
Modeling Turnpike: a Model-Driven Framework for
Domain-Specific Software Development

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393

hiroshi_wada@otij.org and jxs@cs.umb.edu

Katsuya Oba
OGIS International, Inc.

444 High Street, Suite 200
Palo Alto, CA 94301

oba@ogis-internatinoal.com

ABSTRACT
This paper describes a new model-driven development framework,
called Modeling Turnpike (or mTurnpike). It allows developers to
model and program domain-specific concepts, and to gradually
transform them to the final (compilable) source code. By
leveraging UML metamodeling and attribute-oriented
programming, mTurnpike provides an abstraction to represent
domain-specific concepts at the modeling and programming layers
simultaneously. This paper overviews the design, implementation
and performance implications of mTurnpike.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and techniques –
Computer-aided Software Engineering

General Terms
Design, Languages

Keywords
Model Driven Development, Domain Specific Language, UML,
Attribute-Oriented Programming.

1. INTRODUCTION
Modeling technologies have matured to the point where they can
offer significant leverage in all aspects of software development.
Given modern modeling technologies, the focus of software
development has been shifting from implementation technologies
toward the domain-specific concepts (ideas and mechanisms
specific to a particular business or technology domain) [1]. One of
the goals of modeling technologies is to map modeling concepts
directly to domain-specific concepts [1].

Domain Specific Language (DSL) is a promising solution to
directly capture, represent and implement domain-specific
concepts [1, 2]. DSLs are the languages targeted to particular
problem domains, rather than general-purpose languages that are
aimed at any software problems. Several experience reports have
demonstrated that DSLs can improve the productivity in
implementing domain-specific concepts (e.g. [3]).

This paper proposes a new model-driven development framework,

called Modeling Turnpike (or mTurnpike) [4]. It allows
developers to model and program domain-specific concepts in
DSLs and to transform them to the final (compilable) source code
in a seamless and piecemeal manner. Leveraging UML
metamodeling and attribute-oriented programming, mTurnpike
provides an abstraction to represent domain-specific concepts at
the modeling and programming layers simultaneously.

2. DESIGN AND IMPLEMENTATION
mTurnpike consists of the frontend and backend systems (Fig. 1).
The frontend system is implemented as Domain Specific Code
(DSC) Generator, and the backend system is implemented as DSL
Transformer. Both systems are implemented with Java.

The frontend system transforms domain-specific concepts from
the modeling layer to programming layer, and vise versa (Fig. 1),
by providing a seamless mapping between Domain Specific
Models (DSMs) and DSCs. In mTurnpike, a DSL is defined as a
metamodel that extends the UML 2.0 standard (superstructure)
metamodel with UML’s extension mechanism. The UML
extension mechanism provides a set of model elements such as
stereotype and tagged-value in order to add application-specific or
domain-specific modeling semantics to the UML 2.0 standard
metamodel. In mTurnpike, each DSL defines a set of stereotypes
and tagged-values to express domain-specific concepts.

Given a DSL, a DSM is represented as a set of UML 2.0 diagrams
(class and composite structure diagrams). Each DSC consists of
Java interfaces and classes decorated with the J2SE 5.0
annotations. The frontend system of mTurnpike maps the
stereotypes and tagged-values in a DSM to the annotations in a
DSC, and vise versa, in order to transform domain-specific
concepts between the modeling and programming layers (Fig. 1).

The backend system of mTurnpike transforms a DSM and DSC
into a more detailed model and program by applying a given
transformation rule (Fig. 1). mTurnpike allows developers to
define arbitrary transformation rules, each of which specifies how
to specialize a DSM and DSC to particular implementation and
deployment technologies. mTurnpike combines the specialized
DSM and DSC to generate compilable source code (Fig. 1).

In mTurnpike, the frontend and backend systems are separated by
design. mTurnpike clearly separates the task to model and
program domain-specific models (as DSMs and DSCs) from the
task to transform them into the final compilable code. This design
strategy improves separation of concerns between
modelers/programmers and platform engineers. Modelers and
programmers do not have to know how domain-specific concepts
are implemented and deployed in detail. Platform engineers do

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

not have to know the details of domain-specific concepts. As a
result, mTurnpike can reduce the complexity in application
development, and increase the productivity of developers in
modeling and programming domain-specific concepts.

