
An Evolutionary Game Theoretic Approach for
Configuring Cloud-integrated Body Sensor Networks

Yi Cheng-Ren∗, Junichi Suzuki∗, Dung H. Phan∗, Shingo Omura‡ and Ryuichi Hosoya‡
∗ University of Massachusetts, Boston

Boston, MA 02125-3393, USA
Email: {yiren001,jxs,phdung}@cs.umb.edu

‡OGIS International, Inc.
San Mateo, CA 94402, USA

Email: {omura,hosoya}@ogis-international.com

Abstract—This paper considers a cloud-integrated architec-
ture for body sensor networks (BSNs), called Body-in-the-Cloud
(BitC), and studies an evolutionary game theoretic approach
to configure BSNs in an adaptive and stable manner. BitC
allows BSNs to adapt their configurations (i.e., sensing intervals
and sampling rates as well as data transmission intervals for
nodes) to operational conditions (e.g., data request patterns)
with respect to multiple conflicting objectives such as resource
consumption and data yield. Moreover, BitC allows each BSN
to perform an evolutionarily stable configuration strategy, which
is an equilibrium solution under given operational conditions.
Simulation results show that BitC effectively configures BSNs by
seeking the trade-offs among conflicting objectives.

I. INTRODUCTION

Home healthcare is the most rapidly growing segment of
the U.S. healthcare system since 1990s for both acute and
chronic cares. In 2012, it recorded the highest spending growth
(5.1%) among all healthcare segments in the US [1].

To address the quality of life and economic issues in home
healthcare, various research efforts have been made for the
development of body sensor networks (BSNs), each of which
is a per-patient wireless network of on-body and/or in-body
sensors for, for example, heart rate, blood pressure and fall
detection [2]. BSNs can be used to remotely and continuously
perform physiological and activity monitoring for homebound
patients. This paper envisions cloud-integrated BSNs, which
virtualize on/in-body sensors with clouds for home healthcare
by taking advantage of cloud computing features such as pay-
per-use billing, scalability in data storage and processing, and
availability through multi-regional application deployment.

This paper proposes an architecture for cloud-integrated
BSNs, called Body-in-the-Cloud (BitC), which consists of the
sensor, edge and cloud layers. The sensor layer is a collection
of sensors and sensor nodes in BSNs. Each BSN operates
sensor nodes, each of which is equipped with sensors and wire-
lessly connected to a dedicated per-patient device or a patient’s
computer (e.g., smartphone or tablet machine) that serves as
a sink node. The edge layer consists of sink nodes, which
collect sensor data from sensor nodes in BSNs. The cloud
layer consists of cloud environments that host virtual sensors,
which are virtualized counterparts (or software counterparts)
of physical sensors in BSNs. Virtual sensors collect sensor
data from sink nodes in the edge layer and store those data
for future use. The cloud layer also hosts various applications

that obtain sensor data from virtual sensors and aid medical
staff (e.g., clinicians, hospital/visiting nurses and caregivers)
to share sensor data for clinical observation and intervention.

BitC performs push-pull hybrid communication between
its three layers. Each sensor node periodically collects data
from sensors attached to it based on sensor-specific sensing
intervals and sampling rates and transmits (or pushes) those
collected data to a sink node. The sink node in turn forwards
(or pushes) incoming sensor data periodically to virtual sensors
in clouds. When a virtual sensor does not have sensor data that
a cloud application requires, it obtains (or pulls) that data from
a sink node or a sensor node. This push-pull communication is
intended to make as much sensor data as possible available for
cloud applications by taking advantage of push communication
while allowing virtual sensors to pull any missing or extra
data anytime in an on-demand manner. For example, when an
anomaly is found in pushed sensor data, medical staff may pull
extra data in a higher temporal resolution to better understand a
patient’s medical condition. Given a sufficient amount of data,
they may perform clinical intervention, order clinical cares,
dispatch ambulances or notify family members of patients.

This paper focuses on configuring BSNs in BitC by tuning
sensing intervals and sampling rates for sensors as well as data
transmission intervals for sensor and sink nodes, and studies
two properties in configuring BSNs:
• Adaptability: Adjusting BSN configurations according

to operational conditions (e.g., data request patterns
placed by cloud applications and availability of re-
sources such as bandwidth and memory) with respect
to performance objectives such as bandwidth con-
sumption, energy consumption and data yield.

