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Abstract 

This paper describes our empirical research effort to design, 
implement and deploy a middleware platform that addresses 
several key issues in pervasive computing. We designed an 
architecture, called the Bio-Networking Architecture, which 
models a pervasive network application as a collection of 
autonomic agents designed after several biological concepts 
and mechanisms. The biologically-inspired agents inherently 
address the key issues in pervasive computing, and our 
middleware platform aids developing and executing the 
agents on networks. We identify a set of requirements to the 
middleware platform through analyzing the features of our 
agents, and describe the design and implementation of the 
platform, showing how the platform satisfies the identified 
requirements. We also present some measurement results to 
illustrate scalability and efficiency of the platform. 
 
1. Introduction 
 

As computing devices and networks become more 
pervasive, the computing landscape is evolving into an 
environment in which a huge number of networked 
computing devices sense, interact with and control the 
physical world in such a way that the physical world is 
merged and augmented with the virtual world [1, 2]. In 
order to make this vision a reality, literatures have 
identified several key issues for network applications and 
software platforms in the area of pervasive computing 
[3−6]. They address that software platforms need to allow 
application components to move around the network, 
discover other components dynamically, adapt to dynamic 
changes in environment (e.g. workload) and scale well 
(e.g. in terms of the size of applications). They also need 
to make the development and deployment of application 
components more productive (i.e. faster and easier). 

This paper describes our research effort to investigate 
a software platform that hosts each pervasive network 
application as a collection of autonomic agents [7−9] and 
allows pervasive network applications (i.e. autonomic 
agents) to support the above key requirements; mobility, 
dynamic discovery, adaptability, scalability and ease of 
development and deployment. The agents are designed 
after several biological concepts and mechanisms in our 

novel network application architecture called the Bio-
Networking Architecture [10, 11], which is motivated by 
the observation that the above key requirements in 
pervasive computing have already been realized in 
various biological systems. We overview the features of 
our autonomic agents and identify a set of functional 
requirements to a software platform for them, called the 
Bio-Networking Platform (or bionet platform). The bionet 
platform is a middleware that aids developing and 
deploying large-scale, highly-distributed and dynamic 
applications (i.e. autonomic agents) in pervasive networks 
by abstracting low-level operating and networking details 
(e.g. concurrency and messaging) and providing a series 
of high-level runtime services. We describe the design 
and implementation of the bionet platform, showing how 
the platform satisfies the functional requirements derived 
from the features of our agents. We also present some of 
the measurement results to illustrate the efficiency and 
scalability of the bionet platform. 

This paper is organized as follows. Section 2 presents 
the features of our agents. Section 3 describes the design 
and implementation of our agents as well as the bionet 
platform. Measurement results are shown in Section 4. In 
Sections 5 and 6, we conclude with comparison with 
existing work and future work. 
 
2. Assumed Features of Autonomic Agents 
 

In the Bio-Networking Architecture, each autonomic 
agent, called cyber-entity, consists of attributes, body and 
behaviors [10]. Attributes carry descriptive information of 
a cyber-entity (e.g. identifier). A body implements a 
cyber-entity’s functional service(s). Behaviors implement 
non-functional biological actions such as reproduction 
and migration. Each cyber-entity lives on a specific 
bionet platform to execute its service implemented in its 
body. A bionet platform runs on each network node. 
Cyber-entities maintain the following four key features.  

 
(1) Decentralized. A network application is modeled as a 
decentralized collection of cyber-entities in the Bio-
Networking Architecture. This is analogous to a bee 
colony (an application) consisting of multiple bees 
(cyber-entities). The advantages of decentralization are 
scalability and fault tolerance [14]. Centralized systems 
can fail when central entities (e.g. directory server) are 
overwhelmed, but decentralized systems can survive by 
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spreading the load [15]. Central entities also suffer from 
mobility of agents. They cannot eventually keep track of 
agents if they often join and leave the network [16]. 
Decentralized systems have an organizational advantage 
as well. Users need no complicated setup work; they can 
simply develop and run their agents without knowing any 
central coordination. This lowers the barrier for users to 
develop and deploy agents. Keeping these advantages in 
our mind, the Bio-Networking Architecture is designed 
not to assume any central entities on the network.  

