DataAggragation" />
17 <connection from="Application.Leds" to="LedsC" />

5

18 </connections >
19 </configuration >

Listing 3. Application Specification

From the listing, there are three parts in this XML
files. The first part, inside the <includes> tag, describes
the list of external component and header files will be
used in this application. For example, in this applica-
tion,DDS DataAggragation, LedsC, and Flooding compo-
nents are used in the application. Then, the second part, in-
side the <implementations> maps which component will
be used with OERP interface. In particular, this applica-
tion uses Flooding as its event routing protocol in OERP
layer. Then, the final part, inside the <connections>,
maps connections between component. For example,
DS DataAggration and LedsC will be used in the appli-
cation implementation. Notice that, Application is the de-
fault application interface which will be mapped to the ap-
plication implementation from application developer. The
<configuration> tag controls working properties of the
middleware, for example, the target platform that this mid-
dleware will operate on and the threading model used by
this middleware.

Then, the nesC compiler combines the Application
Configuration, TinyDDS Interfaces, TinyDDS Implementa-
tions, Application Implementations and the implementation
from TinyDDS Library into target executable code.

4. Non-Functional Properties of TinyDDS

To ease the application development on sensor nodes,
TinyDDS provides non-functional properties both on appli-
cation and middleware level collectively as a library, called
TinyDDS library in the figure 6. The application-level non-
functional properties accelerates the application develop-
ment process by providing frequently used non-functional
properties such as data aggregation and event detection.
Thus, application developers can focus more on their appli-
cation functionality, e.g. how to interpret and process those
data and event. Moreover, utilizing non-functional proper-
ties can reduce the application complexity and thus improve
the maintainability. On the other hand, middleware-level
non-functional properties allows application developers to
adjust the behavior of the middleware to suit their need and
constraints, i.e., choosing event routing protocol which suite
the application or specify the QoS of each middleware com-
ponents. In addition, TinyDDS library is designed to be
portable and can be used by many TinyDDS based applica-
tion. Therefore, by using both application and middleware-
level non-functional properties, application developers can
gain better reusability, maintainability, composability and
performance.

4.1. Application-Level Non-Functional
Properties

In the application level, non-functional properties in
TinyDDS helps application developers to rapidly de-
velop their applications. Application developers can use
application-level middleware services such as data aggre-
gation instead of subscribing/publishing directly to Tiny-
DDS middleware. Data aggregation collects and process
data from sensor network and provides processed data to
application. Processing operators supports by data aggrega-
tion are, for example, summation, average, maximum, and
minimum. The data aggregation component is plugable,
application developers can include this in their application
using Application Specification (see Section 3.4). In ad-
dition, library developers can develop any non-functional
components, such as network security and persistence stor-
age, which are reusable and plugable to all TinyDDS appli-
cations.

1 Subscriber_t subscriber;
2 Topic_t ts_topic;
3 DataAggregator_t data_aggregrator;
4 SubscriberListener_t listener;
5 command result_t StdControl.start() {
6 subscriber = call DomainParticipant.create_subscriber();
7 ts_topic = call DomainParticipant.create_topic("TempSensor");
8 listener = call SubscriberListener.create(ts_topic);
9 call Subscriber.set_listener(listener);

10 data_aggregrator = call Subscriber.create_data_aggregrator(
11 ts_topic , AVERAGE, listener);
12 }
13
14 event ReturnCode_t SubscriberListener.data_available(
15 Topic_t topic) {
16 Data data;
17 if (topic == ts_topic) {
18 data = call SubscriberListener.read();
19 // processing aggregated data..
20 }
21 }

Listing 4. Event Sink Application using Data
Aggregation

Listing 4 shows a fragment of an event sink application
using data aggregation. The application is similar to the ap-
plication in the listing 1 except that it creates an instance
of the class DataAggregrator instead of DataReader.
Then, when new data is available, the TinyDDS middle-
ware informs the application using data available event and
provide aggregated data, in this case, average temperature
sensor, to the application.

