
Design and Implementation of a Scalable Infrastructure for
Autonomous Adaptive Agents*

Junichi Suzuki and Tatsuya Suda

School of Information and Computer Science
University of California, Irvine

Irvine, CA 92697

Abstract
This paper describes our research effort to design,
implement and deploy a scalable infrastructure for
autonomous adaptive agents running on the Internet. We
have designed a network application architecture, called
the Bio-Networking Architecture, which models agents
after several biological concepts and mechanisms, and
implemented a platform software to host the architecture
on the Internet. The platform aids developing and
executing large-scale, highly distributed and dynamic
network applications, each of which is composed of the
biologically-inspired software agents, by abstracting low-
level networking/operating details and providing a rich set
of runtime services. We overview several key features of
the agents in our architecture, and describe the design and
implementation of the proposed platform, showing how the
platform satisfies a set of functional requirements derived
from the features of our agents. We also present some
measurement results to examine scalability and efficiency
of the platform.

Key Words
software agents, autonomous adaptive agents, agent
platform, middleware, distributed computing software

1. Introduction

We believe the future network applications, which will be
orders of magnitude more complex and larger than the
current ones, should exhibit self-organization with inherent
support for scalability, mobility and adaptability to
dynamic changes in networks. In order to make this vision
a reality, it is recognized as one of the promising strategies
to use autonomous adaptive agents in network applications
[1, 2]. Although a lot of existing research efforts have
successfully clarified autonomous adaptive agents and
showed they work well in some applications (e.g. [3, 4]),
the number of large-scale agent systems are currently very
limited [5]. Even in agent simulation systems, the scale of
agents involved is often kept small, except several
exceptions (e.g. [6]). The scale of agent systems running
on actual networks is usually much smaller. For example,

the claim that Auctionbot [7] is scalable is supported by
an experiment with only 90 agents.

This paper describes our research effort to develop a
scalable infrastructure that allows for deploying large-
scale, highly distributed and dynamic network
applications using autonomous adaptive agents. Our
long-term research goal is to exploit autonomous
adaptive agents, beyond simulations, for Internet-based
distributed computing. In order to achieve this goal, we
have designed a novel architecture, called the Bio-
Networking Architecture, which models autonomous
adaptive agents after several biological concepts and
mechanisms [8, 9]. The architecture is motivated by the
observation that the desirable properties in future
network applications (such as scalability and
adaptability) have already been realized in various
biological systems.

This paper overviews several key features of the
agents in our architecture, and identifies functional
requirements to our agent infrastructure, called the Bio-
Networking Platform (or bionet platform). The bionet
platform is a middleware system that aids developing
and deploying network applications (agents) by
providing reusable software components. These
components abstract low-level operating and networking
details (e.g. I/O and concurrency), and provide agents a
series of runtime services. We describe the design and
implementation of the bionet platform, showing how the
platform satisfies the identified requirements. In order to
examine scalability and efficiency of the platform, we
present some results of the initial empirical
measurements.

This paper is organized as follows: Section 2
presents several key features of the agents in our
architecture. Section 3 describes the design and
implementation of the bionet platform, showing how the
platform satisfies a set of functional requirements
derived from the agent features. Measurement results are
shown in Section 4. In Sections 5 and 6, we conclude
with comparison with existing research work and future
work.

2. Assumed Agent Features

In the Bio-Networking Architecture, each agent, called
cyber-entity, consists of attributes, body and behaviors
[8]. Attributes carry descriptive information regarding a

* Research supported by the NSF through grants ANI-0083074 and ANI-
9903427, by DARPA through grant MDA972-99-1-0007, by AFOSR
through grant MURI F49620-00-1-0330, and by grants from the
California MICRO program, Hitachi, Hitachi America, Novell, NTT,
NTT Docomo, Fujitsu, and NS Solutions Corporation.

jsuzuki
Proceedings of the 15th IASTED International ConferencePARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMSNovember 3-5, 2003, Marina Del Rey, CA, USASelected as a best paper candidate (one of the 4 candidates out of accepted 150 papers)

cyber-entity (e.g. identifier). A body implements cyber-
entity’s functional service(s). Behaviors implement non-
functional biological actions (e.g. reproduction and
migration). Each cyber-entity lives on a specific bionet
platform to execute its functional service implemented in
its body. A bionet platform runs on each network node.
Through a set of runtime services provided by a local
bionet platform, each cyber-entity continuously sense the
current surrounding conditions in network (e.g. network
traffic) and performs its behavior [8, 9, 10, 11]. Cyber-
entities maintain the following four key features.

(1) Decentralized. A network application is modeled as a
decentralized collection of cyber-entities in the Bio-
Networking Architecture. This is analogous to a bee
colony (an application) consisting of multiple bees (cyber-
entities). The ultimate advantage of decentralization is
scalability and fault tolerance [12, 13]. Centralized systems
can fail when central entities (e.g. directory server and
resource manager) are overwhelmed or down, but
decentralized systems can survive by spreading the load
[14] or avoiding fatal errors even when some agents go
down [15]. Decentralization is essential if a system grows
beyond the management of a single administrative entity.
Centralized entities also suffer from mobility of agents.
They cannot eventually keep track of agents in highly
dynamic environments where agents often join and leave
the network [16]. Decentralized systems also have an
organizational advantage. Users need no complicated setup
work; they can simply develop and run their cyber-entities
without knowing any central coordination. This lowers the
barrier for developing and accessing autonomous adaptive
agents.

(2) Autonomous. Autonomy is the ability of agents to act
without any intervention from their users and other agents
[17]. Autonomous agents are goal-oriented and control
themselves in a proactive manner [18]. Cyber-entities are
autonomous in the sense that each of them has its own goal
(e.g. staying close to users and living long), senses
surrounding network conditions, and performs its
behaviors, according to the sensed environmental
conditions, which will support future goal achievement [9].
Our previous simulation work has confirmed that the
desirable system characteristics (e.g. adaptability and
survivability) emerge as collective results of cyber-
entities’ autonomous behavior invocation and
decentralized interactions among them [9].

