
Middleware Support for Super Distributed Autonomic Services
in Pervasive Networks*

Junichi Suzuki and Tatsuya Suda

University of California, Irvine
{jsuzuki, suda}@ics.uci.edu

Abstract

This paper describes our empirical research effort to design,
implement and deploy a middleware platform that addresses
several key issues in pervasive computing. We designed an
architecture, called the Bio-Networking Architecture, which
models a pervasive network application as a collection of
autonomic agents designed after several biological concepts
and mechanisms. The biologically-inspired agents inherently
address the key issues in pervasive computing, and our
middleware platform aids developing and executing the
agents on networks. We identify a set of requirements to the
middleware platform through analyzing the features of our
agents, and describe the design and implementation of the
platform, showing how the platform satisfies the identified
requirements. We also present some measurement results to
illustrate scalability and efficiency of the platform.

1. Introduction

As computing devices and networks become more
pervasive, the computing landscape is evolving into an
environment in which a huge number of networked
computing devices sense, interact with and control the
physical world in such a way that the physical world is
merged and augmented with the virtual world [1, 2]. In
order to make this vision a reality, literatures have
identified several key issues for network applications and
software platforms in the area of pervasive computing
[3−6]. They address that software platforms need to allow
application components to move around the network,
discover other components dynamically, adapt to dynamic
changes in environment (e.g. workload) and scale well
(e.g. in terms of the size of applications). They also need
to make the development and deployment of application
components more productive (i.e. faster and easier).

This paper describes our research effort to investigate
a software platform that hosts each pervasive network
application as a collection of autonomic agents [7−9] and
allows pervasive network applications (i.e. autonomic
agents) to support the above key requirements; mobility,
dynamic discovery, adaptability, scalability and ease of
development and deployment. The agents are designed
after several biological concepts and mechanisms in our

novel network application architecture called the Bio-
Networking Architecture [10, 11], which is motivated by
the observation that the above key requirements in
pervasive computing have already been realized in
various biological systems. We overview the features of
our autonomic agents and identify a set of functional
requirements to a software platform for them, called the
Bio-Networking Platform (or bionet platform). The bionet
platform is a middleware that aids developing and
deploying large-scale, highly-distributed and dynamic
applications (i.e. autonomic agents) in pervasive networks
by abstracting low-level operating and networking details
(e.g. concurrency and messaging) and providing a series
of high-level runtime services. We describe the design
and implementation of the bionet platform, showing how
the platform satisfies the functional requirements derived
from the features of our agents. We also present some of
the measurement results to illustrate the efficiency and
scalability of the bionet platform.

This paper is organized as follows. Section 2 presents
the features of our agents. Section 3 describes the design
and implementation of our agents as well as the bionet
platform. Measurement results are shown in Section 4. In
Sections 5 and 6, we conclude with comparison with
existing work and future work.

2. Assumed Features of Autonomic Agents

In the Bio-Networking Architecture, each autonomic
agent, called cyber-entity, consists of attributes, body and
behaviors [10]. Attributes carry descriptive information of
a cyber-entity (e.g. identifier). A body implements a
cyber-entity’s functional service(s). Behaviors implement
non-functional biological actions such as reproduction
and migration. Each cyber-entity lives on a specific
bionet platform to execute its service implemented in its
body. A bionet platform runs on each network node.
Cyber-entities maintain the following four key features.

(1) Decentralized. A network application is modeled as a
decentralized collection of cyber-entities in the Bio-
Networking Architecture. This is analogous to a bee
colony (an application) consisting of multiple bees
(cyber-entities). The advantages of decentralization are
scalability and fault tolerance [14]. Centralized systems
can fail when central entities (e.g. directory server) are
overwhelmed, but decentralized systems can survive by

* Research supported by the NSF through Grants ANI-0083074 and ANI-9903427,
by DARPA through Grant MDA972-99-1-0007, by AFOSR through Grant MURI
F49620-00-1-0330, and by grants from the California MICRO program, Hitachi,
Hitachi America, Novell, Nippon Telegraph and Telephone Corporation (NTT),
NTT Docomo, Fujitsu, NS Solutions Corporation, and DENSO IT Laboratory.