(2) Autonomous. Autonomy is the ability of agents to act 
without any interventions from their users and other 
agents [17]. Autonomous agents are goal-oriented and 
control themselves proactively [18]. Cyber-entities are 
autonomous in the sense that each of them has its own 
goal (e.g. staying close to users and living long), senses 
surrounding network conditions, and performs its 
behaviors, according to the sensed network conditions, 
which will support future goal achievement [11]. Our 
previous simulation study has confirmed the desirable 
system properties (e.g. adaptability) emerge through 
cyber-entities’ autonomous behavior invocations [11]. 

(3) Adaptive. Adaptability is the ability of agents to 
increase their fitness to environment. Cyber-entities adapt 
themselves to environmental changes in short-term and 
long-term fashions. The short-term adaptation is achieved 
by performing behaviors according to the current network 
conditions [11, 13]. For example, a cyber-entity may 
migrate to a neighboring platform when traffic volume 
grows or resource availability becomes scarce. The long-
term adaptation is achieved by applying biological 
evolutionary process. Cyber-entities evolve by generating 
behavioral diversity and executing natural selection [12]. 
Behavioral diversity means that it is likely different 
cyber-entities implement different policies on their 
behaviors. It is generated through mutation and crossover, 
which dynamically modify behavior policies during 
replication and reproduction. Natural selection is 
executed based on the concept of energy. Cyber-entities 
gain energy in exchange for performing their services, 
and expend energy to consume resources such as CPU 
cycles and memory space. The abundance and scarcity of 
stored energy affects contributes to the natural selection 
process. For example, energy abundance is an indication 
of higher demand for the cyber-entity; thus the cyber-
entity may be designed to favor reproduction in response 
to higher level of energy. Energy scarcity (an indication 
of lack of demands or ineffective behavior policies) may 
eventually cause the cyber-entity’s death. Our previous 
simulation work has shown our evolutionary process 
allows cyber-entities to adapt to dynamic environmental 
changes (e.g. changes in workload, users’ location and 
resource availability) [12]. 

(4) Self-descriptive. In order to make agents autonomous 
and decentralized, they need to be loosely coupled with 
each other. As a result, the agents that an agent interacts 
with may not exist when it is developed, and they may not 
always be available in the future, for example, due to their 
migrations. Therefore, agents should be able to 
dynamically discover and interact with other agents 
without recompiling or changing any lines of code. In the 
Bio-Networking Architecture, each cyber-entity keeps its 
own descriptive information as attributes, and makes it 
available to other cyber-entities. It also maintains 
relationships with other cyber-entities. A relationship is 
established between two cyber-entities, and it contains 
attributes about a peer cyber-entity. With relationships 
and attributes, cyber-entities dynamically discover others 
and interact with each other [19]. 

Through the above four features of cyber-entities, the 
Bio-Networking Architecture inherently addresses the 
key issues in pervasive computing (see Section 1), such 
as mobility, dynamic discovery, adaptability, scalability 
and ease of development and deployment. 

 
3. The Bio-Networking Platform 
 

Given an initial set of successful simulation results [11, 
12, 13, 19], we built the bionet platform in order to host 
the Bio-Networking Architecture on the real network for 
empirically evaluating the features of cyber-entities. It is 
implemented in Java, and each platform runs on a Java 
virtual machine (JVM) atop a network node. It consists of 
five components (Figure 1). 

A platform representative is an object that represents a 
bionet platform and runs on per-platform basis. It keeps a 
table listing all the bionet services and bionet container 
(see below) on a local platform with their names and 
references. It is initialized when a bionet platform boots. 

A CE context is an entry point for a cyber-entity to 
access underlying bionet services. It examines if a bionet 
service requested by a cyber-entity is available, and if it is, 
the CE context returns a reference to the service. Each CE 
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Figure 1. Architecture of the bionet platform 



context performs this lookup for bionet services through 
the local platform representative. Each cyber-entity has its 
own CE context. A CE context is created and associated 
with a cyber-entity by the lifecycle service (one of the 
bionet services), when the cyber-entity is created, 
replicated or reproduced. 

The bionet services provide a set of runtime services 
that cyber-entities use for performing their behaviors. 
Each bionet service implements one or more behaviors of 
cyber-entities. The behaviors the bionet services support 
are energy exchange/storage, migration, replication and 
reproduction, relationship maintenance, discovery of 
cyber-entities and resource sensing.  

The bionet message transport abstracts low-level 
networking and operating details such as network I/O, 
concurrency, messaging and network connection 
management. The current bionet platform uses the 
CORBA IIOP 1.1 [20] to transmit messages on TCP.  