(3) Adaptive. Adaptability is the ability of agents to
increase their fitness to environment. Cyber-entities adapt
themselves to environmental changes in short-term and
long-term fashions. The short-term adaptation is achieved
by performing behaviors according to the current
surrounding network conditions [9, 11]. For example, a
cyber-entity may migrate to a neighboring platform when
traffic volume grows or resource availability becomes
scarce. The long-term adaptation is achieved by applying
biological evolutionary concepts. Cyber-entities evolve by

generating behavioral diversity and executing natural
selection [10]. Behavioral diversity means that it is likely
different cyber-entities implement different policies on
their behaviors. It is generated through mutation and
crossover, which dynamically modify behavior policies
during replication and reproduction. Natural selection is
executed based on the concept of energy. Each cyber-
entity stores and expends energy for living, as biological
entities naturally strive to gain energy by seeking and
consuming food. Cyber-entities gain energy in exchange
for performing their functional services, and expend
energy to consume resources such as CPU cycles and
memory space. The abundance and scarcity of stored
energy affects various behaviors and contributes to the
natural selection process. For example, abundance of
stored energy is an indication of higher demand for the
cyber-entity; thus the cyber-entity may be designed to
favor reproduction in response to higher level of stored
energy. Scarcity of stored energy (an indication of lack
of demand or ineffective behaviors) may eventually
cause the cyber-entity’s death. Our previous simulation
work has shown that our evolutionary process allows
cyber-entities to adapt to dynamic environmental
changes (e.g. changes in workload, user's location and
resource availability) [10].

(4) Self-describing. In order to make agents autonomous
and decentralized, they need to be loosely coupled with
each other. As a result, the agents that an agent interacts
with may not exist at the point of time it is developed,
and they may not always be available in the future, for
example, due to relocation and shutdown/upgrade by
their administrator. Therefore, autonomous decentralized
agents should be able to dynamically discover and
interact with other agents without recompiling or
changing any lines of code. In the Bio-Networking
Architecture, each cyber-entity keeps its own descriptive
information as attributes, and makes it available to other
cyber-entities. It also maintains a set of relationships
with other cyber-entities. A relationship is established
between two cyber-entities, and it contains descriptive
information about a peer cyber-entity. With the
relationships and descriptive information, cyber-entities
dynamically discover others and interact with each other
[19].

3. The Bio-Networking Platform

Given an initial set of successful simulation results [9,
10, 11, 19], we built the bionet platform in order to
implement and evaluate the features of cyber-entities on
real networks. This section describes the design and
implementation of the bionet platform.

3.1 Software Architecture

We implemented the bionet platform in Java, and each
platform runs on a Java virtual machine (JVM) atop a
network node. It is an object-oriented configurable and

extensible framework on which various network
applications can be developed. The bionet platform
consists of six architectural components (see Figure 1).

A platform representative is an object that represents
a bionet platform and runs on per-platform basis. It keeps a
table listing all the bionet services and bionet container
(see below) on a local platform with their names and
references. It is initialized when a bionet platform boots.

A CE context is an entry point for a cyber-entity to
access underlying platform components (e.g. bionet
services). It examines if a bionet service requested by a
cyber-entity is available, and if it is, the CE context returns
a reference to the service. Each CE context performs this
lookup for bionet services through the local platform
representative. Each cyber-entity has its own CE context.
A CE context is created and associated with a cyber-entity
by the lifecycle service (one of the bionet services, see
Section 3.3), when the cyber-entity is created, replicated,
reproduced or completes a migration.

The bionet services provide a set of runtime services
that cyber-entities use for performing their behaviors. Each
bionet service implements one or more behaviors of cyber-
entities. The behaviors the current bionet services support
are energy exchange and storage, migration, replication
and reproduction, relationship maintenance, discovery of
cyber-entities, and resource sensing.

The bionet message transport abstracts low-level
networking and operating details such as network I/O,
concurrency, messaging and network connection
management. The current bionet platform uses the
CORBA IIOP ver. 1.1 [20] to transmit messages on TCP.

The bionet container maintains a table that contains
references to the cyber-entities running on a local platform,
and dispatches incoming messages to them. It follows the
interfaces of the CORBA Portable Object Adaptor (POA)
[20] for the table maintenance and message dispatching. It
also keeps track of the network traffic load by counting the
size of received IIOP packets and the number of method
dispatches.

The bionet class loader is a custom class loader that
extends JVM’s system (default) class loader. It is used to

dynamically load a cyber-entity’s class definition into a
JVM when it is newly created or completes a migration.

External helper tools are the software intended to
improve the productivity of developers and
administrators. They include GUI tools to visualize
cyber-entities’ attributes, relationship structures and
performance measurement results. Appendix shows an
example tool, which monitors response time of a cyber-
entity and graphically displays that on a window.

The current code base of the bionet platform
contains approximately 29,700 semicolons, and is the
work of one full-time research staff and six part-time
undergraduate students. It has been open for public use at
UC Irvine since 2002 [21], and will be released soon for
researchers who explore the design space of autonomous
adaptive agents and investigate them on the Internet.

We implemented the bionet platform in Java for
several reasons. The most important was speed of
development. Unlike C and C++, Java supports strong
typing and automated runtime garbage collection. These
two features greatly reduce debugging time, especially in
a large-scale project with a rapid development pace. The
second reason was portability. Multithreaded code in
Java is much easier to port than the one in C or C++. In
fact, our code base, which was implemented and tested
solely on Window 2000/XP PCs, was ported onto Solaris
in under a week of part-time work.

We implemented the bionet message transport and
bionet container based on the CORBA IIOP and POA
specifications, respectively. A reason of this choice was
language neutrality. The cyber-entities written in Java
can interoperate with the programs in C++, Lisp and
even script languages such as Python. Another reason
was portability. The programs compliant with the
CORBA interfaces are easy to port from a CORBA
implementation to another. Our code base, which
contains our own CORBA implementation, was ported
onto JacORB 1 , which is another Java-based CORBA
implementation, within two days of part-time work.

