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Abstract
In the publish/subscribe (pub/sub) communication

scheme in wireless sensor networks (WSNs), there exist in-
herent tradeoffs among conflicting objectives in event pub-
lication. To address this issue, this paper investigates pub-
/sub middleware for WSNs, called TinyDDS. With its self-
configuring event routing protocol, TinyDDS adaptively
performs event publication according to dynamic network
conditions and autonomously balances its performance
among conflicting objectives. TinyDDS leverages an evo-
lutionary multiobjective optimization mechanism to seek
the optimal tradeoffs among objectives and adjust param-
eters in its event routing protocol. Simulation results val-
idate the ability of TinyDDS to tune its event publication
against dynamic network conditions. TinyDDS is imple-
mented lightweight and efficient enough to run on resource-
limited nodes.

1. Introduction
This paper considers wireless sensor networks (WSNs)

that are deeply embedded in the physical environment and
intended to aid personalized data communication for users.
For example, in disaster response for wildfire, fire fight-
ers may carry devices that communicate with an emer-
gency center and display personalized data such as their
surrounding environments (e.g., temperature, CO, humidity
and wind speed). WSNs can monitor an observation area
(e.g. a mountain) to detect certain critical events and trans-
mit them to a base station located at an emergency center.
Officers in the center may forward those transmitted events
to fire fighters in a particular area.

The publish/subscribe (pub/sub) communication scheme
is suitable for this event notification with WSNs by de-
coupling space and time among data/event source nodes
(publishers) and sink nodes (subscribers). A subscriber has
the ability to express its interest in an event or a pattern
of events in order to be notified subsequently. Each inter-
est is subscribed to a publisher(s), and the publisher(s) no-
tifies an event to a subscriber(s) when the event matches
a subscribed interest. Publishers do not need to know the
number and locations of subscribers, and vice versa. More-
over, publishers do not need to know the availability of sub-
scribers, and vice versa. For example, subscribers may be
active, sleeping or dead due to a lack of battery when a
publisher publishes an event. Event subscription and pub-

lication are asynchronously transmitted among publishers
and subscribers. Decoupling of space and time can increase
the scalability of WSNs by removing explicit dependencies
among publishers and subscribers.

A key issue in the pub/sub scheme in WSNs is that, in
event publication, there exist inherent tradeoffs among con-
flicting operational objectives such as data yield, data fi-
delity and power efficiency. For example, hop-by-hop re-
covery is often used for packet transmission to improve data
yield (the quantity of successfully-notified event data) from
publishers to subscribers. However, this can degrade data fi-
delity (the quality of event data; e.g., event data freshness)
and power efficiency. For improving data fidelity, publish-
ers may publish event data to subscribers with the short-
est paths; however, data yield can degrade because of traffic
congestion and packet losses on the paths. For improving
power efficiency, publishers may frequently sleep; however,
this can degrades data yield and data fidelity.

In order to address this issue, this paper investigates
TinyDDS, which is pub/sub middleware for event detec-
tion and dissemination applications in WSNs. With its
self-configuring event routing protocol, TinyDDS adap-
tively performs event publication according to dynamic
network conditions and autonomously balances its per-
formance among conflicting operational objectives. Tiny-
DDS leverages an evolutionary multiobjective optimization
mechanism, called MONSOON, in order to seek the op-
timal tradeoffs among objectives and adjust parameters in
its event routing protocol. Simulation results validate the
ability of TinyDDS to self-configure its event publication
against various dynamic changes in the network (e.g., node
failures, base station failures, noises in communication and
network separation). TinyDDS is implemented lightweight
enough to run on resource-limited nodes.

2. OMG DDS Standard Specification
TinyDDS is a lightweight implementation of the Data

Distribution Service (DSS), which Object Management
Group (OMG) standardizes for topic-based pub/sub mid-
dleware.DDS provides standard interfaces for event sub-
scription and publication in Interface Definition Language
(IDL), and TinyDDS implements them with nesC. See [2]
for the IDL-nesC mapping in TinyDDS.

Figure 1 shows the architecture of DDS middleware.
An event sink expresses its interest to an event, or topic,



and subscribes to its local Subscriber with associated
SubscriberListner and DataReader.
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Figure 1. DDS Architecture

An event source creates an event/topic with its corre-
sponding DataWriter, and the event is published by a
Publisher to its subscribers in the network.