This design strategy also allows DSMs/DSCs and transformation
rules to evolve independently. Since DSMs and DSCs do not
depend on transformation rules, mTurnpike can specialize a single
set of DSM and DSC to different implementation and deployment
technologies by using different transformation rules. When
changing a running application, modelers/programmers make the
changes in the application’s DSM and DSC and leave
transformation rules alone. When retargeting an application to a
different implementation and/or deployment technology, e.g. Java
RMI to Java Messaging Service (JMS), platform engineers define
(or select) a transformation rule for the new target technology and
regenerate the final compilable source code. As such, mTurnpike
can make domain-specific concepts (i.e. DSMs and DSCs) more
reusable and extend their longevity, thereby improving
productivity and maintainability in application development.

Fig. 1 mTurnpike Architecture and its key components

3. APPLICATIONS
In order to demonstrate how to exploit mTurnpike in application
development, it has been used to develop distributed systems with
a DSL for Service-Oriented Architecture (SOA) [4]. SOA is a
distributed systems architecture that models a distributed system
as a set of services and connections between them in a platform
independent manner. The SOA DSL abstracts distributed systems
using two major domain-specific concepts, service interface and
connections between services, and hides the details of
implementation and deployment technologies (e.g. programming
languages and remoting systems). mTurnpike currently specializes
DSMs to Java applications running with Java RMI and JMS.
In addition to the proposed SOA DSL (a DSL for a horizontal
domain), mTurnpike will support DSLs for vertical domains as
well. mTurnpike will support at least three 1 horizontal/vertical

1 [5] suggests investigating at least three applications on a framework in

order to examine generality and reusability of the framework.

DSLs, and it will be tested to generate compilable code through
combining DSMs and DSCs written in those multiple DSLs.

4. EMPIRICAL EVALUATION
Empirical measurement results of the mTurnpike frontend system
shows that its transformation overhead is small enough (below 5
seconds) and consumes no more than 15MB memory in small-
scale to mid-scale application development. mTurnpike does not
interrupt developers' modeling and programming work severely,
and it is not necessary for them to upgrade their development
environments (e.g. memory modules in their PCs).

5. CONTRIBUTIONS
This section summarizes the contributions of this work.

Higher abstraction for programming domain-specific concepts.
mTurnpike offers a new approach to represent domain-specific
concepts at the programming layer, through the notion of
attribute-oriented programming. This approach provides a higher
abstraction for developers to program domain-specific concepts,
thereby improving their programming productivity. Attribute-
oriented programming makes programs simpler and more readable
than traditional programming paradigms.

Seamless mapping of domain-specific concepts between the
modeling and programming layers. mTurnpike maps domain-
specific concepts between the modeling and programming layers
in a seamless manner. This mapping allows modelers and
programmers to handle the same set of domain-specific concepts
in different representations (i.e. UML models and annotated code),
yet at the same level of abstraction. Thus, modelers do not have to
involve programming details, and programmers do not have to
possess detailed domain knowledge and UML modeling expertise.
This separation of concerns can reduce the complexity in
application development, and increase the productivity in
modeling and programming domain-specific concepts.

Modeling layer support for attribute-oriented programs. Using
the bi-directional mapping between UML models and annotated
code, mTurnpike visualizes annotated code in UML. This work is
the first attempt to bridge a gap between UML modeling and
attribute-oriented programming.

6. REFERENCES
[1] G. Booch, A Brown, S Iyengar, J. Rumbaugh and B. Selic, “An

MDA Manifesto,” In The MDA Journal: Model Driven Architecture
Straight from the Masters, Chap. 11, Meghan Kiffer, Dec. 2004.

[2] S. Cook, “Domain-Specific Modeling and Model-driven
Architecture,” In The MDA Journal: Model Driven Architecture
Straight from the Masters, Chap. 3, Meghan Kiffer, December 2004.

[3] S. Kelly and J. Tolvanen, “Visual Domain-specific Modeling:
Benefits and Experiences of using metaCASE Tools,” In Proc. of
Int’l workshop on Model Engineering, ECOOP, 2000.

[4] H. Wada and J. Suzuki, “Modeling Turnpike Frontend System: a
Model-Driven Development Framework Leveraging UML
Metamodeling and Attribute-Oriented Programming,” In Proc. of
the 8th ACM/IEEE MoDELS, October 2005. to appear.

[5] D. Roberts and R. Johnson, “Evolving Frameworks: A Pattern
Language for Developing Object-Oriented Frameworks,” In Pattern
Languages of Program Design 3, Chap. 26, Addison Wesley, 1997.

DSM

Final
(Compilable) Code

Transformation rules

DSC

Visual Models Textual Code

DSC
Generator

Abstraction level

Representation

Higher
Abstraction
Level

Lower
Abstraction
Level

DSC
Transformer

Skeleton
Code

Generator

DSM
Transformer

Plain UML
Models

DSL Transformer

ProgrammersModelers

Describe models

Write
method code

Application Developers