3.2 Design of Cyber-entity

Since the bionet platform uses Java as an implementation
language and CORBA IIOP as a message transport
protocol, a cyber-entity is designed as a Java object

1 www.jacorb.org

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Figure 1. Architecture of the bionet platform

Cyber-entity

send()

metadata()
Message
queue

Environment
sensing

Behavior
selection

msgs

Behavior
invocationmsgs

fetch and
process

while(true)

run()

run()

Cyber-entity

send()

metadata()
Message
queue

Environment
sensing

Behavior
selection

msgs

Behavior
invocationmsgs

fetch and
process

while(true)

run()

run()

Figure 2. Internal design of a cyber-entity

implementing a CORBA interface. Every cyber-entity
implements the following CORBA interface.
interface CyberEntity {

oneway send(in string message);
string metadata();};

Cyber-entities use send()to communicate with each
other in an asynchronous manner. The operation accepts a
message from another cyber-entity as its parameter. We
use a subset of the FIPA agent communication language2
for the message format. Due to space limitation, please see
[19] for more details about the message format. The reason
we chose an asynchronous message-based communication
scheme, instead of a synchronous request-reply scheme, is
that the scheme can provide better scalability in terms of
response time and throughput [34]. It also contributes to
the loose-coupling among cyber-entities, described in
Section 2. The send() operation inserts a received
message in cyber-entity’s message queue (Figure2). The
cyber-entity fetches the message to process it on an
individual thread. When no message is available, the
thread waits for a new message on the queue. When a
cyber-entity migrates to another platform, all the
unprocessed (queued) messages are transmitted and
processed at a destination platform.

Each cyber-entity maintains another thread to perform
its non-functional logic including environment sensing,
behavior selection and behavior invocation (Figure 2). It is
implemented as a subclass of java.util.TimerTask,
and executed at certain intervals. We assigned different
threads to functional and non-functional aspects, because it
is different how often these aspects need to be executed;
the functional aspect should be executed immediately
when a message is queued and the non-functional aspect
can be executed on the order of seconds, minutes or maybe
even hours, depending on application requirements. Please
note that it is beyond of the scope of this paper to describe
the behavior selection scheme (i.e. which behavior to be
selected in given network conditions). Please see [9, 10,
11] for details about this issue.

The metadata() operation of CyberEntity is
used to obtain a cyber-entity’s attributes. The mandatory
attributes that every cyber-entity must maintain are (1) the
cyber-entity’s GUID (globally unique ID), (2) the cyber-
entity’s reference, (3) the type of service the cyber-entity
provides, and (4) the energy units that the cyber-entity

2 www.fipa.org

requires to provide its service. A GUID is a 32-digits
string data made from hexadecimal representations of IP
address, JVM identity hash code3 of the singleton GUID
generator, the current time in milliseconds and a random
number4. A cyber-entity’s reference is formatted as a
stringfied CORBA object reference [20]. Cyber-entities
can specify any other information as their optional
attributes. Attributes are represented as name-value pairs
based on the OMG constraint language [22]. A sample of
mandatory attributes is described as follows:
GUID=’sti3sdr98rd56fn...’

ref=’IOR:daforimklcmd...’

serviceType=’HTTP/1.1’

serviceCost=100.0

Figure 3 shows the design of the base class for
cyber-entities, CyberEntityImpl. This class defines
a set of variables and methods that are common among
all the cyber-entities. Developers define their own cyber-
entities by extending this class.

3.3 Bionet Services

The bionet platform currently provides eight bionet
services that cyber-entities use for performing their
behaviors (Table 1). We implemented the bionet services
based on five functional requirements derived from the
features and behaviors of cyber-entities. We describe the
design of bionet services along with the requirements.

Each bionet service runs on per-platform basis.
Since decentralization is a key design principle in our
mind (see Section 2), we implemented all the bionet
services in a decentralized manner; no centralized
entities exist to control cyber-entities.

(1) Relationship management. As described earlier,
cyber-entities use their relationships to represent their
acquaintances, discover other cyber-entities and interact
with them. Therefore, the bionet platform provides the
relationship management service, which allows cyber-

3 obtained by calling System.identityHashCode()
4 generated with java.util.Random (default option because of its

efficiency) or java.security.SecureRandom

Name Functionality
Relationship
management

allows cyber-entities to establish, examine, update
and eliminate their relationships.

Social networking allows cyber-entities to locate other cyber-entities
through their relationships with their search criteria.

CE sensing allows cyber-entities to locate the cyber-entities
running on the local platform.

Migration allows cyber-entities to move to another platform.
Pheromone emission allows cyber-entities to emit their pheromones and

sense pheromones emitted by other cyber-entities.
Lifecycle service provides cyber-entities lifecycle operations.
Resource sensing allows cyber-entities to sense the type, amount and

unit cost of available resources.
Energy management keeps track of energy level of the cyber-entities

running on the local platform.

Table 1. A list of the bionet services

- metadata: String
- mQueue: MessageQueue
- nonFunc: NonFunctional
+ send(message:String):void
+ metadata(): String
+ run(): void
+ getCEContext(): CEContext
+ setCEContext(ctx: CEContext):void
+ getID(): String
+ getRelationship(): Vector
…

CyberEntityImpl <<CORBA interface>>
CyberEntity

<<Java interface>>
Serializable

<<Java interface>>
Runnable

- metadata: String
- dateEstablished: Date
- properties: Hashtable
…

Relationship
1 0..*

+ findBionetService(name: String): Object
…

CEContext1 1

- metadata: String
- mQueue: MessageQueue
- nonFunc: NonFunctional
+ send(message:String):void
+ metadata(): String
+ run(): void
+ getCEContext(): CEContext
+ setCEContext(ctx: CEContext):void
+ getID(): String
+ getRelationship(): Vector
…

CyberEntityImpl <<CORBA interface>>
CyberEntity

<<Java interface>>
Serializable

<<Java interface>>
Runnable

- metadata: String
- dateEstablished: Date
- properties: Hashtable
…

Relationship
1 0..*

+ findBionetService(name: String): Object
…

CEContext1 1

Figure 3. Class diagram around CyberEntityImpl

entities to establish, examine, update and eliminate their
relationships (Table 1). As shown in Figure 3, each cyber-
entity has a list of Relationship objects, each of which
represents a relationship with another cyber-entity. A
Relationship object contains the metadata (attributes)
of a partner cyber-entity and the date when the relationship
is established. Cyber-entities can put any additional
information (e.g. keywords describing their partner cyber-
entities) in the properties variable.