• Stability: Minimizing oscillations (non-deterministic
inconsistencies) in making adaptation decisions.

BitC leverages an evolutionary game theoretic approach to
configure BSNs. Each BSN maintains a set (or a population) of
configuration strategies. It is theoretically proven that, through
a series of evolutionary games between configuration strate-
gies, the population state (i.e., the distribution of strategies)
converges to an evolutionarily stable equilibrium regardless of
the initial state. (A dominant strategy in the evolutionarily sta-
ble population state is called an evolutionarily stable strategy.)
In this state, no other strategies except an evolutionarily stable
strategy can dominate the population. Given this theoretical

property, BitC allows each BSN to operate at an equilibrium
by using an evolutionarily stable strategy. Simulation results
show that BitC effectively configures BSNs to maintain and
improve their performance by seeking the trade-offs among
conflicting objectives with evolutionary stable strategies.

Fig. 1: A Push-Pull Hybrid Communication in BitC

II. AN ARCHITECTURAL OVERVIEW OF BITC

BitC consists of the following three layers (Fig. 1).

Sensor Layer: operates one or more BSNs on a per-patient
basis (Fig. 1). Each BSN contains one or more sensor nodes in
a certain topology. This paper assumes the star topology. Each
sensor node is equipped with different types of sensors. It is
assumed to be battery-operated. (It has limited energy supply.)
It maintains a sensing interval and a sampling rate for each
sensor attached to it. Upon a sensor reading, it stores collected
data in its own memory space. Given a data transmission
interval, it periodically flushes all data stored in its memory
space and transmits the data to a sink node.

Edge Layer: consists of sink nodes, each of which partic-
ipates in a certain BSN and receives sensor data periodically
from sensor nodes in the BSN. A sink node stores incoming
sensor data in its memory space and periodically flushes stored
data to transmit (or push) them to the cloud layer. It maintains
the mappings between physical and virtual sensors. In other
words, it knows the origins and destinations of sensor data.
Different sink nodes have different data transmission intervals.
A sink node’s data transmission interval can be different from
the ones of sensor nodes in the same BSN. Sink nodes are
assumed to have limited energy supplies through batteries.

In addition to pushing sensor data to a virtual sensor, each
sink node receives a pull request from a virtual sensor when
the virtual sensor does not have data that a cloud application(s)
requires. If the sink node has the requested data in its memory,
it returns that data. Otherwise, it issues another pull request to
a sensor node that is responsible for the requested data. Upon
receiving a pull request, the sensor node returns the requested
data if it has the data in its memory. Otherwise, it returns an
error message to a could application.

Cloud Layer: operates on clouds to host applications that
allow medical staff to place continuous sensor data requests
on virtual sensors in order to monitor patients. If a virtual
sensor has data that an application requests, it returns that data.
Otherwise, it issues a pull request to a sink node. While push
communication carries out a one-way upstream travel of sensor
data, pull communication incurs a round trip for requesting
sensor data and receiving that data (or an error message).

III. BSN CONFIGURATION PROBLEM IN BITC

This section describes a BSN configuration problem for
which BitC seeks equilibrium solutions. Each BSN config-
uration consists of four types of parameters (i.e., decision
variables): sensing intervals and sampling rates for sensors as
well as data transmission intervals for sensor and sink nodes.
The problem is stated with the following symbols.
• B = {b1, b2, ..., bi, ..., bN} denotes the set of N BSNs,

each of which operates for a patient.
• Each BSN bi consists of a sink node (denoted by mi)

and M sensor nodes: bi = {hi1, hi2, ..., hij , ..., hiM}.
Each sensor node hij has L sensors: hij =
{sij1, sij2, ..., sijk, ..., sijL}. oijk is the data transmis-
sion interval for hij to transmit sensor data collected
from sijk. pijk and qijk are the sensing interval and
sampling rate for sijk. Sampling rate is defined as
the number of sensor data samples collected in a unit
time. Each sensor node stores collected sensor data in
its memory space until its next push transmission. If
the memory becomes full, it performs FIFO (First-In-
First-Out) data replacement. In a push transmission, it
flushes and sends out all data stored in its memory.

• omi
denotes the data transmission interval for mi to

forward (or push) sensor data incoming from sensor
nodes in bi In between two push transmissions, mi

stores sensor data from bi in its memory. It performs
FIFO data replacement if the memory becomes full.
In a push transmission, it flushes and sends out all
data stored in the memory.

