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Abstract—Network systems are expected to be more scalable and more 
adaptive to dynamic network environments. Based on the observation 
that various biological systems have already overcome these require-
ments, the proposed network architecture, called SymbioticSphere, 
applies biological concepts and mechanisms to design network systems 
(i.e. application services and middleware platforms). In Symbiotic-
Sphere, each application service and middleware platform is designed as 
artificial biological entity, analogous to an individual bee in a bee colony. 
Application services and middleware platforms implement biological 
concepts and mechanisms such as decentralization, energy level, health 
level, energy exchange, environment sensing, migration, replication and 
death. Like in biological systems, desirable system characteristics such 
as scalability and adaptability emerge from collective actions and inter-
actions of application services and platforms. 

I. INTRODUCTION 

Network systems are expected to autonomously scale to 
enormous demand placed upon them and adapt to dynamic 
network environments in order to improve user experience, 
expand system’s operational longevity and reduce mainte-
nance cost [1, 2]. Based on the observation that various bio-
logical systems have already achieved these requirements (i.e. 
autonomy, scalability and adaptability), the proposed network 
architecture, called SymbioticSphere, applies biological con-
cepts and mechanisms to design network systems (application 
services and middleware platforms). We believe if network 
systems adopt certain biological concepts and mechanisms, 
they may be able to meet these requirements. 

In SymbioticSphere, each application service and middle-
ware platform is modeled as a biological entity, analogous to 
an individual bee in a bee colony. An application service is 
designed as an autonomous and distributed software agent. 
Each agent implements a functional service and follows sim-
ple biological behaviors such as replication, death, migration 
and energy exchange. A middleware platform runs on a net-
work host and operates agents (application services). Each 
platform implements a set of runtime services that agents use 
to perform their services and behaviors, and follows biologi-
cal behaviors such as replication, death and energy exchange. 

Similar to biological entities, agents and platforms in Sym-
bioticSphere store and expend energy for living. Each agent 
gains energy in exchange for performing its service to other 
agents or human users, and expends energy to use network 
and computing resources. Each platform gains energy in ex-
change for providing resources to agents, and continuously 
evaporates energy to the network environments. Symbiotic-
Sphere models agents and platforms as different species, and 
follows several concepts in ecological food chain to deter-
mine how much energy agents/platforms expend at a time 

and how often they expend energy1. The abundance or scar-
city of stored energy affects behaviors of an agent/platform. 
For example, an abundance of stored energy indicates higher 
demand for the agent/platform; thus the agent/platform may 
be designed to favor replication in response to higher energy 
level. A scarcity of stored energy (an indication of lack of 
demand) may cause death of the agent/platform. 

Similar to biological systems, SymbioticSphere exhibits 
emergence of desirable system characteristics such as scal-
ability and adaptability. These characteristics emerge from 
collective behaviors and interactions of agents and platforms, 
rather than they are present in any single agent/platform. 
Simulation results show that agents and platforms autono-
mously scale to rapid demand changes and adapt to dynamic 
changes in the network (e.g. user location and resource avail-
ability). In certain circumstances, agents and platforms spon-
taneously cooperate in a symbiotic manner to pursue their 
mutual benefits (i.e. to increase their scalability and adapta-
bility), although each of them is not designed to do so. 

This paper is organized as follows. Section II summarizes 
key design principles of SymbioticSphere. Section III de-
scribes the designs of agents and platforms in Symbiotic-
Sphere. Section IV shows simulation results. Sections V and 
VI conclude with discussion on related work and future work. 

II. DESIGN PRINCIPLES IN SYMBIOTICSPHERE  

SymbioticSphere consists of two major components: agents 
(applications services) and middleware platforms. Agents run 
on platforms, which in turn run on network hosts. Agents and 
platforms are designed based on the following principles [4]. 

(1) Decentralization: Agents and platforms are decentral-
ized. There are no central entities to control and coordinate 
agents/platforms (i.e. no directory servers and no resource 
managers). Decentralization allows agents/platforms to be 
scalable and simple by avoiding a single point of perform-
ance bottleneck [5] and by avoiding any central coordination 
in developing deploying agents/platforms [6]. 