When a cyber-entity establishes a relationship with
another one, it calls the establishRelationship()
operation that accepts the relationship partner’s GUID
and/or reference as its parameters. The operation checks if
the partner exists, and if it does, obtains the partner’s
attributes, and instantiates a Relationship object.

In order to establish an initial set of relationships, a
cyber-entity typically searches for other cyber-entities
running on the same platform by using the CE sensing
service (Table 1). It may also ask its partners to introduce
their partners in order to establish more relationships.

(2) Dynamic discovery. The autonomy and
decentralization features of cyber-entities produce the need
for a method to dynamically locate cyber-entities.
Therefore, the bionet platform provides the social
networking service, which allows cyber-entities to
discover others with various search criteria in a
decentralized manner (Table 1). The design approach of
the social networking service is similar to that of peer-to-
peer networking systems [23, 24, 25, 26]. Cyber-entities
construct an overlay network with their relationships for
routing discovery queries. A discovery process involves in
four phases: query initialization, query matching, query
forwarding, and query hit backtracking.

In query initialization, a discovery originator (i.e. a
cyber-entity) begins a discovery process by generating a
query through an operation of the social networking
service. Each query contains its GUID to distinguish it
from other queries, hops-to-live count to determine
discovery termination, and search criteria that specify
which cyber-entities are being searched for. Search criteria
are described based on the OMG constraint language [22].
Examples of search criteria are as follows:
GUID==’sti3sdr98rd56fn...’

serviceType==’HTTP/1.1’ and serviceCost<150.0

The query matching phase is performed after a query
is initialized or a cyber-entity receives a query from
another cyber-entity. The social networking service
provides an evaluator object used to examine if the
received query (i.e. the query’s search criteria) matches a
given cyber-entity. If the query matches, a query hit is
returned to a discovery originator. Otherwise, the query is
forwarded to other cyber-entities.

In the query forwarding phase, queries are moved
from cyber-entity to cyber-entity through their
relationships, seeking the cyber-entities that satisfy search
criteria. In order to forward a query, a cyber-entity uses the
forwardQuery() operation of the social networking

service (Figure 4). This operation decrements the hops-
to-live value in a received query, and if the value
becomes zero, the query is discarded. It also examines
whether the query has already been forwarded, using a
discovery message table (Figure 4), and if it already has,
the query is discarded to avoid a forwarding loop.
Otherwise, the query is forwarded to the relationship
partners of the cyber-entity that invoked
forwardQuery(). When a query is forwarded, the
social networking service inserts an entry regarding the
query in its discovery message table (Figure 4). The
entry keeps a record of the query’s GUID, the cyber-
entity from which the query is received, and the cyber-
entity to which the query is forwarded.

The query hit backtracking phase is performed
when a query matches a cyber-entity. A query hit is
generated and returned back to a discovery originator,
following the reverse route of the forwarding path that
led to the cyber-entity being returning the query hit. The
back propagation path information can be obtained from
a discovery message table in each social networking
service (Figure 4).

In addition to the social networking service, the
bionet platform provides another service, called the CE
sensing service, to locate cyber-entities (Table 1). This
service keeps track of the cyber-entities that exist on a
local platform. This service is typically used for cyber-
entities to establish their initial relationships.

(3) Migration. Since cyber-entities move around the
network, the bionet platform provides the migration
service, which allows them to migrate from a platform to
another platform without losing the information they
keep. The design approach of this service aligns to so-
called weak migration [27], in which data state
associated with an object is transferred between different
network nodes.

The migration service is responsible for sending out
a cyber-entity and receiving a migrating cyber-entity. It
transfers a cyber-entity’s class name, class definition and
runtime data state to a migration service running on a
destination platform. The class definition and data state
are serialized at an origin platform and de-serialized on a
destination by using Java serialization mechanism. The
transferred class definition is loaded into a JVM on a
destination platform using bionet class loader (see
Section 3.1 and Figure 1). After the class definition is

(1) forwardQuery()

CE A

pre-CE id=“null”msg. guid=5 pre-CE ref=null

Discovery message table

Social networking service (2)

(4) forwardQuery()

(3) query forwarding

(6) query
forwarding

pre-CE id=…..msg. guid=… pre-CE ref=…..

pre-CE id=…..msg. guid=… pre-CE ref=…..

CE A

pre-CE id=“A”msg. guid=5 pre-CE ref=

Discovery message table

Social networking service (2)

pre-CE id=…..msg. guid=… pre-CE ref=…..

pre-CE id=…..msg. guid=… pre-CE ref=…..

A

(1) forwardQuery()

CE A

pre-CE id=“null”msg. guid=5 pre-CE ref=null

Discovery message table

Social networking service (2)

(4) forwardQuery()

(3) query forwarding

(6) query
forwarding

pre-CE id=…..msg. guid=… pre-CE ref=….. pre-CE id=…..msg. guid=… pre-CE ref=…..

pre-CE id=…..msg. guid=… pre-CE ref=….. pre-CE id=…..msg. guid=… pre-CE ref=…..

CE A

pre-CE id=“A”msg. guid=5 pre-CE ref=

Discovery message table

Social networking service (2)

pre-CE id=…..msg. guid=… pre-CE ref=….. pre-CE id=…..msg. guid=… pre-CE ref=…..

pre-CE id=…..msg. guid=… pre-CE ref=….. pre-CE id=…..msg. guid=… pre-CE ref=…..

A

Figure 4. Query forwarding process in the social
networking service

loaded and data state of a cyber-entity is de-serialized, a
destination-side migration service instantiates the cyber-
entity. Then, the instantiated cyber-entity is passed to the
lifecycle service (Table 1) to start executing its
run()method (see also Figure 2).