• Rijk = {rijk1, rijk2, ..., rijkr, ..., rijk|Rijk|} denotes
the set of sensor data requests that cloud applications
issue to the virtual counterpart of sijk (s′ijk) during
the time period of W in the past. Each request rijkr
is characterized by its time stamp (tijkr) and time
window (wijkr). It retrieves all sensor data available
in the time interval [tijkr − wijkr, tijkr]. If s′ijk has
at least one data in the interval, it returns those data;
otherwise, it issues a pull request to mi.

• Rm
ijk ∈ Rijk denotes the set of sensor data requests

for which a virtual sensor s′ijk has no data. |Rm
ijk|

indicates the number of pull requests that s′ijk issues
to mi. In other words, Rijk \Rm

ijk is the set of sensor
data requests that s′ijk fulfills regarding sijk.

• Rs
ijk ∈ Rm

ijk ∈ Rijk denotes the set of sensor data
requests for which mi has no data. |Rs

ijk| indicates
the number of pull requests that mi issues to hij for
collecting data from sijk. Rm

ijk \ Rs
ijk is the set of

sensor data requests that mi fulfills regarding sijk.
This paper considers four performance objectives: band-

width consumption between the edge and cloud layers (fB),
energy consumption of sensor and sink nodes (fE), request
fulfillment for cloud applications (fR) and data yield for cloud

applications (fD). The first two objectives are to be minimized
while the others are to be maximized.

The bandwidth consumption objective (fB) is defined as
the total amount of data transmitted per a unit time between
the edge and cloud layers. This objective impacts the payment
for bandwidth consumption based on a cloud operator’s pay-
per-use billing scheme. It also impacts the lifetime of sink
nodes. fB is computed as follows.

fB =
1

W

N∑
i=1

M∑
j=1

L∑
k=1

(cijkdijk)+
1

W

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

(φijkrdijk+dr)

(1)

The first and second terms indicate the bandwidth con-
sumption by one-way push communication from the edge
layer to the cloud layer and two-way pull communication
between the cloud and edge layers, respectively. cijk denotes
the number of sensor data that sijk generates and sink nodes
in turn push to the cloud layer during W . dijk denotes the size
of each sensor data (in bits) that sijk generates. It is currently
computed as: qijk × 16 bits/sample. φijkr denotes the number
of sensor data that a pull request r ∈ Rm

ijk can collect from
a sink node (φijkr = |Rm

ijk \ Rs
ijk|). dr is the size of a pull

request transmitted from the cloud layer to the edge layer. It
is constant for all sensor nodes and sensors.

The energy consumption objective (fE) is defined as the
total amount of energy that sensor and sink nodes consume for
data transmissions during W . It impacts the lifetime of sensor
and sink nodes. It is computed as follows.

fE =

N∑
i=1

M∑
j=1

L∑
k=1

W

oijk
etdijk +

N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

etηijkr(dijk + d′r)

+

N∑
i=1

M∑
j=1

L∑
k=1

W

omi

etdijk +

N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

etφijkr(dijk + dr)

(2)
The first and second terms indicate the energy consumption

by one-way push communication from the sensor layer to the
edge layer and two-way pull communication between the edge
layer and the sensor layer, respectively. et denotes the amount
of energy (in Watts) that a single bit of data consumes to travel
in between a sensor node and a sink node. ηijkr is the number
of sensor data that a pull request r ∈ Rs

ijk can collect from
a sensor node. d′r denotes the size of a pull request from the
edge layer to the sensor layer. It is constant for all sensor
nodes and sensors. The third and fourth terms indicate the
energy consumption by push and pull communication between
the edge and cloud layer, respectively.

The request fulfillment objective (fR) is the ratio of the
number of fulfilled requests over the total number of requests:

fR =

∑N
i=1

∑M
j=1

∑L
k=1

∑|Rijk|
r=1 IRijk

|Rijk|
× 100 (3)

IRijk
= 1 if a request r ∈ Rijk obtains at least one sensor

data; otherwise, IRijk
= 0.

The data yield objective (fY) is defined as the total amount
of data that cloud applications gather for their users. This
objective impacts the informedness and situation awareness
for application users. It is computed as follows.

fY =
N∑
i=1

M∑
j=1

L∑
k=1

|Rm
ijk|∑

r=1

φijkr +
N∑
i=1

M∑
j=1

L∑
k=1

|Rs
ijk|∑

r=1

ηijkr + cijk (4)

IV. BACKGROUND: EVOLUTIONARY GAME THEORY

In a conventional game, the objective of a player is to
choose a strategy that maximizes its payoff. In contrast,
evolutionary games are played repeatedly by players randomly
drawn from a population [3]. This section overviews key
elements in evolutionary games: evolutionarily stable strategies
(ESS) and replicator dynamics.