(2) Autonomy: Agents and platforms are autonomous. 
They monitor their local network environments, and based on 
the monitored environmental conditions, they autonomously 
behave, and interact without any intervention from/to other 
agents, platforms and human users. 

                                                 
1 Agents expend more energy more often when receiving more energy from 
users. Platforms expend more energy more often when receiving more en-
ergy from agents. See [3] for details on energy exchange in SymbioticSphere. 



(3) Adaptability: Agents and platforms are adaptive to dy-
namically changing environment conditions (e.g. user de-
mands, user locations and resource availability). Adaptation 
is achieved through designing agent/platform behavior poli-
cies to consider local environment conditions. For example, 
agents may implement a migration policy of moving towards 
a platform that forwards a large number of request messages 
for their services. This results in the adaptation of agent loca-
tions, and agents concentrate around the users who request 
their services. Also, platforms may invoke replication and 
death behaviors when their energy levels become over and 
below thresholds. This results in the adaptation of platform 
population, and platforms adjust resource availability on them 
against the demands for resources. 

III. SYMBIOTICSPHERE 

This section describes the designs of agents and platforms. 

A. Agents 

Each agent consists of three parts: attributes, body and be-
haviors. Attributes carry descriptive information regarding 
the agent, such as agent ID, energy level and description of a 
service it provides. Body implements a service that the agent 
provides. For example, an agent may implement a genetic 
algorithm for an optimization problem, while another agent 
may implement a physical model for scientific simulations. 
Behaviors implement actions that are inherent to all agents. 
Although SymbioticSphere defines nine standard agent be-
haviors [4], this paper focuses on three of them. 

• Migration: Agents may move from one platform to another. 
• Replication: Agents may make a copy of themselves as a 

result of abundance of energy. A replicated (child) agent is 
placed on the platform that its parent agent resides on, and 
it receives the half amount of the parent’s energy level. 

• Death: Agents may die due to energy starvation. When an 
agent dies, an underlying platform removes the agent from 
the network and releases all resources allocated to the 
agent. 

B. Platforms 

Each platform runs on a network host and operates agents2. 
It consists of attributes, behaviors and runtime services. 

Attributes carry descriptive information regarding the plat-
form, such as platform ID, energy level and health level. 
Health level is defined as a function of the age of and re-
source availability on a network host that the platform runs 
on. The age indicates how long a network host remains alive 
(i.e. how much stable a network host is). Resource availabil-
ity indicates how much resources (e.g. memory space) are 
available for agents and platforms on a network host. Health 
level affects behaviors of a platform and agent. For example, 
higher health level indicates higher stability of and higher 
                                                 
2 Currently, SymbioticSphere assumes that at most one platform runs on each 
network host. 

resource availability on a network host that the platform re-
sides on. Thus, the platform may be designed to replicate 
itself on a healthier neighboring host than the current local 
host. This results in the adaptation of platform locations. Plat-
forms work on stable and resource rich network hosts.  

Behaviors are the actions that are inherent to all platforms. 
Although SymbioticSphere defines six standard platform be-
haviors [4], this paper focuses on two of them. 

• Replication. Platforms may make a copy of themselves as a 
result of abundance of energy (i.e. higher demand for re-
sources available on the platforms). The child platform re-
ceives the half amount of the parent’s energy level. 

• Death. Platforms may die due to the lack of energy. A dy-
ing platform uninstalls itself from the network and releases 
all resources the platform uses. Despite the death of a plat-
form, an underlying network host remains active so that 
other platforms can run on it in the future. 

Runtime services are middleware services that agents and 
platforms use to perform their behaviors. In order to maxi-
mize decentralization and autonomy of agents/platforms, they 
only use their local runtime services. They are not allowed to 
invoke any runtime services running on a remote platform. 