Since cyber-entities are autonomous, they move
around the network without any intervention from others.
As a result, after a cyber-entity moves, the relationships
(particularly, references contained in the relationships)
associated with the cyber-entity become invalid. In this
case, by using the social networking service, cyber-entities
may try to locate the missing cyber-entity or other cyber-
entities that implement the service the missing one
provides.

The bionet platform provides another service for
cyber-entities to locate missing cyber-entities through the
pheromone emission service (Table 1). This service allows
a cyber-entity to leave its pheromone (or trace) on a local
platform when it migrates to another platform, so that
other cyber-entities will be able to find it on a destination
platform. The service keeps a record of the emitted
pheromones in a certain time period. Each pheromone
contains a cyber-entity’s GUID and the reference pointing
to a destination platform’s representative. When a cyber-
entity tries to locate a missing one, it accesses a
pheromone emission service running on the platform
where the missing one used to exist and asks the service
for the pheromone of the missing one with its GUID.
Then, it contacts a destination platform’s representative,
which is contained in the obtained pheromone, to find the
current reference of the missing cyber-entity through the
CE sensing service running on the destination platform.

(4) Lifecycle management. As cyber-entities are
dynamically initialized, replicated or reproduced, the
bionet platform provides the lifecycle service, which
provides a series of lifecycle operations to them (Table 1).

The lifecycle service is used to initialize a cyber-
entity when it is newly created or when it completes a
migration. The service accepts a cyber-entity’s instance,
and creates a CE context to associate it with the cyber-
entity, assigns a GUID to the cyber-entity, registers the
cyber-entity to the bionet container, and starts running its
run() method (see Figure 2).

The lifecycle service is also used to replicate a cyber-
entity or reproduce a child cyber-entity from two parent
cyber-entities. The service makes a deep copy of a parent
cyber-entity using Java serialization mechanism. Mutation
may happen on a child cyber-entity during replication and
reproduction. For example, an inherited set of relationships
and other properties (e.g. behavior policies) may be
randomly modified. Crossover happens during
reproduction to inherit relationships and other properties
from two parents. The evolutionary aspect of cyber-entities
is beyond the scope of this paper. Please see [9, 10] for
more details about this issue.

(5) Environment sensing. Since cyber-entities need to
sense their surrounding network conditions to perform

their biological behaviors, the bionet platform provides a
series of services for environment sensing. They allow
for each cyber-entity to sense (1) its current energy level,
(2) resource availability on a local platform, (3) the
current traffic load on a local platform, and (4) the
number of cyber-entities running on a local platform.

The current energy level of a cyber-entity is
available through the energy management service (Table
1). This service keeps track of the energy level of every
cyber-entity running on a local platform, and any cyber-
entity can ask the service for its current energy level. The
service maintains the energy table that contains pairs of
cyber-entity’s GUID and current energy level. A table
entry associated with a cyber-entity is created by a
lifecycle service when the cyber-entity is initialized.

The resource sensing service allows cyber-entities
to monitor the type, amount and unit cost of resources
(CPU cycles and memory space) available on a local
platform. The service calculates the CPU availability by
measuring the current CPU utilization. Since any Java
program cannot inspect CPU utilization through the
standard APIs, we built an external library implemented
in C with JNI (Java Native Interface). The library
determines the JVM’s process ID and obtains CPU time
spent executing kernel and user code on behalf of the
process5. The resource sensing service calls this library
to take CPU usage snapshots at regular intervals and
obtains the current CPU utilization on percentage.
Memory utilization is obtained by executing garbage
collections6 until the amounts of free memory in JVM7
become same before and after a garbage collection. The
resource sensing service can be invoked remotely as well,
so that cyber-entities can sense the resource availability
on a remote platform.

Cyber-entities can also sense the current traffic load
and the number of cyber-entities on a local platform. As
described earlier, the traffic load is available from the
bionet container, and the number of local cyber-entities
is available through the CE sensing service (Table 1).

4. Initial Measurement Results

This section describes some of the initial measurement
results to examine the footprint, efficiency and
scalability of the bionet platform.

4.1 Measurement Configuration

The measurements were conducted with two bionet
platforms running on different Windows 2000 PCs
(Service Pack 4), each of which hosts Java 2 SDK
(version 1.4.2_01 from Sun Microsystems) with an Intel
Pentium 4 processor (1.8 GHz) and 512 MB RAM. The
PCs are connected through a 100Mbps Ethernet switch.

5 obtained through the getProcessTimes() system call on Windows.
6 through the Runtime.gc() method.
7 measured by calling Runtime.freeMemory().

In order to measure time duration in our experiments,
we used our own timer written in C with JNI. We did not
use the currentTimeMillis() 8 method of Java’s
System class, because its resolution is coarse. On
Windows 2000, Sun SDK 1.4.2 provides 10ms resolution.
The method is suitable for profiling relatively long-lasting
(e.g. 100 ms and longer) operations, but it does not work
well in our measurements. Our timer uses Win32 native
functions; QueryPerformanceFrequency() and
QueryPerformanceCounter(). The first function
returns the frequency of the timing counter in cycles per
second. The second function returns the current counter
value (i.e. the number of CPU clock cycles) since PC’s
powerup. Through these native functions, our timer
provides a resolution of 0.001ms.

In every experiment to measure time duration, we
warmed9 the JVM(s) before the experiment by executing
measurement code for enough time. Since Java code is
generally optimized at runtime, the first several executions
of a line of code are slow as the JVM is still optimizing it.
Our measurement code was optimized through JVM
warming before each measurement.

CPU and memory utilizations were measured in the
way described in Section 3.3 (the subsection about
environment sensing).