A. Evolutionarily Stable Strategies (ESS)
Suppose all players in the initial population are pro-

grammed to play a certain (incumbent) strategy k. Then, let
a small population share of players, x ∈ (0, 1), mutate and
play a different (mutant) strategy `. When a player is drawn
for a game, the probabilities that its opponent plays k and `
are 1 − x and x, respectively. Thus, the expected payoffs for
the player to play k and ` are denoted as U(k, x`+ (1− x)k)
and U(`, x`+ (1− x)k), respectively.
Definition 1. A strategy k is said to be evolutionarily stable
if, for every strategy ` 6= k, a certain x̄ ∈ (0, 1) exists, such
that the inequality

U(k, x`+ (1− x)k) > U(`, x`+ (1− x)k) (5)

holds for all x ∈ (0, x̄).
If the payoff function is linear, Equation 5 derives:

(1− x)U(k, k) + xU(k, `) > (1− x)U(`, k) + xU(`, `) (6)

If x is close to zero, Equation 6 derives either
U(k, k) > U(`, k) or U(k, k) = U(`, k) and U(k, `) > U(`, `) (7)

This indicates that a player associated with the strategy k
gains a higher payoff than the ones associated with the other
strategies. Therefore, no players can benefit by changing their
strategies from k to the others. This means that an ESS is
a solution on a Nash equilibrium. An ESS is a strategy that
cannot be invaded by any alternative (mutant) strategies that
have lower population shares.

B. Replicator Dynamics

The replicator dynamics describes how population shares
associated with different strategies evolve over time [4]. Let
λk(t) ≥ 0 be the number of players who play the strategy
k ∈ K, where K is the set of available strategies. The
total population of players is given by λ(t) =

∑ |K|
k=1λk(t).

Let xk(t) = λk(t)/λ(t) be the population share of players
who play k at time t. The population state is defined by
X(t) = [x1(t), · · · , xk(t), · · · , xK(t)]. Given X , the expected
payoff of playing k is denoted by U(k,X). The population’s
average payoff, which is same as the payoff of a player drawn
randomly from the population, is denoted by U(X,X) =∑ |K|

k=1xk · U(k,X). In the replicator dynamics, the dynamics
of the population share xk is described as follows. ẋk is the
time derivative of xk.

ẋk = xk · [U(k,X)− U(X,X)] (8)

This equation states that players increase (or decrease) their
population shares when their payoffs are higher (or lower) than
the population’s average payoff.
Theorem 1. If a strategy k is strictly dominated, then
xk(t)t→∞ → 0.

A strategy is said to be strictly dominant if its payoff is
strictly higher than any opponents. As its population share

grows, it dominates the population over time. Conversely,
a strategy is said to be strictly dominated if its payoff is
lower than that of a strictly dominant strategy. Thus, strictly
dominated strategies disappear in the population over time.

There is a close connection between Nash equilibria and
the steady states in the replicator dynamics, in which the popu-
lation shares do not change over time. Since no players change
their strategies on Nash equilibria, every Nash equilibrium
is a steady state in the replicator dynamics. As described in
Section IV-A, an ESS is a solution on a Nash equilibrium.
Thus, an ESS is a solution at a steady state in the replicator
dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

In evolutionary game theory, it has been theoretically
proved that, through a series of games, each population reaches
a steady state regardless of the initial state [3]. This reachability
to at least one of Nash equilibria guarantees to obtain an ESS
from a population in a stable (or deterministic) manner.

BitC maintains a population of configuration strategies for
each BSN. In each population, strategies are randomly drawn
to play games repeatedly until the population state reaches a
steady state. Then, BitC identifies a strictly dominant strategy
in the population and configures a BSN based on the strategy
as an ESS.