A Subscriber on each node monitors every incom-
ing event, and if the event matches an event sink’s
subscription, it will be notified to the event sink via
SubscriberListner and DataReader.

DDS specifies a set of QoS parameters for distributed
networks, for example, LATENCY BUDGET and RELIA-
BILITY. The former indicates the ”urgency” of the event by
providing a maximum bound of the event latency, i.e., the
time period since the event is published until the event is re-
ceived. The later indicates the level of reliability requested
by DataReader or offered by DataWriter. In DDS specifi-
cation, there are two reliability level, BEST EFFORT which
indicates that the middleware does not have to retransmit
any failed transmission and RELIABLE which indicates that
the middleware have to retransmit any failed transmission
in order to improve the success rate the event transmission.
DDS, however, does not standardize how to satisfy these
QoS parameters and leaves to implementations.

3. TinyDDS
TinyDDS is a pub/sub middleware for WSNs applica-

tion with self-configuration mechanism using evolutionary
algorithm to satisfy QoS parameters. Applications imple-
mented on top of TinyDDS can disseminate and collect data
through a pub/sub interface provided by TinyDDS and the
self-configuration mechanism inside TinyDDS will adjust
the operational parameter, e.g., routing scheme, to satisfy
QoS parameters autonomously according to current net-
work conditions. In TinyDDS, each base station acts as a
subscriber while each sensor node acts as publisher. This as-
sumption is more strict than traditional pub/sub definition;
however, this assumption fits well with general WSNs ap-
plication where sensor nodes are intended to report data or
event to base stations.

Figure 2. The Architecture of TinyDDS

The left-hand side of the figure 2 shows the architec-
ture of the TinyDDS. With respect to the TCP/IP reference
model, TinyDDS operates in transport layer and work on
top of any network layer (L3) implementation. TinyDDS
follows Layer design pattern [4] by separating different
functionalities into different layers. At the top most layer,
TinyDDS provides a subset of DDS interfaces to be used by
applications. The DDS is an Object Management Group’s
standard specification for publish/subscribe middleware in
distributed network systems. An application implemented
on top of DDS can disseminate events, i.e. data or con-
trol messages, to the network with associated topic and the
events are captured by any subscribers, i.e., base station,
who have interest on the topic of that events. The implemen-
tation of the DDS interfaces operates on top of an overlay
network for event routing. Different routing protocols can
be used for routing on overlay network by implementing in
this Overlay Event Routing Protocols (OERP) layer. This
OERP layer allows application developer to choose appro-
priate routing protocol to suit their requirements and lim-
itation. For example, in sensor network with very limited
memory space sensor nodes, flooding-based routing proto-
col may be used because it needs minimal memory space to
maintain routing table. On the other hand, sensor network
which try to minimize the energy consumption of memory
rich sensor nodes may use DHT-based routing protocol. By
using this OERP layer, TinyDDS frees developers from the
limitation of routing algorithm used in network layer which
generally depends on sensor node platform such as MicaZ
which based on Zigbee protocol stack. The routing protocol
in OERP layer utilizes low-level network layer implementa-
tion through a transport layer interface called TinyDDS L4
Adaption Layer (L4AL). L4AL allows TinyOS to operates
with any network and MAC layer protocol, such as AODV
and Zigbee respectively.

To satisfy QoS parameters, TinyDDS utilizes an
evolutionary mechanism called MONSOON which au-
tonomously optimize the operational parameters of Tiny-
DDS to meet with the QoS parameters. Evolutionary al-
gorithm is a heuristic search algorithm for complex and
dynamic problems which fits well with the dynamic and



uncertain nature of WSNs. This optimization mechanism
consists of two parts, the MONSOON runtime operated in
the OERP layer and the MONSOON server operated at a
central server. The MONSOON runtime encapsulate pub-
lished data from upper layer into a software agent then the
runtime sends out the software agent to the network. Each
software agent has its own behavior policy which govern
its behavior, e.g., how to move to the next hop toward a
base station. This behavior policy, i.e., gene, is improved by
MONSOON server at a central server. In particular, when
an agent reaches a base station and in turn central server,
MONSOON server evaluates the agent according to the op-
erational objectives, including QoS parameters. Example
of operational objectives are latency, which represents the
LATENCY BUDGET QoS parameters in DDS, and power
consumption. Based on a collection of agents, MONSOON
server selects some of the agents with well-balanced perfor-
mance on the operational objectives as elite agents and send
those agents to sensor nodes. At each sensor nodes, the in-
coming elite agents perform genetic operations with agents
on the sensor node inside the MONSOON runtime in order
to improve the behavior policy of next generation agents.