The bionet container maintains references to the 
cyber-entities running on a local platform, and dispatches 
incoming messages to them. It also monitors the network 
traffic by counting the size of received IIOP packets and 
the number of message dispatches. 

The bionet class loader is a custom class loader that 
extends JVM’s system (default) class loader. It is used to 
dynamically load a cyber-entity’s class definition into a 
JVM when it is newly created or completes a migration. 

The current code base of the bionet platform contains 
approximately 29,700 semicolons, and is the work of one 
full-time research staff and six part-time students. 
 
3.1. Design of Cyber-entities 
 

Since the bionet platform uses Java as a programming 
implementation language and CORBA IIOP as a message 
transport protocol, a cyber-entity is designed as a Java 
object implementing a CORBA interface. Every cyber-
entity implements the following CORBA interface. 

interface CyberEntity { 
oneway send(in string message); 
string metadata();}; 

Cyber-entities use send()to communicate with each 
other in an asynchronous manner. The operation accepts a 
message from another cyber-entity as its parameter. We 
use a subset of the FIPA agent communication language 
for the message format. Due to space limitation, please 
see [19] for more details about the message format. The 
send() operation inserts a received message in cyber-
entity’s message queue (Figure2). The cyber-entity 
fetches the message to process it on an individual thread. 
When no message is available, the thread waits for a 
new message on the queue.  

Each cyber-entity maintains another thread to 
perform its non-functional logic including environment 
sensing, behavior selection and behavior invocation 

(Figure 2). It is implemented as a subclass of 
java.util.TimerTask and executed at certain 
intervals. We assigned different threads to functional and 
non-functional aspects, because it is different how often 
these aspects need to be executed; the functional aspect 
should be executed immediately when a message is 
queued and the non-functional aspect can be executed on 
the order of seconds, minutes or even hours, depending 
on application requirements. Please note that it is beyond 
of the scope of this paper to describe non-functional 
aspect. Please see [9, 10, 11] for details about this issue.  

The metadata() operation of CyberEntity is 
used to obtain a cyber-entity’s attributes. The mandatory 
attributes that every cyber-entity must maintain are (1) the 
cyber-entity’s GUID (globally unique ID)1, (2) the cyber-
entity’s reference, (3) the type of service the cyber-entity 
provides, and (4) the energy units that the cyber-entity 
requires to provide its service. Cyber-entities can specify 
any other information as their optional attributes. 
Attributes are represented as name-value pairs based on 
the OMG constraint language [21]. A sample of 
mandatory attributes is described as follows: 

GUID=’sti3sdr98rd56fn...’ 
ref=’IOR:daforimklcmd...’ 
serviceType=’HTTP/1.1’ 
serviceCost=100.0 

Figure 3 shows the design of the base class for cyber-
entities, CyberEntityImpl. This class defines a set of 
variables and methods that are common among all the 
cyber-entities. Developers define their own cyber-entities 
by extending this class. We have proposed our designs of 
the bionet platform to Object Management Group (OMG) 
as the fundamental building blocks for Super Distributed 
Objects (SDOs) [30]. Super distribution means 
incorporating massive numbers of objects on highly 
distributed environments in a decentralized manner [30]. 
The goals of OMG SDOs are to represent heterogeneous 
hardware devices and software services as objects (SDOs) 
in a uniform object model, map them onto higher-level 
overlay networks and allow them seamlessly interwork 
with each other. OMG adopted our proposal and will 
publish the final version as its official standard 
specification in 2004. Figure 3 also shows how key 
components in the Bio-Networking Architecture (e.g. 

                                                 
1 See [26] for the detailed design of GUID.  
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Figure 2. Internal design of a cyber-entity 



cyber-entity and relationship) are designed based on the 
specification. 
 
3.2. Bionet Services 
 

The bionet platform provides eight bionet services that 
cyber-entities use for performing their behaviors (Table 
1). They are designed to support the key requirements in 
pervasive computing (see Section 1). Their designs are 
guided by five functional requirements derived from the 
features and behaviors of cyber-entities (see Section 2).  

Each bionet service runs on per-platform basis. Since 
decentralization is a key design principle for us, we 
implemented all the bionet services in a decentralized 
manner; no centralized entities exist. We describe the 
design of bionet services along with the requirements. 