V. BODY-IN-THE-CLOUD

BitC maintains N populations, {P1,P2, ...,PN}, for N
BSNs and performs games among strategies in each popu-
lation. Each strategy s(bi) specifies a particular configuration
for a BSN bi using four types of parameters: sensing intervals
and sampling rates for sensors (pijk and qijk) as well as data
transmission intervals for sink and sensor nodes (omi and oijk).

s(bi) =
⋃

j∈1..M

⋃
k∈1..L

(omi , oijk, pijk, qijk) 1 < i < N (9)

Algorithm 1 shows how BitC seeks an evolutionarily stable
configuration strategy for each BSN through evolutionary
games. In the 0-th generation, strategies are randomly gener-
ated for each of N populations {P1,P2, ...,PN} (Line 2). In
each generation (g), a series of games are carried out on every
population (Lines 4 to 24). A single game randomly chooses
a pair of strategies (s1 and s2) and distinguishes them to the
winner and the loser with respect to performance objectives
described in Section III (Lines 7 to 9). The loser disappears
in the population. The winner is replicated to increase its
population share and mutated with a certain mutation rate Pm

(Lines 10 to 15). Mutation randomly chooses one of sensor
node in the winner and alters its oijk,pijk and qijk values at
random (Line 12).

Once all strategies play games in the population, BitC
identifies a feasible strategy whose population share (xs) is the
highest and determines it as a dominant strategy (di) (Lines 18
to 22). A strategy is said to be feasible if it violates none of
four constraints described in Section III. BitC configures a
BSN with parameters contained in the dominant strategy.

A strategy s1 is said to dominate another strategy s2 if
both of the following conditions are hold.
• s1’s objective values are superior than, or equal to,

s2’s in all objectives.

• s1’s objective values are superior than s2’s in at least
one objectives.

Algorithm 1 Evolutionary Process in BitC
1: g = 0
2: Randomly generate the initial N populations for N BSNs: P =
{P1,P2, ...,PN}

3: while g < Gmax do
4: for each population Pi randomly selected from P do
5: P ′

i ← ∅
6: for j = 1 to |Pi|/2 do
7: s1 ← randomlySelect(Pi)
8: s2 ← randomlySelect(Pi)
9: winner ← performGame(s1, s2)

10: replica ← replicate(winner)
11: if random() ≤ Pm then
12: replica ← mutate(winner)
13: end if
14: Pi \ {s1, s2}
15: P ′

i ∪ {winner, replica}
16: end for
17: Pi ← P ′

i
18: di ← argmaxs∈Pi

xs
19: while di is infeasible do
20: Pi \ {di}
21: di ← argmaxs∈Pi

xs
22: end while
23: current patient transmits data based on di.
24: end for
25: g = g + 1

26: end while

VI. SIMULATION EVALUATION

This section evaluates BitC through simulations and dis-
cusses how BitC allows BSNs to to adapt their configurations
to given operational conditions (e.g., data request patterns
placed by cloud applications and memory space availability
in sink and sensor nodes) and improve their performance.
Simulations are configured with the parameters in Table I.

TABLE I: Simulation Settings
Parameter Value

Duration of a simulation (W) 10,800 seconds (3 hours)
Number of BSNs (N) 5

Number of sensor nodes in a BSN (M) 3
Number of sensors per a sensor node (L) 4

Memory space in a sensor node 2 GB
Memory space in a sink node 16 GB

Total number of data requests from cloud apps 1,000
Maximum request windows size (maxwijk) 60 seconds

Number of generations (Gmax) 100
Population size (|Pi|) 100
Mutation rate (Pm) 0.01

Cloud applications issue 1,000 sensor data requests during
three hours. Sensor data requests are uniformly distributed
over sensors. Every simulation result is the average with 20
independent simulation runs.

Fig. 2 shows how BitC evolves BSN configuration strate-
gies through generations and improves the performance of
BSNs. In Figs. 2a and 2b, the request fulfillment objective
is considered. In Figs. 2c and 2d, all four objectives are
considered simultaneously.

In Fig. 2a, request fulfillment (fR) gradually increases
through generations because it is considered as the objective.
Its average value reaches 96.5% at the last generation. The

(a) fB and fR with the Request
Fulfillment Objective Enabled

(b) fE and fY with the Request
Fulfillment Objective Enabled

(c) fB and fR with All Objectives
Enabled

(d) fE and fY with All Objectives
Enabled

Fig. 2: Objective Values through Generations

increase in request fulfillment contributes to the increase in
data yield (fY) to some extent (Fig. 2b). Bandwidth con-
sumption (fB) and energy consumption (fE) deteriorate over
time because they are not considered as objectives and they
conflict with the request fulfillment objective. Figs. 2a and 2b
demonstrate that BitC allows BSNs to successfully adapt their
performance with respect to a given objective.