C. Behavior Policies of Agents and Platforms 

Each agent and platform has policies for its behaviors. A 
behavior policy defines when to and how to invoke a particu-
lar behavior. Each behavior policy consists of one or more 
factors (Fi), which evaluate environment conditions (e.g. 
network traffic) or agent/platform status (e.g. energy level 
and health level). Each factor is given a weight (Wi) relative 
to its importance. Behaviors are invoked if the weighted sum 
of factor values (Σ Fi*Wi) exceeds a threshold.  

The factors in agent migration behavior include: 

• Service Request Ratio, (# of service requests on a remote 
platform)/(# of service requests on a local platform), which 
encourages agents to move towards users. 

• Health Level Ratio, (health level of a remote host)/(health 
level on a local host), which encourages agents to move to 
platforms running on healthier hosts. 

• Migration interval: interval from the time of a previous 
migration, which discourages agents to migrate too often. 

If there are multiple neighboring platforms that an agent 
can migrate to, the agent calculates a weighted sum of the 
above factor values for each of the platforms, and migrates to 
a platform that generates the highest weighted sum. 

Agent replication and death behaviors have a factor that 
evaluates the current energy level of agent.  

The factors in platform replication behavior include: 

• Health Level Ratio, (health level on a remote host)/(health 
level on a local host), which encourages platforms to repli-
cate themselves on a healthier host.  



A replicated (child) platform is placed on a host whose 
health level is highest among neighboring hosts. 

Platform death behavior has a factor that evaluates the cur-
rent energy level of platform. Each platform never performs 
death behavior while an agent(s) runs on the platform.  

Each agent/platform incurs energy loss (i.e. behavior cost) 
to invoke behaviors except death behavior. When the energy 
level of an agent/platform goes over the cost of a behavior, 
the agent/platform decides whether it performs the behavior 
by calculating a weighted sum of factor values.  

VI. PRELIMINARY SIMLATION RESULTS 

This section shows preliminary simulation results to evalu-
ate how agents and platforms in SymbioticSphere achieve 
scalability and adaptability3. This simulation work assumes 
agents implement an application (e.g. grid application and 
Internet data center application) on a wired network. 

In this paper, adaptability is evaluated as service adapta-
tion and resource adaptation. Service adaptation is the activi-
ties to adaptively improve the quality and availability of ser-
vices provided by agents. Quality of service is measured as 
response time of agents for service requests from users. Ser-
vice availability is measured as the number of available 
agents. Resource adaptation is the activities to adaptively 
improve availability of resources provided by platforms and 
efficiency to utilize the resources. Resource availability is 
measured as the number of platforms that make resources 
available for agents. Resource efficiency indicates how many 
service requests can be processed against resource utilization. 

A simulated network is an 8x8 grid topology network with 
64 network hosts (Fig. 1). At the beginning of each simula-
tion, a platform is initialized on the host 63, and an agent is 
deployed on the platform. There are two types of hosts: re-
source-poor and resource-rich hosts. A resource-poor host has 
320MB memory, and a resource-rich host has 512MB mem-
ory4. On each host, an operating system consumes 128MB, 
and a Java virtual machine consumes 64MB. Thus, 320MB 
and 128MB are available for a platform and agents in re-
source-rich and resource-poor hosts, respectively. Each agent 

                                                 
                                                                                   

3 Simulations were carried out with the SymbioticSphere simulator, which 
contains 14,100 lines of Java code (dssg.cs.umb.edu/symbiosis/). It is freely 
available for researchers who investigate autonomic network systems.  

and platform consumes 5MB and 20MB, respectively. This 
assumption is obtained from a prior empirical experiment [4]. 

This simulation work implements two different networks: 
homogeneous and heterogeneous networks. In the homoge-
neous network, all 64 hosts are resource-poor. The heteroge-
neous network has 32 resource-poor hosts and 32 resource-
rich hosts. Shaded circles in Fig. 1 mean resource-rich hosts. 