spreading the load [15]. Central entities also suffer from
mobility of agents. They cannot eventually keep track of
agents if they often join and leave the network [16].
Decentralized systems have an organizational advantage
as well. Users need no complicated setup work; they can
simply develop and run their agents without knowing any
central coordination. This lowers the barrier for users to
develop and deploy agents. Keeping these advantages in
our mind, the Bio-Networking Architecture is designed
not to assume any central entities on the network.

(2) Autonomous. Autonomy is the ability of agents to act
without any interventions from their users and other
agents [17]. Autonomous agents are goal-oriented and
control themselves proactively [18]. Cyber-entities are
autonomous in the sense that each of them has its own
goal (e.g. staying close to users and living long), senses
surrounding network conditions, and performs its
behaviors, according to the sensed network conditions,
which will support future goal achievement [11]. Our
previous simulation study has confirmed the desirable
system properties (e.g. adaptability) emerge through
cyber-entities’ autonomous behavior invocations [11].

(3) Adaptive. Adaptability is the ability of agents to
increase their fitness to environment. Cyber-entities adapt
themselves to environmental changes in short-term and
long-term fashions. The short-term adaptation is achieved
by performing behaviors according to the current network
conditions [11, 13]. For example, a cyber-entity may
migrate to a neighboring platform when traffic volume
grows or resource availability becomes scarce. The long-
term adaptation is achieved by applying biological
evolutionary process. Cyber-entities evolve by generating
behavioral diversity and executing natural selection [12].
Behavioral diversity means that it is likely different
cyber-entities implement different policies on their
behaviors. It is generated through mutation and crossover,
which dynamically modify behavior policies during
replication and reproduction. Natural selection is
executed based on the concept of energy. Cyber-entities
gain energy in exchange for performing their services,
and expend energy to consume resources such as CPU
cycles and memory space. The abundance and scarcity of
stored energy affects contributes to the natural selection
process. For example, energy abundance is an indication
of higher demand for the cyber-entity; thus the cyber-
entity may be designed to favor reproduction in response
to higher level of energy. Energy scarcity (an indication
of lack of demands or ineffective behavior policies) may
eventually cause the cyber-entity’s death. Our previous
simulation work has shown our evolutionary process
allows cyber-entities to adapt to dynamic environmental
changes (e.g. changes in workload, users’ location and
resource availability) [12].

(4) Self-descriptive. In order to make agents autonomous
and decentralized, they need to be loosely coupled with
each other. As a result, the agents that an agent interacts
with may not exist when it is developed, and they may not
always be available in the future, for example, due to their
migrations. Therefore, agents should be able to
dynamically discover and interact with other agents
without recompiling or changing any lines of code. In the
Bio-Networking Architecture, each cyber-entity keeps its
own descriptive information as attributes, and makes it
available to other cyber-entities. It also maintains
relationships with other cyber-entities. A relationship is
established between two cyber-entities, and it contains
attributes about a peer cyber-entity. With relationships
and attributes, cyber-entities dynamically discover others
and interact with each other [19].

Through the above four features of cyber-entities, the
Bio-Networking Architecture inherently addresses the
key issues in pervasive computing (see Section 1), such
as mobility, dynamic discovery, adaptability, scalability
and ease of development and deployment.

3. The Bio-Networking Platform

Given an initial set of successful simulation results [11,
12, 13, 19], we built the bionet platform in order to host
the Bio-Networking Architecture on the real network for
empirically evaluating the features of cyber-entities. It is
implemented in Java, and each platform runs on a Java
virtual machine (JVM) atop a network node. It consists of
five components (Figure 1).

A platform representative is an object that represents a
bionet platform and runs on per-platform basis. It keeps a
table listing all the bionet services and bionet container
(see below) on a local platform with their names and
references. It is initialized when a bionet platform boots.