1 Subscriber_t subscriber;
2 ContentFilteredTopic_t ts_topic;
3 DataAggregator_t data_aggregrator;
4 SubscriberListener_t listener;
5 command result_t StdControl.start() {
6 subscriber = call DomainParticipant.create_subscriber();
7 ts_topic = call DomainParticipant.create_topic("TempSensor");
8 call ContentFilteredTopic.set_expression_parameters(
9 topic, "TempSensor > 100");

10 listener = call SubscriberListener.create(ts_topic);
11 call Subscriber.set_listener(listener);
12 data_aggregrator = call Subscriber.create_data_aggregrator(
13 ts_topic , UNIQUE, listener);
14 }

6

15
16 event ReturnCode_t SubscriberListener.data_available(
17 Topic_t topic) {
18 Data node_count;
19 if(topic == ts_topic) {
20 node_count = call SubscriberListener.read();
21 if(node_count > 50) {
22 // The event is happening
23 }
24 }
25 }

Listing 5. Event Detection Application using
Event Filtering

Listing 5 shows a fragment of an event detection ap-
plication which uses data aggregation and event filter-
ing non-functional properties of TinyDDS. An instance of
the class ContentFilteredTopic is created instead of
Topic. Then, the filtered expression is set to the topic,
in this example, the application is interested only tem-
perature sensor data which has value greater than 100.
Then, a DataAggregrator is created to aggregate data
using UNIQUE operator. The UNIQUE operator distinc-
tively count the number of sensor nodes who publish the
data in this topic. Therefore, in the data available event
SubscriberListener returns the number of nodes who
already published the data, instead of the data value itself.

4.2. Middleware-Level Non-Functional
Properties

TinyDDS supports three non-functional properties in the
middleware level, the pluggable routing protocols in OERP
layers (see Section 3.2 and 3.3), concurrency, and the QoS
policy. Application developers can specify the concurrency
model used in TinyDDS. In particular, TinyDDS supports
two concurrency model, thread-per-event and thread-per-
event-topic. In the thread-per-event model, TinyDDS cre-
ates a thread, e.g., a Task in TinyOS, for each event submit-
ted from application or collected from the network. This
model gives same priority for each event. In the other
words, TinyDDS has only two event queues, one for out-
going events and the other for incoming events, both of
them working in first-come-first-serve fashion. On the other
hand, the thread-per-event-topic allows application devel-
oper to specify different priority for each event topic. In
particular, TinyDDS creates two message queues for each
event topic, one for incoming events and the other for out-
going events. Then, TinyDDS processes the event queues
based on priority of each event topic, for example, TinyDDS
publishes events with high priority topic more frequent than
one with low priority topic. The concurrency model and its
working parameters, e.g. topic priority, can be specified in
Application Specification (see listing 3).

For the QoS policy, TinyDDS utilizes some of the QoS
model of DDS, such as latency budget and reliability. La-

tency budget QoS policy specifies the maximum accepted
latency from the time the event is published until the event
is available to the destination subscribers. Listing 6 shows a
fragment of an application using latency budget QoS policy.

1 ...
2 Publisher_t publisher;
3 Topic_t topic;
4 DataWriter_t data_writer;
5 QosPolicy_t qos;
6 Data data;
7 command result_t StdControl.start() {
8 publisher = call DomainParticipant.create_publisher();
9 qos = call QosPolicy.create_latency_budget_qos(100);

10 topic = call DomainParticipant.create_topic("TempSensor");
11 call Topic.set_qos(topic, qos);
12 data_writer = call Publisher.create_datawriter(
13 publisher , topic);
14 // Get sensor reading, and put to data variable
15 call DataWriter.write(data_writer , data);
16 }

Listing 6. Latency Budget QoS Parameters
Setting

From the listing, the application creates a latency budget
QoS policy with 100 ms constraint. Then, the QoS policy
is applied to the Topic instance which imply that the data
in this topic should be delivered with less than 100 ms la-
tency. TinyDDS uses mechanisms in L4AL to satisfy the
QoS policies. For example, to satisfy the latency budget
QoS policy, TinyDDS rearranges the order of event in the
event queues such that the event with has a high chance to
break the QoS policy, e.g., event’s actual latency is already
very close to the desired latency, will be published earlier
than the event which has the less chance to break the QoS
policy, e.g., event’s actual latency is very far from the de-
sired latency.

The reliability QoS policy indicates the level of data
transmission reliability provides by TinyDDS. In particu-
lar, TinyDDS supports two reliability model, RELIABLE
and BEST EFFORT. When reliability QoS policy is set to
RELIABLE, TinyDDS attempts to deliver all events. The
missed events are retransmitted until the number of trans-
mission is greater than a threshold or the transmission is
success. On the other hand, when reliability QoS policy is
set to BEST EFFORT, TinyDDS sends out each event only
once and relies on MAC layer for succeeding the transmis-
sion. Listing 7 shows a fragment of an application using
reliable QoS policy.