3.1. Agent Behaviors

Each agent implements seven behaviors and performs
them in the following sequence.

Step 1: Energy gain. When an event is given to an agent,
the agent also gain some energy. In MONSOON, the con-
cept of energy does not represent the amount of physical
battery in a node. It is a logical concept that impacts agent
behaviors. Each agent updates its energy level with a con-
stant energy intake (EF):

Step 2: Energy expenditure and death. Each agent
consumes a constant amount of energy to use comput-
ing/networking resources available on a node (e.g., CPU
and radio transmitter). It also expends energy to invoke its
behaviors. The energy costs to invoke behaviors are con-
stant for all agents. An agent dies due to energy starvation
when it cannot balance its energy gain and expenditure. The
death behavior is intended to eliminate the agents that have
ineffective behavior policies. For example, an agent would
die before arriving at a base station if it follows a too long
migration path. When an agent dies, the local platform re-
moves the agent and releases all resources allocated to it1.

Step 3: Replication. Each agent makes a copy of itself
when it gains energy, i.e., when it receive a new event from
upper layer. A replicated (child) agent is placed on the node
that its parent resides on, and it inherits the parent’s behav-
ior policy (gene). A replicating (parent) agent splits its en-
ergy units to halves, gives a half to its child agent, and keeps

1If all agents are dying on a node at the same time, a randomly selected
agent will survive. At least one agent runs on each node.

the other half. A child agent contains the event that its par-
ent received, and carries it to a base station on a hop by hop
basis.

Step 4: Swarming. Agents may swarm (or merge) with
others at intermediate nodes on their ways to base stations.
On each intermediate node, each agent decides whether it
migrates to a next-hop node or waits for other agents to ar-
rive at the current node and swarm with them. This decision
is made based on the migration probability (pm). If an agent
meets other agents destine at a same base station during a
waiting period, it merges with them and contains the event
they carry. It also uses the behavioral policy of the best one
in the aggregating agents in terms of operational objectives.
(See Section 4. on how to find the ”best” agent.) The swarm-
ing behavior is intended to save power consumption by re-
ducing the number of data transmissions. If the size of data
an agent carries exceeds the maximum size of a packet, the
agent does not consider the swarming behavior.

Step 5: Pheromone sensing and migration. On each in-
termediate node toward a base station, each agent chooses a
migration destination node (next-hop node) by sensing three
types of pheromones available on the local node: base sta-
tion, migration and alert pheromones.

Each base station periodically propagates a base station
pheromone to individual nodes in the network. Their con-
centration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist ap-
proximately, and move toward them by climbing a concen-
tration gradient of base station pheromones.

Agents may emit migration pheromones on their local
nodes when they migrate to neighboring nodes. Each mi-
gration pheromone references the destination node an agent
has migrated to. Agents may also emit alert pheromones
when they fail migrations within a timeout period. Migra-
tion failures can occur because of node failures due to de-
pleted battery and physical damages as well as link failures
due to interference and congestion. Each alert pheromone
references the node that an agent could not migrate to. Each
of migration and alert pheromones has its own concentra-
tion. The concentration decays by half at each duty cycle.
A pheromone disappears when its concentration becomes
zero.

Each agent examines Equation 1 to determine which
next-hop node it migrates to.

WS j =

3∑
t=1

wt
Pt, j −Ptmin

Ptmax −Ptmin

(1)

An agent calculates this weighted sum (WS j) for each
neighboring node j, and moves to a node that generates the
highest weighted sum. t denotes pheromone type; P1 j, P2 j
and P3 j represent the concentrations of base station, migra-
tion and alert pheromones on the node j. Ptmax and Ptmin

denote the maximum and minimum concentrations of Pt



among all neighboring nodes.
The weight values in Equation 1 (wt,1 ≤ t ≤ 3) govern

how agents perform the migration behavior. For example,
if an agent has zero for w2 and w3, the agent ignores mi-
gration and alert pheromones, and moves toward a base sta-
tion by climbing a concentration gradient of base station
pheromones. If an agent has a positive value for w2, it fol-
lows a migration pheromone trace on which many other
agents have traveled. The trace can be the shortest path to
a base station. Conversely, a negative w2 value allows an
agent to go off a migration pheromone trace and follow an-
other path to a base station. This avoids separating the net-
work into islands. The network can be separated with the
migration paths that too many agents follow, because the
nodes on the paths run out of their battery earlier than the
others. If an agent has a negative value for w3, it avoids
moving to a node referenced by an alert pheromone, thereby
bypassing failed nodes and links.