Figs. 2c and 2d illustrates that, when multiple conflicting
objectives are considered simultaneously, BitC allows BSNs
to maintain their performance subject to given constraints by
balancing the trade-offs among those objectives.

VII. RELATED WORK

This paper extends a prior work on cloud-integrated
BSNs [5]. This paper formulates a more realistic problem
(Section III) than the one in [5] by accommodating decision
variables available in Simmer’s sensor nodes1. Moreover, this
paper leverages an evolutionary game theoretic algorithm
that possesses stability (i.e. reachability to at least one Nash
equilibria) in configuring BSNs while a genetic algorithm is
used in [5]. As stochastic global search algorithms, genetic
algorithms lack stability.

Various architectures and research tools have been
proposed for cloud-integrated sensor networks including
BSNs [6]–[11]. Hassan et al. [6], Aberer et al. [7],
Gaynor et al. [8] and Boonma et al. [9] assume three-tier
architectures similar to BitC and investigate publish/subscribe
communication between the edge layer to the cloud layer.
Their focus is placed on push communication. In contrast,
BitC investigates push-pull hybrid communication between
the sensor layer and the cloud layer through the edge layer.
Yuriyama et al. propose a two-tier architecture that consists of
the sensor and cloud layers [10]. The architectures proposed by
Yuriyama et al. and Fortino et al. [11] are similar to BitC in that
they leverage the notion of virtual sensors. However, they do
not consider push-pull (nor publish/subscribe) communication.
All the above-mentioned work do not consider adaptive/stable
configurations of sensor networks as BitC does.

VIII. CONCLUSION

This paper proposes a cloud-integrated BSN architecture,
called BitC, which hosts virtualized sensors in clouds and

1http://www.shimmersensing.com/

operates physical sensors through their virtual counterparts.
BitC performs push-pull hybrid communication between three
layers: cloud, edge and sensor layers. This paper formulates
a BSN configuration problem for BitC to seek equilibrium
solutions and approaches the problem with an evolutionary
game theoretic algorithm. Simulation results demonstrate that
BitC allows BSNs to adapt their configurations to given
operational conditions and improve their performance with
respect to multiple objectives.

REFERENCES

[1] U.S. Department of Health and Human Services, Centers for Medicare
and Medicaid Services, National Health Expenditure Data, 2013.

[2] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review
of wearable sensors and systems with application in rehabilitation,”
Journal of Neuroengineering and Rehabilitation, vol. 9, no. 21, 2012.

[3] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1996.
[4] P. Taylor and L. Jonker, “Evolutionary stable strategies and game

dynamics,” Elsevier Mathematical Biosciences, vol. 40(1), 1978.
[5] D. H. Phan, K. O. J. Suzuki, S. Omura, and A. Vasilakos, “Multiobjec-

tive communication optimization for cloud-integrated body sensor net-
works,” in Proc. IEEE/ACM Int’l Workshop on Data-intensive Process
Management in Large-Scale Sensor Systems: From Sensor Networks
to Sensor Clouds, In conjunction with IEEE/ACM Int’l Symposium on
Cluster, Cloud and Grid Computing, May 2014.

[6] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud
integration opportunities and challenges,” in Proc. the 3rd ACM Int’l
Conference on Ubiquitous Info. Mgt. and Comm., 2009.

[7] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data
processing in large-scale interconnected sensor networks,” in Proc. the
8th IEEE Int’l Conference on Mobile Data Management, 2007.

[8] M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and
J. Wynne, “Integrating wireless sensor networks with the grid,” IEEE
Internet Computing, July/August 2004.

[9] P. Boonma and J. Suzuki, “TinyDDS: An interoperable and config-
urable publish/subscribe middleware for wireless sensor networks,” in
Principles and Apps. of Dist. Event-Based Systems, A. Hinze and
A. Buchmann, Eds. IGI Global, 2010, ch. 9.

[10] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical
sensor management with virtualized sensors on cloud computing,” in
Proc. the 13th Int’l Conf. on Network-Based Info. Sys., 2010.

[11] G. Fortino, D. Parisi, V. Pirrone, and G. D. Fatta, “BodyCloud: A SaaS
approach for community body sensor networks,” Future Generation
Computer Systems, vol. 35, no. 6, pp. 62–79, 2014.