Three users request services provided by agents. Fig. 2 
shows how each user changes its service request rate for 24 
hours (from 0:00 to 24:00). Two users always reside on hosts 
9 and 14, and the third user enters the network (on host 51) at 
8:00. Transmission latency of service request is 0.1 second 
between two hosts. An agent processes an incoming service 
request in 0.2 second.  
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Fig. 2. Service request rate from users. 
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Fig. 3. The number of agents.  

Fig. 3 shows how service availability (i.e. the number of 
agents) changes. Agents adapt their population as a group to 
the demand for their services. When service request rate 
spikes from 8:00 to 9:00, agents autonomously increase ser-
vice availability more rapidly because they gain more energy 
from users and perform replication more often. This result 
shows agents scale well to rapid changes in service demand. 
In the heterogeneous network, agents keep replicating them-
selves and stay on the host 63 for a while because the health 
level of the host 63 is much higher than those of its neighbor-
ing hosts. At 12:00, some of the agents running on the host 63 
migrate to the hosts 55 and 62. The agents process all the 
service requests from users; no service requests reach the host 
63. As a result, agents on the host 63 die off, and this leads to 
a rapid drop in the number of agents at 12:00. From 12:00 to 
16:00, the number of agents increases again. In this period, 
agents perform replications on the hosts 55 and 62, platforms 
are replicated on neighboring hosts (the hosts 47 and 54), and 
agents perform further replications on those hosts.  
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Fig. 1. Simulated network. 

 
4 Currently, memory availability represents resource availability. 
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Fig. 4 shows how resource availability (i.e. the number of 
platforms) changes. Platforms adaptively improve resource 
availability by changing their population against the demand 
for their resources. In the homogeneous network, agents rap-
idly increase their population when the third user enters the 
network at 8:00. When service request rate becomes high, 
agents gain more energy from users and transfer more energy 
to platforms for using their resources. Then, higher energy 
level contributes platform replication. In heterogeneous net-
work, a platform (on the host 63) does not replicate until its 
health level becomes less than those of the hosts 55 and 62 at 
2:00. When agents migrate from the host 63 to the hosts 55 
and 62 at 12:00, platforms on the host 63 to the hosts 55 gain 
more energy from the agents and start replications.  
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Fig. 4. The number of platforms 

Fig. 5 shows the average distance between agents and users 
in network hop counts. In the homogeneous network, agents 
eventually work on the hosts where users reside on. In the 
heterogeneous network, the distance gradually (not rapidly) 
decreases because agent migration policy considers health 
level on neighboring hosts as well as users’ locations.  
 

 
Fig. 5. Average distance between agents and users 

Another observation in Fig. 5 is that platforms gradually 
move toward users, although platform replication policy does 
not consider users’ locations. This is an example of symbiotic 
emergence. If replicated platforms are placed on hosts that 
agents want to migrate to (i.e.  hosts closer to users), the plat-
forms will survive. Otherwise, they will die because agents 
do not migrate to them and transfer energy to them. In a 
sense, agents indirectly instruct platforms where to replicate 
themselves. This results in a mutual benefit for agents and 
platforms. Agents can work closer to users and gain more 
energy from the users, and platforms gain more energy from 
agents. 

Fig. 6 shows the quality of service (i.e. the average re-
sponse time for agents to process service requests from us-

ers). In the first two hours, response time becomes very high 
in both homogeneous and heterogeneous networks, because 
agents have to store energy for a while to start replications. 
After that, agents start replications (see Fig 3); thereby de-
creasing response time dramatically. Also, as agents migrate 
towards users (see Fig. 4), response time decreases. Please 
note that response time include transmission latency between 
two network hosts (i.e. the closer agents work to users, the 
shorter their response time becomes). In the homogeneous 
network, response time drops to 15 seconds in two hours. In 
the heterogeneous network, response time drops to 5 seconds 
in four hours. Response time is shorter in the heterogeneous 
network because agents work on resource-rich hosts, where 
service requests are processed faster than on resource-poor 
hosts. After 14:00, response time becomes 0.5 second in the 
homogeneous network because agents work on the hosts 
where users reside on. In the heterogeneous network, agents 
decide to work on resource-rich hosts instead of the hosts 
where users reside on.  
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Fig.6  Response time for users