4.1 Measurement Results

Table 2 shows the bootstrap overhead and memory
footprint of each platform component. The bootstrap
overhead measures the time for the bionet platform to
initialize each platform component, and the bootstrap
memory footprint measures the amount of memory space
each platform component consumes when it is initialized.

platform component overhead footprint
Bionet message transport 22.98 msec 6.65 KB

Bionet container 127.06 msec 8.88 KB
Bionet class loader 9.11 msec 3.97 KB

Platform representative 82.31 msec 5.23 KB
Relationship mgt service 23.17 msec 4.48 KB
Social networking service 69.85 msec 12.03 KB

CE sensing service 56.43 msec 7.82 KB
Migration service 33.13 msec 4.88 KB

Pheromone emission service 37.79 msec 7.39 KB
Lifecycle service 91.92 msec 44.07 KB

Resource sensing service 64.36 msec 42.12 KB
Energy management service 59.02 msec 8.12 KB

Total 677.13 msec 154.64 KB

Table 2. Bootstrap overhead and memory footprint of each
platform component

The measurement results show that the bootstrap

overhead and memory footprint of each platform
component are fairly small. The footprint of the lifecycle
service is relatively large because the service creates a

8 returns the difference, measured in milliseconds, between the current time
and midnight, January 1, 1970.

9 It is called JVM warming to perform several passes through a line of code
to allow JVM to optimize the execution of the code.

thread pool that contains five idle threads when it is
initialized. Also, an external JNI-based library used to
measure CPU utilization is dominant (approx. 37 KB) in
the footprint size of the resource sensing service. The
service tests loading the external library when initialized.

Table 3 shows the overhead of typical activities to
install and start running a cyber-entity on a bionet
platform. We used an empty subclass of
CyberEntityImpl for this measurement. The total
overhead to instantiate the cyber-entity class through the
new operator and perform a series of activities was
2,194.59 msec. The total overhead to replicate the cyber-
entity class through the lifecycle service was 2,295.44
msec. In both cases, an initialized cyber-entity contacts
the local CE sensing service to locate 100 other cyber-
entities running on the same platform. It also establishes
relationships with the located cyber-entities. We believe
these two overhead results are small and acceptable for
the programming and deployment work by developers.

activity overhead
Class loading 11.21 msec

created by a developer 3.73 msec
Instantiation Replicated by a parent cyber-

entity 104.58 msec

Initialized through the lifecycle service 198.24 msec
Discovers 100 cyber-entities running on the
same platform using the CE sensing service 723.59 msec

Establishes (initial) relationships with the
discovered 100 cyber-entities using the

relationship management service
1,257.82 msec

created by a developer 2,194.59 msecTotal
through replication 2,295.44 msec

Table 3. Overhead to install and initialize a cyber-entity

Figure 5 shows the messaging roundtrip time
between two cyber-entities that run on different bionet
platforms. In this measurement, we deployed a single
cyber-entity (sender cyber-entity) on a platform and a
range of cyber-entities (from 1 to 1000 receiver cyber-
entities) on the other platform. The sender randomly
chose one of the remote receivers and sent an empty
message to the chosen receiver. Then, the receiver sends
back an empty message to the sender. Figure 5 depicts
that the roundtrip time is comparable with well-known
Java-based distributed object platforms (JacORB and
Java IDL10), indicating that the bionet message transport
and bionet container are implemented efficient.

Figure 5 also shows that the roundtrip time remains
relatively constant as the number of receiver cyber-
entities grows up to 1,000, indicating that the bionet
message transport and bionet container scales well. This
result owes the connection management design in the
bionet message transport. It does not create a new socket
for each receiver cyber-entity. Instead, a sender transmits
messages to multiple receivers running on a remote
platform over the same TCP connection (a single TCP
connection is shared between two different platforms).

10 java.sun.com/products/jdk/idl/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 100 200 300 400 500 600 700 800 900 1000

of objects (cyber-entities)

La
te

nc
y

(m
se

c)

Bionet

JacORB

Java IDL

Figure 5. Messaging roundtrip latency

Figure 6 shows the throughput of the bionet platform

per cyber-entity (i.e. how many interactions two cyber-
entities can perform per second). The measurement
configuration is the same as the previous one. As Figure 6
shows, two cyber-entities running on different platforms
can send approximately 2,200 messages per second with
each other. This throughput result is competitive with
existing distributed object platforms, and we believe the
bionet message transport and bionet container are efficient
enough. Figure 6 also shows that the throughput remains
mostly constant as the number of cyber-entities grows up
to 1,000, indicating that the bionet platform scales well.

0

500

1000

1500

2000

2500

3000

3500

1 100 200 300 400 500 600 700 800 900 1000

of objects (cyber-entities)

T
h
ro

u
g
h
pu

t
(c

a
lls

/
s
e
c
)

Bionet

JacORB

Java IDL

Figure 6. Throughput of message exchanges

Table 4 shows the overhead of each phase in a

discovery process using the social networking service. In
this measurement, two cyber-entities were deployed on
different platforms, and a cyber-entity (discovery
originator) established a relationship with the other one
(discovery responder). The discovery responder
maintained the mandatory attributes that are shown as
examples of attributes in Section 3.2.

Phase in a discovery process overhead
Relationship establishment between 2 cyber-entities 2.48 msec

Query initialization 7.23 msec
Query forwarding 29.33 msec

GUID matching 6.56 msecQuery matching
(on a discovery responder) Complex matching 12.82 msec

Query hit backtracking 24.84 msec

Table 4. Discovery overhead

We tried two different search criteria: the first one
was GUID==’sti3sdr98rd56fn...’as a GUID matching,

and the second one was serviceType==’HTTP/1.1’ and
serviceCost<150.0 as a complex matching (see Table
4). The overhead results of query initialization, query
forwarding and query hit backtracking were same in
different measurements using different search criteria. As
shown in Table 4, the social networking service
efficiently performs distributed discovery process.

Table 5 shows overhead results of the activities
using the energy management service. We deployed two
bionet platforms, and 100 cyber-entities on each
platform. In the first activity, a cyber-entity looks up its
own entry from 100 entries in the energy table of the
local energy management service, in order to see its
current energy level. In the second activity, upon a
request from a local cyber-entity running on the same
platform, an energy management service notifies a
remote energy management service to increase a
(remote) cyber-entity’s current energy level by 100.0.
Then, the local energy management service decreases the
local cyber-entity’s energy level by 100.0. We believe
that the energy transaction cost is acceptable and it does
not have any harmful effects on other platform
components or cyber-entities.