Step 6: Pheromone emission. When an agent is mi-
grating to a neighboring node, it may emits a migration
pheromone on the local node. If the agent’s migration fails,
it may emits an alert pheromone. The decision to emit
pheromone is made based on the migration pheromones
emission probability (pmpe) and alert pheromones emis-
sion probability (pape), respectively. If the emission prob-
ability is high, it is a higher chance that agent will emit
the pheromone; thus, the other agents can gain knowl-
edge about how this agent moves or the node failure. As
a consequence, the success rate or the latency of the other
agents may be improved. However, this pheromone emis-
sion will increase the power consumption of agent. In the
other words, these emission probabilities control how agent
is cooperative with the others or be selfish. Each pheromone
spreads to one-hop away neighboring nodes.

Step 7: Reproduction. Two parent agents may produce
a child agent. A child agent is placed on the node that their
parents reside on, and it inherits the parents’ behavior poli-
cies (genes). This behavior is intended to evolve agents.
(See Section 4. for more details.)

3.2. Agent Behavior Policy

Each behavior policy consists of two distinctive infor-
mation: a set of behavior probability (pm, pmpe, and pape)
and a set of weight values in Equation 1 (wt,1 ≤ t ≤ 3). The
behavior probability is a non-negative value between zero
and one. They are used for each agent to decide whether
it performs the migration behavior, migration pheromone
emission, and alert pheromone emission respectively.

4. Optimization Process in MONSOON
The optimization process in MONSOON is performed

in the MONSOON Server (see Figure 2). The MONSOON

optimization process is based on evolution process, i.e., ge-
netic algorithm, which consists of, elite selection and ge-
netic operation. In the evolution process in MONSOON,
elite selection and genetic operations are performed in the
MONSOON server and each node, respectively.

The elite selection process evaluates the agents that ar-
rive at base stations, based on given operational objectives,
and chooses the best (or elite) ones. Elite agents are prop-
agated to individual nodes in the network. Through genetic
operations (crossover and mutation), an agent running on
each node performs the reproduction behavior with one of
elite agents. A reproduced agent inherits a behavior policy
(gene) from its parents via crossover, and mutation may oc-
cur on the inherited behavior policy.

Reproduction is intended to evolve agents so that the
agents that fit better to the environment become more abun-
dant in the network. It retains the agents that have effective
behavior policies, such as moving toward a base station in a
short latency, and eliminates the agents that have ineffective
behavior policies, such as consuming too much power to
reach a base station. Through successive generations, effec-
tive behavior policies become abundant in agent population
while ineffective ones become dormant or extinct. This al-
lows agents to adapt to dynamic network conditions.

4.1. Operational Objectives
Each agent considers four conflicting objectives related

to data yield, data fidelity and power consumption: latency,
cost, success rate and the degree of data aggregation. Suc-
cess rate and the degree of data aggregation are related to
data yield. Latency is related to date fidelity. Cost is related
to power consumption. MONSOON strives to minimize la-
tency and cost and maximize success rate and the degree of
data aggregation.

(1) Latency represents the time required for an agent to
travel to a base station from a node where the agent is repli-
cated. It (L) is measured as a ratio of this agent travel time
(t) to the physical distance (d) between a base station and a
node where the agent is replicated. Latency represents the
LATENCY BUDGET QoS parameter in DDS.

L =
t
d

(2)

(2) Success rate (S ) is measured as the ratio of the num-
ber of successful data transmissions (Nsucc) to the total num-
ber of data transmissions (ntran). Success rate represents
RELIABILITY QoS parameters with RELIABLE setting in
DDS.

S =
nsucc

ntran
(3)

(3) Cost represents the amount of power consumption
required for an agent to travel to a base station. It (C) is



measured with d, each node’s radio communication range
(r), and the total number of node-to-node data transmissions
required for an agent to arrive at a base station (ntran).