(1) Relationship management. As described in Section 2, 
cyber-entities use their relationships to represent their 
acquaintances, discover other cyber-entities and interact 
with them. Therefore, the bionet platform provides the 
relationship management service, which allows cyber-
entities to establish, examine, update and eliminate their 
relationships (Table 1). Each cyber-entity has a list of 
relationship objects, each of which represents a 
relationship with another cyber-entity. A relationship 
object contains the attributes of a partner cyber-entity. It 
can contain any additional information (e.g. keywords 
describing their partner cyber-entities). 

When a cyber-entity establishes a relationship with 
another one, it calls a relationship management service 
with its partner’s GUID (global unique identifier) and/or 

reference. The service checks if the partner exists, and if 
it does, obtains the partner’s attributes and instantiates a 
relationship object.  

(2) Dynamic discovery. The autonomy and 
decentralization features of cyber-entities produce the 
need for a method to locate cyber-entities. Therefore, the 
bionet platform provides the social networking service, 
which allows cyber-entities to dynamically discover 
others with various search criteria in a decentralized 
manner (Table 1). The design of this service is similar to 
that of peer-to-peer systems [22, 23]. Cyber-entities 
construct an overlay network with their relationships for 
routing discovery queries among them. A discovery 
process consists of query initialization, query matching, 
query forwarding and query hit backtracking. 

In query initialization, a discovery originator (i.e. a 
cyber-entity) begins a discovery process by generating a 
query with the social networking service. Each query 
contains its GUID to distinguish it from other queries, 
hops-to-live count to determine discovery termination, 
and search criteria. Search criteria are described based on 
the OMG constraint language [21]. Examples of search 
criteria are as follows: 

GUID==’sti3sdr98rd56fn...’ 
serviceType==’HTTP/1.1’ and serviceCost<150.0 

The query matching is performed when a cyber-entity 
receives a query from another cyber-entity. The social 
networking service examines if the received query’s 
search criteria match a given cyber-entity. If it does, a 
query hit is returned to the discovery originator. 
Otherwise, the query is forwarded to other cyber-entities. 

In query forwarding, queries are routed from cyber-
entity to cyber-entity through their relationships, seeking 
the cyber-entities that satisfy search criteria. Each cyber-
entity uses the social networking service to forward a 
query. The service decrements the hops-to-live value in a 
received query, and if the value becomes zero, the query 
is discarded. Also, if the query forms a loop in its 
forwarding path, it is discarded. Otherwise, the query is 
forwarded to the relationship partners. The social 
networking service keeps a record of the query’s GUID, 
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Figure 3: Class diagram around CyberEntityImpl 

Table 1. A list of the bionet services 

Name Functionality 
Relationship 
management  

allows cyber-entities to establish, examine, update 
and eliminate their relationships.  

Social 
networking  

allows cyber-entities to locate other cyber-entities 
through their relationships with their search criteria. 

CE sensing allows cyber-entities to locate the cyber-entities 
running on the local platform. 

Migration allows cyber-entities to move to another platform.
Pheromone
emission  

allows cyber-entities to emit their pheromones and 
sense pheromones emitted by other cyber-entities. 

Lifecycle provides cyber-entities lifecycle operations.
Resource
sensing 

allows cyber-entities to sense the type, amount and 
unit cost of available resources.  

Energy
management 

keeps track of energy level of the cyber-entities 
running on the local platform.  



the cyber-entity from which the query is received, and the 
cyber-entity to which the query is forwarded. 

The query hit backtracking phase is performed when a 
query matches a cyber-entity. A query hit is generated 
and returned back to the discovery originator, following 
the reverse route of the forwarding path that led to the 
cyber-entity being returning the query hit. 

In addition to the social networking service, the bionet 
platform provides another service, called the CE sensing 
service to locate cyber-entities (Table 1). This service 
keeps track of the cyber-entities that exist on a local 
platform. This service is typically used for cyber-entities 
to establish their initial relationships. 

(3) Migration. Since cyber-entities move around the 
network, the bionet platform provides the migration 
service, which allows them to migrate from a platform to 
another. This service implements weak migration [25], in 
which data state associated with a cyber-entity is 
transferred between different bionet platforms. 

The migration service is responsible for sending out a 
cyber-entity and receiving a migrating cyber-entity. It 
transfers a cyber-entity’s class name, class definition and 
runtime data state to the migration service running on a 
destination platform. The class definition and data state 
are serialized at an origin platform and de-serialized on a 
destination by using Java serialization mechanism. The 
transferred class definition is loaded into a JVM on a 
destination platform using the bionet class loader. After 
the class definition is loaded and data state of a cyber-
entity is de-serialized, a destination-side migration service 
instantiates the cyber-entity. 