Activities Overhead

A cyber-entity asks the local energy management
service for its current energy level. 18.67 msec

A cyber-entity asks the local energy mgt. service
to pay 100.0 energy units to another cyber- entity

running on a different platform.
46.51 msec

Table 5. Overhead for energy transactions

Figure 7 shows the overhead for a cyber-entity to

migrate from a platform to another using the migration
service. The migration overhead includes the
transmission time over the network and the processing
time at both origin and destination platforms. As the size
of mobile code grows, the overhead increases linearly,
instead of exponentially, indicating the migration service
scales. The dominant factor in migration overhead is the
cost to serialize and de-serialize a cyber-entity’s data
state (83.6% with a mobile code of 31KB, and 92.8%
with a mobile code of 8MB).

135
210

345

612

962

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

size of mobile code (K bytes)

m
ig

ra
tio

n
ov

er
he

ad
 (m

se
c)

Figure 7. Migration overhead

In the next measurement, we deployed a bionet

platform on a PC and multiple cyber-entities on the
platform. Each cyber-entity implements a web server

function that processes the GET request message defined
in the HTTP specification version 1.0. A simulated user
was deployed on the same PC, and it pushed HTTP GET
messages to the message queues of the cyber-entities.
When receiving a message, a cyber-entity locates, reads
and returns a requested file. Each cyber-entity keeps five
different files whose sizes are 500B, 5KB, 50KB, 500KB
and 5MB. These five types of file request are
representative in Webstone [35], a well-known (de-fact
standard) performance profiling tool for web servers. The
request rate was 10 requests per second.

Figure 8 shows the CPU utilization of the web server
cyber-entities and bionet platform. When the CPU
utilization goes around 75%, the total utilization on the
testbed PC reaches 100%; the other 25% is consumed by
the operating system. In the case of 500B file requests, 350
cyber-entities can be executed under 75% CPU utilization.
In 5M file requests, 50 cyber-entities can be executed.

A heavy line in Figure 8 shows the CPU utilization in
the case that a user requests, in a single measurement run,
different-sized files based on the probability shown in
Table 6. This probability is defined by WebStone. In this
configuration, 320 cyber-entities can work simultaneously
before the CPU utilization reaches 75%. 290 cyber-entities
can run under 50% CPU utilization. Also, the CPU
utilization increases almost linearly as the number of
cyber-entities grows. Given these results, we confirmed the
bionet platform is scalable enough in terms of the number
of cyber-entities.

0

10

20

30

40

50

60

70

80

90

10 50 90 13
0

170 210 25
0

290 310 330 35
0

of cyber-entities

C
PU

 u
til

iz
at

io
n

(%
) 500 B

5 kB

50 kB

500 kB

5MB

combined

Figure 8. CPU utilization of the cyber-entities that

implement web server functions

File size (bytes) Probability (%)
500 35
5 K 50

50 K 14
500 K 0.9
5 M 0.1

Table 6. Probability to request different sized files

Please note that each cyber-entity had its own set of
files in this measurement; different cyber-entities did not
access a shared set of files. Also, each cyber-entity’s
message queue was configured to have infinite length so
that it prevented message overflow.

5. Related Work

The bionet platform is similar to existing mobile agent
platforms, such as Aglets11, Mole [28], AgentSpace [5]
and SOMA [29], in the sense that it implements a weak
migration mechanism for agents. However, unlike them,
the bionet platform emphasizes on decentralized
organization of agents. Almost all the existing agent
platforms assume the existence of centralized entities.
Hive addresses decentralization of agents [30], but its
implementation currently depends on a centralized
directory (Java RMI registry). In contrast, the bionet
platform allows agents (i.e. cyber-entities) to form an
overlay (virtual) network among agents using their
relationships and perform distributed discoveries through
the relationships with the social networking service and
pheromone emission service.

Pole is similar to our social networking service in
the sense that it implements a decentralized agent
discovery mechanism [31]. Its discovery process is
performed on a structured peer-to-peer overlay network12
with a distributed hash function. In the discovery
mechanisms based on distributed hash functions
(including several peer-to-peer systems such as Chord
[25] and OceanStore [26]), it is expensive and hard to
maintain their overlay routing structures in dynamic
environment where peers (or agents) often join and leave
the network [32]. Also, they do not allow each peer to
specify multiple search criteria for each query. Unlike
them, instead of relying on any distributed hash function,
our social networking service is designed on a loosely-
structured overlay network12 among cyber-entities in
order to assume dynamic network environments. It also
provides a flexible discovery scheme that allows cyber-
entities to specify multiple search criteria (as name-value
pairs) for each query.

6. Concluding Remarks

This paper described our research effort to develop a
scalable and efficient infrastructure for autonomous
adaptive agents running on the Internet. We presented
the design of our platform services that contribute to
increase the scalability, autonomy, decentralization and
flexibility of agents, and also showed that those services
can be implemented scalable, efficient and lightweight
through measurement results.

As future work, we plan an extended set of
measurements. We evaluated scalability and efficiency
of our platform services in terms of the number of cyber-
entities running on platforms, but the network size is still
small. We will deploy the bionet platforms and cyber-
entities on larger-scale networks (e.g. PlanetLab13) to
identify the impacts of network size on the platform

11 http://sourceforge.net/projects/aglets/
12 See [32] for the difference between structured and loosely-structured

peer-to-peer overlay networks.
13 http://www.planet-lab.org/

performance by comparing the measurement results shown
in this paper with new measurement results.

Although the bionet platform provides a rich set of
services, every user and application does not always
require all of them. Also, every network node may not be
able to deploy all the platform components due to resource
constraints. Therefore, we started decomposing the bionet
platform into finer-grained components and implementing
a reconfiguration framework so that the platform can
statically/dynamically load, unload, replace the fine-
grained platform components [10]. Our goal is to
customize and deploy different configurations of the bionet
platform on different kind of network nodes (e.g. from cell
phones to regular workstations) without breaking the
platform architectural design.