A CE context is an entry point for a cyber-entity to
access underlying bionet services. It examines if a bionet
service requested by a cyber-entity is available, and if it is,
the CE context returns a reference to the service. Each CE

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Figure 1. Architecture of the bionet platform

context performs this lookup for bionet services through
the local platform representative. Each cyber-entity has its
own CE context. A CE context is created and associated
with a cyber-entity by the lifecycle service (one of the
bionet services), when the cyber-entity is created,
replicated or reproduced.

The bionet services provide a set of runtime services
that cyber-entities use for performing their behaviors.
Each bionet service implements one or more behaviors of
cyber-entities. The behaviors the bionet services support
are energy exchange/storage, migration, replication and
reproduction, relationship maintenance, discovery of
cyber-entities and resource sensing.

The bionet message transport abstracts low-level
networking and operating details such as network I/O,
concurrency, messaging and network connection
management. The current bionet platform uses the
CORBA IIOP 1.1 [20] to transmit messages on TCP.

The bionet container maintains references to the
cyber-entities running on a local platform, and dispatches
incoming messages to them. It also monitors the network
traffic by counting the size of received IIOP packets and
the number of message dispatches.

The bionet class loader is a custom class loader that
extends JVM’s system (default) class loader. It is used to
dynamically load a cyber-entity’s class definition into a
JVM when it is newly created or completes a migration.

The current code base of the bionet platform contains
approximately 29,700 semicolons, and is the work of one
full-time research staff and six part-time students.

3.1. Design of Cyber-entities

Since the bionet platform uses Java as a programming
implementation language and CORBA IIOP as a message
transport protocol, a cyber-entity is designed as a Java
object implementing a CORBA interface. Every cyber-
entity implements the following CORBA interface.

interface CyberEntity {
oneway send(in string message);
string metadata();};

Cyber-entities use send()to communicate with each
other in an asynchronous manner. The operation accepts a
message from another cyber-entity as its parameter. We
use a subset of the FIPA agent communication language
for the message format. Due to space limitation, please
see [19] for more details about the message format. The
send() operation inserts a received message in cyber-
entity’s message queue (Figure2). The cyber-entity
fetches the message to process it on an individual thread.
When no message is available, the thread waits for a
new message on the queue.

Each cyber-entity maintains another thread to
perform its non-functional logic including environment
sensing, behavior selection and behavior invocation

(Figure 2). It is implemented as a subclass of
java.util.TimerTask and executed at certain
intervals. We assigned different threads to functional and
non-functional aspects, because it is different how often
these aspects need to be executed; the functional aspect
should be executed immediately when a message is
queued and the non-functional aspect can be executed on
the order of seconds, minutes or even hours, depending
on application requirements. Please note that it is beyond
of the scope of this paper to describe non-functional
aspect. Please see [9, 10, 11] for details about this issue.

The metadata() operation of CyberEntity is
used to obtain a cyber-entity’s attributes. The mandatory
attributes that every cyber-entity must maintain are (1) the
cyber-entity’s GUID (globally unique ID)1, (2) the cyber-
entity’s reference, (3) the type of service the cyber-entity
provides, and (4) the energy units that the cyber-entity
requires to provide its service. Cyber-entities can specify
any other information as their optional attributes.
Attributes are represented as name-value pairs based on
the OMG constraint language [21]. A sample of
mandatory attributes is described as follows:

GUID=’sti3sdr98rd56fn...’
ref=’IOR:daforimklcmd...’
serviceType=’HTTP/1.1’
serviceCost=100.0

Figure 3 shows the design of the base class for cyber-
entities, CyberEntityImpl. This class defines a set of
variables and methods that are common among all the
cyber-entities. Developers define their own cyber-entities
by extending this class. We have proposed our designs of
the bionet platform to Object Management Group (OMG)
as the fundamental building blocks for Super Distributed
Objects (SDOs) [30]. Super distribution means
incorporating massive numbers of objects on highly
distributed environments in a decentralized manner [30].
The goals of OMG SDOs are to represent heterogeneous
hardware devices and software services as objects (SDOs)
in a uniform object model, map them onto higher-level
overlay networks and allow them seamlessly interwork
with each other. OMG adopted our proposal and will
publish the final version as its official standard
specification in 2004. Figure 3 also shows how key
components in the Bio-Networking Architecture (e.g.