C =
ntran

r/d
(4)

The total number of data transmissions counts success-
ful and unsuccessful migrations of an agent as well as the
transmissions of its migration and alert pheromones.

(4) Degree of data aggregation is measured as the num-
ber of sensor data in an agent. It is more than two in a
swarming agent.

4.2. Elite Selection

Listing 1 shows how the MONSOON server periodi-
cally performs elite selection. The first step is to measure
four objective values of each agent that arrives at base sta-
tions. Each of agent is evaluated whether it is dominated
by another one. It is considered to be dominated if another
outperforms it in all four objectives. However, because the
objectives of agents are measured from their performance
on WSN, which contains lots of ”noise”, i.e., uncertainty,
in objective function. For example, an agent with a good
gene might has poor performance because it is unlucky, i.e.,
blocked by many ineffective agents. Thus, the agent might
has very good objective values in all objective, except the
very high latency. Hence, MONSOON relaxes the domi-
nation condition by allows agents which is weakly domi-
nated by the other agents to be considered as non-dominated
agent. In the other words, an agent is dominated only when
it is strongly dominated by the other agents. In particular, an
agent is strongly dominated by the other agent when all of
its objective values are worse than that of the other agents.
Formally, for a minimization problem, a solution ~x ∈ S,
where S is the decision variable space, dominates a solu-
tion ~y ∈ S, i.e. ~x�~y, if and only if fi(~x)< fi(~y) ∀ i = 1, · · · ,m,
where fi is an objective function. As a consequence, MON-
SOON can eliminate the effect of noise in the objective
function by allowing agents who might get some noise in
some objectives to survive to the next generation. Finally, a
subset of non-dominated solutions is selected as elite agent
and propagated to WSN to perform reproduction.

Listing 1. Elite Selection in MONSOON
1 A = ∅
2 while true {
3 Pnet = CollectAgentFromNetwork()
4 P = A∪Pnet
5 for each a ∈ P {
6 for each a′ ∈ P {
7 if a′ , a and a′ � a {
8 P = P \a
9 break

10 }
11 }

12 }
13 A = P
14 Pelite = EliteSelection(P)
15 PropagateToNetwork(Pelite)
16 }

Table 1. Variables and Functions in Elite Se-
lection in MONSOON

A Archive population
Pnet Agent population collected from sen-

sor network
P Current population
a,a′ An agent
Pelite Elite agent selected from non-

dominated population
CollectAgentFromNetwork() A function returning agents collected

from sensor network
EliteSelection(P) A function selecting a subset of

agents from non-dominated popula-
tion

PropagateToNetwork(Pelite) A function propagating elite agents to
sensor network

The MONSOON server propagates elite agents to indi-
vidual nodes in the network. This propagation is performed
with a base station pheromone.

4.3. Genetic Operations
Upon receiving a base station pheromone, an agent run-

ning on each node performs the reproduction behavior with
a certain reproduction rate. It selects one of propagated elite
agents, as a mating partner, which has the most similar gene
(behavior policy). Gene similarity is measured with the Eu-
clidean distance between the values of two genes. If two or
more elite agents have the same similarity to the local agent,
one of them is randomly selected. During reproduction, a
child agent performs one-point half-and-half crossover; it
randomly inherits the half of its gene from its parent agent
and the other half from the parent’s mating partner.

Mutation occurs on a child agent’s gene, with a certain
mutation rate, by randomly changing gene values within a
predefined value range. As described in the previous sec-
tion, mutation rate is periodically adjusted by the MON-
SOON server and propagated to individual nodes. After re-
production, a child agent takes over the local parent as the
next generation agent.

5. Simulation Results
This section shows simulation results to evaluate Tiny-

DDS in static and dynamic network conditions in terms of
performance and degree of self-organization. All simula-
tions were run with the TOSSIM simulator [7].

The network consists of 100 nodes deployed uniformly
in a 200x200 meters observation area to detect a forest fire.



A simulated forest fire starts at the middle of the observation
area and spreads in the observation area. Each node’s com-
munication range is 30 meters. A base station is deployed
on the northwestern corner of the observation area. The base
station connects to the MONSOON server via emulated se-
rial port connection. Packet loss rate is 0.05. On each node,
an agent keeps monitoring the change of temperature in the
current and previous duty cycle, and if it exceeds a thresh-
old, the agent publishes an event by replicating itself. The
duty cycle of each node is fixed at five minutes.