Finally, we proposed several key designs in the bionet
platform to the Object Management Group (OMG) as a
standard reference architecture for the Super Distributed
Objects specification. The specification was adopted by
OMG in April, 2003 [33]. It will be finalized and officially
published within 2003.

References

[1] P. Maes, “Modeling Autonomous Adaptive Agents,” Artificial Life, I
(1&2)9, 1994.
[2] S. Franklin and A. Graesser, “Is it an agent or just a program?: A
Taxonomy for Autonomous Agents,” Proc. of ATAL’96, 1996.
[3] Y. Fan and S. Gauch, “Autonomous Adaptive Agents for Information
Gathering,” Proc. of AAAI '96, 1996.
[4] B. J. Rhodes, N. Minar and J. Weaver, “Wearable Computing Meets
Ubiquitous Computing: Reaping the best of both worlds,” Proc. of ISWC
‘99, 1999.
[5] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T.
Brazier, “Supporting Internet-Scale Multi-Agent Systems,” Data
Knowledge Engineering (4)2-3, 2002.
[6] S. Moss, “Critical Incident Management: An Empirically Derived
Computational Model,” Artificial Societies and Social Simulation, 1(4),
1998.
[7] P. Wurman, M. Wellman and W. Walsh, “The Michigan Internet
AuctionBot: A Configurable Auction Server for Human and Software
Agents,” Proc. of Agents’ 98, 1998.
[8] T. Suda, T. Itao and M Matsuo, “The Bio-Networking Architecture:
The Biologically Inspired Approach to the Design of Scalable, Adaptive,
and Survivable/Available Network Applications,” In K. Park (ed.) The
Internet as a Large-Scale Complex System, Princeton University Press,
2002
[9] M. Wang and T. Suda, “The Bio-Networking Architecture: A
Biologically Inspired Approach to the Design of Scalable, Adaptive, and
Survivable/Available Network Applications,” Proc. of the 1st IEEE
SAINT conference, 2001.
[10] J. Suzuki, T. Nakano, K. Fujii, N. Ikeda and T. Suda, “Dynamic
Reconfiguration of Network Applications and Middleware Systems in the
Bio-Networking Architecture,” Proc. of IEEE LARTES, 2002.
[11] J. Suzuki and T. Suda, “Adaptive Behavior Selection of Autonomous
Objects in the Bio-Networking Architecture,” Proc. of AINS, 2002.
[12] K. Kelly, Out of Control, Brokman Inc., 1994.
[13] T. Hong, “Performance,” Peer-to-Peer, A. Oram (ed.), Chapter 14,
Wiley, 2001.
[14] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile Agents
for Dynamic Network Routing,” Software Agents for Future
Communications Systems, 1999.
[15] R. Albert, H. Jeong and A. Barabasi, “Error and Attack Tolerance of
Complex Networks,” Nature 406.
[16] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent
Coordination Models for Internet Applications,” Computer 33(2):82-89,
February 2000.

[17] C. Castelfranchi, “Guarantees for Autonomy in Cognitive Agent
Architecture,” Proc. of ECAI-94 Workshop on Agents Theories,
Architectures, and Languages, Springer, 1995.
[18] M. Luck and M. P. D’Inverno, “A Formal Framework for Agency
and Autonomy,” Proc. of MAS”95, 1995.
[19] T. Itao, T. Nakamura, M. Matsuo, T. Suda and T. Aoyama, “The
Model and Design of Cooperative Interaction for Service
Composition,” Proc. of the DICOMO, 2001.
[20] OMG, The CORBA Specification, version 3.0, 2002.
[21] http://netresearch.ics.uci.edu/bionet/resources/platform/
[22] OMG, The Trading Object Service, 2000.
[23] M. Ripeanu, I. Foster and A. Iamnitchi, “Mapping Gnutella
Network: Properties of large-scale peer-to-peer systems and
implications for system design,” IEEE Internet Computing Journal,
6(1), 2002.
[24] I. Clarke et al., O. Sandberg, B. Wiley, and T.W. Hong, “Freenet:
A Distributed Anonymous Information Storage and Retrieval System in
Designing Privacy Enhancing Technologies,” Proc. International
Workshop on Design Issues in Anonymity and Unobservability, LNCS
2009, Springer, 2001.
[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” Proc. of ACM SIGCOMM 2001, 2001.
[26] J. Kubiatowicz, et al., “OceanStore: An Architecture for Global-
Scale Persistent Storage,” Proc. of the Ninth ASPLOS 2000, 2000.
[27] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code
Mobility,”. IEEE Trans. on Software Engineering, 24(5), May 1998.
[28] J. Baumann, F. Hohl, K. Rothermel and M. Straßer, “Mole: ncepts
of a Mobile Agent System,” World Wide Web 1(3), 1998.
[29] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent
Middleware to Support Mobile Computing,” IEEE Computer, 34(3),
pages 73-81, March 2001.
[30] N. Minar, M. Gray, O. Roup, R. Krikorian and P. Maes, “Hive:
Distributed Agents for Networking Things,” Proc. of ASA99, 1999.
[31] B. Overeinder, E. Osthumus and F. Brazier, “Integrating Peer-to-
Peer Networking and Computing in AgentSpace Framework,” Proc. of
the 2nd IEEE International Conference on Peer-to-Peer Computing,
2002.
[32] S. Androutsellis-Theotokis, “A Survey of Peer-to-Peer File
Sharing Technologies,” white paper, Athens University of Economics
and Business, 2002.
[33] S. Sameshima, S. Steglich, J. Suzuki and T. Suda, “Platform
Independent Model (PIM) and Platform Specific Model (PSM) for
Super Distributed Objects,” Object Management Group, draft adopted
specification, OMG document number: dtc/03-04-02, April 2003.
[34] I. Singh, B. Stearns and M. Johnson, Designing Enterprise
Applications with the J2EE Platform, second edition, Addison-Wesley,
2002.
[35] G. Trent and M Sake, ”WebStone: The First Generation in HTTP
Server Benchmarking,” Mindcraft, Inc., 1995.

Appendix