Fig. 7 shows resource efficiency. It is measured as (the to-
tal number of user requests processed by agents) / (the total 
amount of resources consumed by agents and platforms). The 
heterogeneous network generally maintains higher resource 
efficiency than the homogeneous one because the number of 
platforms in the heterogeneous network is much less than that 
in the homogeneous one (see Fig. 4). In the heterogeneous 
network, platforms tend to work on resource-rich hosts, and 
they can operate more agents than resource-poor hosts. 

Fig. 8 shows how workload (i.e. service requests) is dis-
tributed over platforms. Load balancing index (LBI) is meas-
ured with the Equation 1 (LBI is a standard deviation of x). 

( )
N

xLBI
2μ−∑

=          (1) 

x indicates (the number of messages processed by agents) / 
(resource utilization on each platform). μ represents the ex-
pected average of x, which is measured as (the total number 
of messages processed by agents) / (the total amount of re-
source utilization on all platforms)  / (the number of plat-
forms; N). Fig. 8 shows agents and platforms gradually in 
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Fig. 7 Resource Efficiency 
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Fig. 8 Load Balancing Index 

crease the degree of load balancing. This is an example of 
symbiotic emergence. Agent migration behavior policy en-
courages agents to move toward platforms running on health-
ier hosts. Platform replication behavior policy encourages 
platforms to replicate themselves on healthier hosts. As a 
result, service requests are processed by agents that are 
spread over the platforms running on healthy hosts. This con-
tributes to balance workload per platform, although agent 
migration policy and platform replication policy do not con-
sider agent population, platform population nor load balanc-
ing. This results in a mutual benefit for both agents and plat-
forms. Platforms help agents decrease response time by mak-
ing more resources available for them. Agents help platforms 
to keep their stability by distributing workload on them (i.e. 
by avoiding excessive resource utilization on them).  

V. RELATED WORK 

This work is an extension to the Bio-Networking Architec-
ture [4, 7]. In the Bio-Networking Architecture, agents are 
designed as biological entities, and they achieve service adap-
tation in a decentralized and collective manner. However, 
platforms are static and non-biological entities. Since they do 
not dynamically change their population and locations, they 
cannot achieve resource adaptation. In SymbioticSphere, both 
agents and platforms are biological entities, and they achieve 
both service adaptation and resource adaptation in a decen-
tralized, collective and symbiotic manner. 

Resource Broker [8] proposes a resource adaptation 
mechanism for grid systems. In this mechanism, a centralized 
system component monitors heterogeneous networks where 
different hosts have different levels of stability and different 
resource availability. Given monitored environment condi-

tions, the mechanism adapts resource allocation for grid ap-
plications. Unlike Resource Broker, SymbioticSphere focuses 
on service adaptation as well as resource adaptation with de-
centralized agents and platforms. 

[9] and [10] propose generic adaptation frameworks for 
grid systems. They can be used to achieve both service adap-
tation and resource adaptation. In these frameworks, central-
ized system components store the current environment condi-
tions, and decide which adaptation strategy to execute against 
the monitored conditions. In contrast, SymbioticSphere does 
not assume any centralized system components. Each of 
agents and platforms collects and stores environment condi-
tions, and autonomously decide which behavior to invoke.  

The concept of energy in SymbioticSphere is similar to 
money in economy. MarketNet [11] applies the concept of 
money to address market-based access control for network 
applications. Instead of access control, SymbioticSphere cur-
rently focuses on scalability and adaptability of network sys-
tems (network applications and middleware platforms). 

VI. CONCLUDING REMARKS 

This paper overviews SymbioticSphere, and presents how 
it implements biological concepts and mechanisms. Simula-
tion results show SymbioticSphere allows network systems to 
collectively scale and adapt to dynamic environment changes 
in an autonomous and decentralized manner. 
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