Since cyber-entities are autonomous, they move 
around the network without any intervention from others. 
As a result, after a cyber-entity moves, the relationships 
(references contained in the relationships) associated with 
the cyber-entity become invalid. In this case, by using the 
social networking service, cyber-entities may locate the 
missing cyber-entity or may locate other cyber-entities 
that implement the service the missing one provides. 

The bionet platform provides another option for 
cyber-entities to locate missing cyber-entities through the 
pheromone emission service (Table 1). Due to space 
limitation, please see [26] for more detailed design. 

(4) Lifecycle management. As cyber-entities are 
dynamically initialized, replicated or reproduced, the 
bionet platform provides the lifecycle service, which 
provides several lifecycle operations to them (Table 1). 
The service is used to initialize a cyber-entity when it is 
newly created or when it completes a migration. The 
service accepts a cyber-entity’s instance, creates a CE 
context to associate it with the cyber-entity, assigns a 
GUID to the cyber-entity, and registers the cyber-entity to 
the bionet container. 

The lifecycle service is also used to replicate a cyber-
entity or reproduce a child cyber-entity from two parent 
cyber-entities. The service makes a deep copy of a parent 
cyber-entity using Java serialization mechanism. 
Mutation may happen on a child cyber-entity during 
replication and reproduction. For example, inherited set 
of relationships and other properties (e.g. behavior 
policies) may be randomly modified. Crossover happens 
during reproduction to inherit relationships and other 
properties from two parents. The evolutionary aspect of 
cyber-entities is beyond the scope of this paper. Please 
see [9, 10] for more details about this issue. 

(5) Environment sensing. Since cyber-entities need to 
sense their surrounding network conditions to perform 
their behaviors, the bionet platform provides a series of 
mechanisms for environment sensing. They allow for 
each cyber-entity to sense (1) its current energy level, (2) 
resource availability on a local platform, (3) the current 
traffic load on a local platform, and (4) the number of 
cyber-entities running on a local platform.  

The current energy level of a cyber-entity is available 
through the energy management service (Table 1). This 
service keeps track of the energy level of every cyber-
entity running on a local platform. The resource sensing 
service allows cyber-entities to monitor the type, amount 
and unit cost of resources (CPU cycles and memory 
space) available on a local platform (Table 1). Due to 
space limitation, please see [26] for more details. Cyber-
entities can also sense the current traffic load and the 
number of cyber-entities on a local platform. As 
described earlier, the traffic load is available through the 
bionet container, and the number of local cyber-entities is 
available through the CE sensing service (Table 1). 
 
4. Measurement Results 
 

This section describes some of the measurement 
results to evaluate the footprint, efficiency and scalability 
of the bionet platform. The measurements were conducted 
with two bionet platforms running on different Windows 
2000 PCs, each of which hosts Java 2 SDK (version 
1.4.2_01 from Sun Microsystems) with an Intel Pentium 4 
processor (1.8 GHz) and 512 MB RAM. The PCs were 
connected through a 100Mbps Ethernet switch. 

Table 2 shows the bootstrap overhead and memory 
footprint of each platform component. The bootstrap 
overhead measures the time for the bionet platform to 
initialize each component, and the bootstrap memory 
footprint measures the amount of memory space each 
component consumes when it is initialized. Table 2 shows 
that both of the measures are fairly small. 

Figure 4 shows the throughput of the bionet platform 
per cyber-entity (i.e. how many interactions two cyber-
entities can perform per sec.). In this measurement, we 



deployed a single cyber-entity (sender cyber-entity) on a 
platform and a range of cyber-entities (from 1 to 1000 
receiver cyber-entities) on the other platform. The sender 
randomly chose one of the remote receivers and sent an 
empty message to the chosen receiver. Then, the receiver 
sends back an empty message to the sender.   
 