1 ...
2 Publisher_t publisher;
3 Topic_t topic;
4 DataWriter_t data_writer;
5 QosPolicy_t qos;
6 Data data;
7 command result_t StdControl.start() {
8 publisher = call DomainParticipant.create_publisher();
9 qos = call QosPolicy.create_reliability_qos(

10 BEST_EFFORT_RELIABILITY_QOS);
11 topic = call DomainParticipant.create_topic("TempSensor");
12 call Topic.set_qos(topic, qos);
13 data_writer = call Publisher.create_datawriter(
14 publisher , topic);
15 // Get sensor reading, and put to data variable
16 call DataWriter.write(data_writer , data);

7

17 }

Listing 7. Reliability QoS Parameters Setting

5. Related Work

TinyDDS operates atop TinyOS on each sensor node.
TinyOS [3] is an operating system designed for sensor
nodes with small memory footprint. TinyOS provides a
component-based architecture which allows application de-
velopers to develop application using a C-like programming
language, called nesC. Because TinyOS is positioned as a
generic platform for all kind of sensor network application,
so application developers have to handle all low-level task
such as memory allocation and data communication. Unlike
TinyOS, TinyDDS allows application developers to focus
on their task at hand, i.e., how to process sensor data, and
hides all low level detail from developers. For example, a
simple data collecting application called Surge in TinyOS
contains about 280 lines of nesC code. Similar applica-
tion can be done in TinyDDS with only 30 lines of nesC
code. Moreover, TinyDDS provides an easy configuration
systems through a single XML file which allows applica-
tion developers to adjust the characteristic of the TinyDDS.
Thus, application developers do not need to manually fine
tune their application code to meet their requirement.

Several research efforts have proposed pub/sub middle-
ware to sensor networks. In [7], a pub/sub middleware for
sensor networks called Mires is proposed. Mires, operates
on top of TinyOS, allows application to subscribe and pub-
lish to data with particular topic. On top of TinyOS, Mires
provides a pub/sub service bus and high-level services such
as routing and data aggregation. In contrast with Tiny-
DDS, Mires provides only application-level non-functional
properties such as data aggregation but it does not provide
middleware-level non-functional properties such as QoS or
plugable event routing. Thus, application developers can
not tailor the middleware to fit their application require-
ment. [4] proposes a pub/sub middleware, called SMC, for
managing body-sensor networks. The middleware oper-
ates on a powerful node with Linux and Java VM and con-
sists of an event bus and several components running on
the event bus such as service discovery, policy manage-
ment and resource management. The application is writ-
ten in form of a policy, i.e., a set of rules to be performed
for a particular event. Each component communicate with
the other components and the other sensor nodes through
the event bus using pub/sub scheme. Compared with Tiny-
DDS, SMC does not provide any middleware-level non-
functional properties such as QoS. Moreover, SMC sup-
ports only constrained-based subscription, i.e., subscribers
have to create a filter, e.g. temperature ¿ 100, in order to
receiving event. TinyDDS, on the other hand, supports both

topic-based and constrained-based subscription. DSWare is
a pub/sub middleware designed primarily for event detec-
tion application [5]. In contrast with TinyDDS, DSWare
does not provide any application-level non-functional prop-
erties, application developers need to implement their appli-
cation from the ground up based on the pub/sub model pro-
vides by DSWare. Similar to TinyDDS, DSWare provides
some middleware-level non-functional properties such as
data storage or caching (TinyDDS provides different type of
services); however, application developers cannot fine tune
the characteristic of the middleware, neither by configura-
tion file or adjusting QoS parameters.

6. Conclusion

This paper describes a pluggable framework in the Tiny-
DDS middleware, which decouples various non-functional
properties from WSN applications and allows those appli-
cations to flexibly reuse and transparently configure non-
functional properties (e.g., data routing, concurrency, data
aggregation and event filtering) according to their own re-
quirements. TinyDDS supports two types of non-functional
properties: application-level and middleware-level non-
functional properties. This paper describes the design
and implementation of TinyDDS, and discusses how non-
functional properties are decoupled from and reusable by
applications.

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and
M. Stal. Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Proc. of ACM Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, 2000.

[4] S. L. Keoh, N. Dulay, E. Lupu, K. Twidle, A. E. Schaeffer-
Filho, M. Sloman, S. Heeps, S. Strowes, and J. Sventek. Self-
managed cell: A middleware for managing body-sensor net-
works. In Proc. of Int’l Conf. on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services, 2007.

[5] S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei. Event de-
tection services using data service middleware in distributed
sensor networks. Springer Telecomm. Systems, 26(2-4), 2004.

[6] Object Management Group. Data Distribution Ser-
vice (DDS) for real-time systems, v1.2, 2007.
http://www.omg.org/technology/documents/

formal/data_distribution.htm.
[7] E. Souto, G. G. aes, G. Vasconcelos, M. Vieira, N. Rosa,

C. Ferraz, and J. Kelner. Mires: a publish/subscribe mid-
dleware for sensor networks. Springer Personal Ubiquitous
Computing, 10, 2005.

8