1 See [26] for the detailed design of GUID.

Cyber-entity

send()

metadata()
Message
queue

Environment
sensing

Behavior
selection

msgs

Behavior
invocationmsgs

fetch and
process

while(true)

run()

run()

Cyber-entity

send()

metadata()
Message
queue

Environment
sensing

Behavior
selection

msgs

Behavior
invocationmsgs

fetch and
process

while(true)

run()

run()

Figure 2. Internal design of a cyber-entity

cyber-entity and relationship) are designed based on the
specification.

3.2. Bionet Services

The bionet platform provides eight bionet services that
cyber-entities use for performing their behaviors (Table
1). They are designed to support the key requirements in
pervasive computing (see Section 1). Their designs are
guided by five functional requirements derived from the
features and behaviors of cyber-entities (see Section 2).

Each bionet service runs on per-platform basis. Since
decentralization is a key design principle for us, we
implemented all the bionet services in a decentralized
manner; no centralized entities exist. We describe the
design of bionet services along with the requirements.

(1) Relationship management. As described in Section 2,
cyber-entities use their relationships to represent their
acquaintances, discover other cyber-entities and interact
with them. Therefore, the bionet platform provides the
relationship management service, which allows cyber-
entities to establish, examine, update and eliminate their
relationships (Table 1). Each cyber-entity has a list of
relationship objects, each of which represents a
relationship with another cyber-entity. A relationship
object contains the attributes of a partner cyber-entity. It
can contain any additional information (e.g. keywords
describing their partner cyber-entities).

When a cyber-entity establishes a relationship with
another one, it calls a relationship management service
with its partner’s GUID (global unique identifier) and/or

reference. The service checks if the partner exists, and if
it does, obtains the partner’s attributes and instantiates a
relationship object.

(2) Dynamic discovery. The autonomy and
decentralization features of cyber-entities produce the
need for a method to locate cyber-entities. Therefore, the
bionet platform provides the social networking service,
which allows cyber-entities to dynamically discover
others with various search criteria in a decentralized
manner (Table 1). The design of this service is similar to
that of peer-to-peer systems [22, 23]. Cyber-entities
construct an overlay network with their relationships for
routing discovery queries among them. A discovery
process consists of query initialization, query matching,
query forwarding and query hit backtracking.

In query initialization, a discovery originator (i.e. a
cyber-entity) begins a discovery process by generating a
query with the social networking service. Each query
contains its GUID to distinguish it from other queries,
hops-to-live count to determine discovery termination,
and search criteria. Search criteria are described based on
the OMG constraint language [21]. Examples of search
criteria are as follows:

GUID==’sti3sdr98rd56fn...’
serviceType==’HTTP/1.1’ and serviceCost<150.0

The query matching is performed when a cyber-entity
receives a query from another cyber-entity. The social
networking service examines if the received query’s
search criteria match a given cyber-entity. If it does, a
query hit is returned to the discovery originator.
Otherwise, the query is forwarded to other cyber-entities.

In query forwarding, queries are routed from cyber-
entity to cyber-entity through their relationships, seeking
the cyber-entities that satisfy search criteria. Each cyber-
entity uses the social networking service to forward a
query. The service decrements the hops-to-live value in a
received query, and if the value becomes zero, the query
is discarded. Also, if the query forms a loop in its
forwarding path, it is discarded. Otherwise, the query is
forwarded to the relationship partners. The social
networking service keeps a record of the query’s GUID,

SDOSystemElement Organization

SDO

-owner

1

-organizations

0..n

1..*

-members
-organizations

0..n

ServiceProfile
-serviceProfile

0..n
OrganizationProperty

1

Configuration

Monitoring

CyberEntity

omg.org.SDOPackage

edu.uci.ics.bionet

CyberEntityImpl

java.lang.Runnable

java.lang.Serializable

-metadata:String
-mQueue:MessageQueue
...