Table 2. Bootstrap overhead and memory footprint of 
each platform component 

platform component overhead footprint 
Bionet message transport 22.98 msec 6.65 KB

Bionet container 127.06 msec 8.88 KB
Bionet class loader 9.11 msec 3.97 KB

Platform representative 82.31 msec 5.23 KB
Relationship mgt service 23.17 msec 4.48 KB
Social networking service 69.85 msec 12.03 KB

CE sensing service 56.43 msec 7.82 KB
Migration service 33.13 msec 4.88 KB

Pheromone emission service 37.79 msec 7.39 KB
Lifecycle service 91.92 msec 44.07 KB

Resource sensing service 64.36 msec 42.12 KB
Energy management service 59.02 msec 8.12 KB

Total 677.13 msec 154.64 KB
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Figure 4. Throughput of message exchanges 

 
As Figure 4 shows, two cyber-entities running on 

different platforms can send approximately 2,200 
messages (i.e. 1,100 roundtrip interactions) per second 
with each other. This result is competitive with well-
known Java-based distributed object platforms (JacORB2 
and Java IDL 3 ), and we believe the bionet message 
transport and bionet container are efficient enough. 
Figure 4 also shows that the throughput remains mostly 
constant as the number of cyber-entities grows up to 
1,000, indicating that the bionet platform scales. 

In the next measurement, we deployed a bionet 
platform on a PC and multiple cyber-entities on the 
platform. Each cyber-entity implements a web server 
function that processes the HTTP GET request message. 
An emulated user was deployed on the same PC, and it 
sent GET requests to the cyber-entities. Upon receiving a 
request, each cyber-entity locates, reads and returns a 
requested file. It keeps five different files whose sizes are 
                                                 
2 www.jacorb.org 
3 java.sun.com/products/jdk/idl/ 

500B, 5KB, 50KB, 500KB and 5MB. These five sizes are 
representative in Webstone [27], a well-known web 
server profiling tool. The request rate was 10 requests per 
second. 
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Figure 5. CPU utilization of the cyber-entities that 

implement web server functions 
 

Table 3. Probability to request different sized files 
File size (bytes) Probability (%) 

500 35 
5 K 50 

50 K 14 
500 K 0.9 
5 M 0.1 

 
Figure 5 shows the CPU utilization of the web server 

cyber-entities and bionet platform. When the CPU 
utilization goes around 75%, the total utilization on the 
testbed PC reaches 100%; the other 25% is consumed by 
the operating system. In the case of 500B file requests, 
350 cyber-entities can be executed under 75% CPU 
utilization. In 5M file requests, 50 cyber-entities can be 
executed. A heavy line in Figure 5 shows the CPU 
utilization in the case that a user requests different-sized 
files based on the probability shown in Table 3, which is 
defined by WebStone. In this measurement, 320 cyber-
entities can work simultaneously under 75% CPU 
utilization. Also, the CPU utilization increases almost 
linearly as the number of cyber-entities grows. Given 
these results, we confirmed the bionet platform is scalable 
enough in terms of the number of cyber-entities. 
 
5. Related Work 
 

The bionet platform is similar to existing mobile agent 
platforms, such as Aglets4 and AgentSpace [28], in the 
sense that it implements a weak migration mechanism for 
agents. However, unlike them, the bionet platform 
emphasizes on decentralized organization of agents. 
Almost all the existing agent platforms assume the 
existence of centralized entities (e.g. directories). Hive 

                                                 
4 http://sourceforge.net/projects/aglets/ 



addresses decentralization of agents [29], but its 
implementation depends on a centralized directory (Java 
RMI registry). In contrast, the bionet platform allows 
agents (i.e. cyber-entities) to form a decentralized overlay 
network among agents using their relationships and 
perform distributed discoveries through the relationships 
with the social networking service. 

Pole is similar to our social networking service in the 
sense that it implements a decentralized agent discovery 
mechanism [31]. Its discovery process is performed on a 
structured overlay5 with a distributed hash function. In 
the discovery mechanisms based on distributed hash 
functions (e.g. Chord [23]), it is expensive to maintain 
their overlay structures in dynamic environment where 
peers (or agents) often join and leave the network [32]. 
Also, they do not allow each peer to specify multiple 
search criteria for each query. Unlike them, our social 
networking service is designed on a loosely-structured 
overlay5 among cyber-entities in order to assume dynamic 
networks. It also provides a flexible discovery scheme 
that allows cyber-entities to specify multiple search 
criteria (as name-value pairs) for each query. 
 
5. Concluding Remarks 
 

This paper described our research effort to investigate 
a platform for autonomic agents running on pervasive 
networks. We presented the designs of our platform and 
showed that the platform is efficient, scalable and 
lightweight through measurement results. 

As future work, we plan an extended set of 
measurements. We evaluated scalability and efficiency of 
our platform mechanisms in terms of the number of 
cyber-entities running on platforms, but the network size 
is still small. We will deploy the bionet platforms and 
cyber-entities on larger-scale networks to identify the 
impact of network size on the platform performance. 
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