The degree of self-organization is measured with the no-
tion of entropy. In this paper, entropy indicates how similar
performance different agents yield. The lower entropy, the
more similar performance they yield. To measure the en-
tropy, the objective space is divided into a set of small non-
overlapped cubes with the same number of division in each
axis. Then, entropy (E) is given as follows.

E =
∑
i∈S

pi log(pi) (5)

i identifies individual cubes and S denotes the set of all
cubes. pi denotes the probability in which agents are plotted
in the cube i, i.e., the number of agents in the cube i over the
total number of agents.

Figure 3 shows the average objective values that agents
yield over a simulation. Each simulation tick represents a
duty cycle. Figure 3 (a) shows a result in the static net-
work, in which node/base station failures never occur. Each
objective value improves and converges around the 90th
tick. This result shows that , through evolution, agents self-
configure their behavior policies and self-optimize their
performance against conflicting objectives. Thus, TinyDDS
can improves its performance in order to satisfy the QoS
parameters, i.e., latency (in second per 30 meters) and reli-
ability. Figures 3 (b), (c), (d) and (e) show how agents per-
form against dynamic changes in the network. Upon each
changes that occurs at the 110th tick, objective values drops.
In Figures 3 (b), when 25 nodes are added at random loca-
tions, objective values degrade because agents initially have
random behavior policies on new nodes. Those agents can-
not perform its behavior efficiently, e.g., cannot migrate to
the base station in a shortest path. Also, enough pheromones
are not available a new node when they are deployed; agents
cannot make proper migration decision on those nodes. In
figure 3 (b), randomly-selected 25 nodes fail, i.e., because
of the fire. As a result, objective values drop because some
agents try to migrate to failed nodes. In Figure 3 (d), the
packet loss rate in the network is increased from 0.05 to 0.3;
thus, agents have higher chance to failed migration. How-
ever, after 35 ticks, each objective value improves and con-
verges again. In Figure 3 (e) and (f), two base stations are
initially deployed at the northwestern and southeastern cor-
ners of the observation area. In Figure 3 (d), at 110th tick, a

base station fails at the southeastern corner. Consequently,
objective values drop because some agents try to migrate to
the failed base station. In figure 3 (e), the forest fire spreads
to northeastern and southwestern corner and destroy all sen-
sor nodes along the way; thus, the network is split into two
islands.

Once objective values drop due to a dynamic change in
the network, agents gradually improve and converge their
objective values again. Objective values are mostly same
before and after each dynamic change. In figure 3 (b),
agents yield a slightly higher degree of data aggregation af-
ter a dynamic node addition because there are more agents
migrating in the network and there are higher chances
for them to aggregate. Figures 3 (b), (c), (d), (e) and
(f) show that MONSOON allows agents to posses a self-
configuration against dynamic network condition; agents
autonomously detect and configure itself according to the
changes in the network. Despite those changes, agents self-
configure their behavior polices and self-optimize their per-
formance by evolving their behavior policies. As a conse-
quence, TinyDDS can improves its operational parameters
in order to satisfy with the required QoS parameters.

Figure 4 (a) and (b) show the average objective values
that agents yield over a simulation when the weak domina-
tion is used instead of strong domination (see Section 4.2.).
In the weak domination, an agent is weakly dominated by
the other agents when all of its objective values do not better
than the other agents and at least one of its objective value is
worse than that of the others. Formally, for a minimization
problem, a solution ~x ∈ S, where S is the decision variable
space, dominates a solution ~y ∈ S, i.e. ~x � ~y, if and only if
fi(~x) ≤ fi(~y) ∀ i = 1, · · · ,m and fi(~x) < fi(~y) ∃ i = 1, · · · ,m.
where fi is an objective function. Compared with the fig-
ure 3 (a) and (b) , the results in the figure 4 (a) and (b)
show slower convergence rate. For example, in the figure 3
(a), success rate converges at around 90th simulation ticks.
However, in the figure 4 (a), it takes about 105 simulation
ticks before the success rate is converged. The same phe-
nomena can be observed from the other objectives. This can
be attributed from the fact that strong domination can pre-
serve more moderate individuals in each generation; thus,
diversity is better maintained across generation. The sim-
ulation results show that strong domination allows MON-
SOON to converge faster. In the figure in the figure 3 (b)
and in the figure 4 (b), the results are very similar the both
figures. However, in the figure 4 (c) which shows the en-
tropy of the system suggests that MONSOON with strong
domination has better degree of self-organization after the
noise addition occurs at 110th simulation ticks. Thus, by
replacing weak domination with strong domination, MON-
SOON can be more self-organized and tolerant to the noise
in the system.
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(a) Static Network
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(b) Node Addition
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(c) Random Node Failure
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(d) Noise Addition
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(e) Base Station Failure
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(f) Network Splitting