+send(message:String):void
+metadata():String
+run():void
-getCEContext():CEContext
+setCEContext(ctx:CEContext):void
+getRelationships():Vector
...

Relationship

CEContext

+findBionetService(…):Object
...

1

1

SDOSystemElement Organization

SDO

-owner

1

-organizations

0..n

1..*

-members
-organizations

0..n

ServiceProfile
-serviceProfile

0..n
OrganizationProperty

1

Configuration

Monitoring

CyberEntity

omg.org.SDOPackage

edu.uci.ics.bionet

CyberEntityImpl

java.lang.Runnable

java.lang.Serializable

-metadata:String
-mQueue:MessageQueue
...

+send(message:String):void
+metadata():String
+run():void
-getCEContext():CEContext
+setCEContext(ctx:CEContext):void
+getRelationships():Vector
...

Relationship

CEContext

+findBionetService(…):Object
...

1

1

Figure 3: Class diagram around CyberEntityImpl

Table 1. A list of the bionet services

Name Functionality
Relationship
management

allows cyber-entities to establish, examine, update
and eliminate their relationships.

Social
networking

allows cyber-entities to locate other cyber-entities
through their relationships with their search criteria.

CE sensing allows cyber-entities to locate the cyber-entities
running on the local platform.

Migration allows cyber-entities to move to another platform.
Pheromone
emission

allows cyber-entities to emit their pheromones and
sense pheromones emitted by other cyber-entities.

Lifecycle provides cyber-entities lifecycle operations.
Resource
sensing

allows cyber-entities to sense the type, amount and
unit cost of available resources.

Energy
management

keeps track of energy level of the cyber-entities
running on the local platform.

the cyber-entity from which the query is received, and the
cyber-entity to which the query is forwarded.

The query hit backtracking phase is performed when a
query matches a cyber-entity. A query hit is generated
and returned back to the discovery originator, following
the reverse route of the forwarding path that led to the
cyber-entity being returning the query hit.

In addition to the social networking service, the bionet
platform provides another service, called the CE sensing
service to locate cyber-entities (Table 1). This service
keeps track of the cyber-entities that exist on a local
platform. This service is typically used for cyber-entities
to establish their initial relationships.

(3) Migration. Since cyber-entities move around the
network, the bionet platform provides the migration
service, which allows them to migrate from a platform to
another. This service implements weak migration [25], in
which data state associated with a cyber-entity is
transferred between different bionet platforms.

The migration service is responsible for sending out a
cyber-entity and receiving a migrating cyber-entity. It
transfers a cyber-entity’s class name, class definition and
runtime data state to the migration service running on a
destination platform. The class definition and data state
are serialized at an origin platform and de-serialized on a
destination by using Java serialization mechanism. The
transferred class definition is loaded into a JVM on a
destination platform using the bionet class loader. After
the class definition is loaded and data state of a cyber-
entity is de-serialized, a destination-side migration service
instantiates the cyber-entity.

Since cyber-entities are autonomous, they move
around the network without any intervention from others.
As a result, after a cyber-entity moves, the relationships
(references contained in the relationships) associated with
the cyber-entity become invalid. In this case, by using the
social networking service, cyber-entities may locate the
missing cyber-entity or may locate other cyber-entities
that implement the service the missing one provides.

The bionet platform provides another option for
cyber-entities to locate missing cyber-entities through the
pheromone emission service (Table 1). Due to space
limitation, please see [26] for more detailed design.