Figure 3. Performance with Success Rate, Data Aggregation, Cost and Latency

6. Processing and Power Efficiency
When TinyDDS is deployed on TinyOS, the average to-

tal latency is 0.79 second to route an event between source
and destination nodes in a single hop. Of this total latency,
TinyDDS spends 0.08 second; 0.03 second on a source node
and 0.05 second on a destination node. This means Tiny-
DDS occupies approximately 10% of the total latency. The
total power consumption is 168mW per hop in the same
setting. TinyDDS consumes only 3% of the total consump-
tion (6 mW). These measurements results demonstrate that
TinyDDS is implemented lightweight and efficient enough
to operate on a resource-limited nodes.

7. Related Work
This paper describes a set of extensions to the authors’

prior work [1, 2]. TinyDDS was originally proposed in [2].
[2] focuses on the (manual) configurability of TinyDDS and
describes how it allows application developers to config-
ure various policies and parameters in, for example, con-
currency, data re-retransmission, data aggregation and event
filtering. This paper extends [2] to study (non-manual) self-
configuration of event publication against dynamic network
conditions. MONSOON is proposed and evaluated in [1].
This paper extends [1] to explore how MONSOON’s opti-
mization mechanism complements the standard DDS spec-
ification and augments the pub/sub communication scheme
in WSNs. In this paper, the design of MONSOON is ex-

tended to replace a traditional strong dominance operator
with a weak dominance operator for guiding agent genes
(i.e., behavior policies) more diverse and robust against dy-
namic network conditions. Moreover, this paper evaluates
MONSOON in new simulation configurations (e.g., packet
losses and network separation) that [1] does not consider.

There exist several pub/sub middleware for WSNs [5,
8, 10]. These research efforts propose reconfigurable mid-
dleware that allows application developers to flexibly cus-
tomize a series of parameters and policies. However, they
do not consider self-adaptation of middleware; application
developers need to manually conduct the tedious, time-
consuming and error-prone process to optimize middle-
ware parameters and policies. In fact, the aforementioned
research efforts do not consider the dynamics of sensor
networks, but assume static and noise-free networks. In
contrast, TinyDDS is inherently designed to consider self-
adaptation to dynamic and noisy networks.

Genetic algorithms are applied to several aspects in
WSNs, such as cluster-based routing [6], localization [11]
and node placement [12]. Every work uses a fitness function
that aggregates multiple objective values as a weighted sum,
and uses the function to rank agents/genes in elite selection.
Application designers need to manually configure every
weight value in a fitness function through trial and errors. In
MONSOON, no manually-configured parameters exist for
elite selection because of domination ranking. MONSOON
imposes much less configuration cost. Also, [3, 6, 11, 12]
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(a) Static Network
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(b) Noise Addition
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Figure 4. Performance with Weak Domination and Entropy

do not assume dynamic networks, but static networks. Fi-
nally, all of the mentioned works do not address the noise
in the objective function, which is very common on WSNs
because of the dynamic nature of the network.

Evolutionary multiobjective optimization algorithms are
used for node placement [9] in WSNs. In [9], an optimiza-
tion process is performed only in a central server. This can
lead to a scalability issue as the network size increases. In
contrast, MONSOON is carefully designed to perform its
adaptation process in both the MONSOON server and indi-
vidual nodes.

8. Conclusion
This paper proposes and evaluates a self-configurable

pub/sub middleware for WSNs. TinyDDS is designed to
adaptively perform event publication by balancing conflict-
ing objectives according to dynamic network conditions.
Simulation results validate the ability of TinyDDS to tune
its event publication against dynamic network conditions.
TinyDDS is implemented lightweight and efficient enough
to run on resource-limited nodes.
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