(4) Lifecycle management. As cyber-entities are
dynamically initialized, replicated or reproduced, the
bionet platform provides the lifecycle service, which
provides several lifecycle operations to them (Table 1).
The service is used to initialize a cyber-entity when it is
newly created or when it completes a migration. The
service accepts a cyber-entity’s instance, creates a CE
context to associate it with the cyber-entity, assigns a
GUID to the cyber-entity, and registers the cyber-entity to
the bionet container.

The lifecycle service is also used to replicate a cyber-
entity or reproduce a child cyber-entity from two parent
cyber-entities. The service makes a deep copy of a parent
cyber-entity using Java serialization mechanism.
Mutation may happen on a child cyber-entity during
replication and reproduction. For example, inherited set
of relationships and other properties (e.g. behavior
policies) may be randomly modified. Crossover happens
during reproduction to inherit relationships and other
properties from two parents. The evolutionary aspect of
cyber-entities is beyond the scope of this paper. Please
see [9, 10] for more details about this issue.

(5) Environment sensing. Since cyber-entities need to
sense their surrounding network conditions to perform
their behaviors, the bionet platform provides a series of
mechanisms for environment sensing. They allow for
each cyber-entity to sense (1) its current energy level, (2)
resource availability on a local platform, (3) the current
traffic load on a local platform, and (4) the number of
cyber-entities running on a local platform.

The current energy level of a cyber-entity is available
through the energy management service (Table 1). This
service keeps track of the energy level of every cyber-
entity running on a local platform. The resource sensing
service allows cyber-entities to monitor the type, amount
and unit cost of resources (CPU cycles and memory
space) available on a local platform (Table 1). Due to
space limitation, please see [26] for more details. Cyber-
entities can also sense the current traffic load and the
number of cyber-entities on a local platform. As
described earlier, the traffic load is available through the
bionet container, and the number of local cyber-entities is
available through the CE sensing service (Table 1).

4. Measurement Results

This section describes some of the measurement
results to evaluate the footprint, efficiency and scalability
of the bionet platform. The measurements were conducted
with two bionet platforms running on different Windows
2000 PCs, each of which hosts Java 2 SDK (version
1.4.2_01 from Sun Microsystems) with an Intel Pentium 4
processor (1.8 GHz) and 512 MB RAM. The PCs were
connected through a 100Mbps Ethernet switch.

Table 2 shows the bootstrap overhead and memory
footprint of each platform component. The bootstrap
overhead measures the time for the bionet platform to
initialize each component, and the bootstrap memory
footprint measures the amount of memory space each
component consumes when it is initialized. Table 2 shows
that both of the measures are fairly small.

Figure 4 shows the throughput of the bionet platform
per cyber-entity (i.e. how many interactions two cyber-
entities can perform per sec.). In this measurement, we

deployed a single cyber-entity (sender cyber-entity) on a
platform and a range of cyber-entities (from 1 to 1000
receiver cyber-entities) on the other platform. The sender
randomly chose one of the remote receivers and sent an
empty message to the chosen receiver. Then, the receiver
sends back an empty message to the sender.

Table 2. Bootstrap overhead and memory footprint of
each platform component

platform component overhead footprint
Bionet message transport 22.98 msec 6.65 KB

Bionet container 127.06 msec 8.88 KB
Bionet class loader 9.11 msec 3.97 KB

Platform representative 82.31 msec 5.23 KB
Relationship mgt service 23.17 msec 4.48 KB
Social networking service 69.85 msec 12.03 KB

CE sensing service 56.43 msec 7.82 KB
Migration service 33.13 msec 4.88 KB

Pheromone emission service 37.79 msec 7.39 KB
Lifecycle service 91.92 msec 44.07 KB

Resource sensing service 64.36 msec 42.12 KB
Energy management service 59.02 msec 8.12 KB

Total 677.13 msec 154.64 KB

0

500

1000

1500

2000

2500

3000

3500

1 100 200 300 400 500 600 700 800 900 1000

of objects (cyber-entities)

T
h
ro

u
g
h
pu

t
(c

a
lls

/
s
e
c
)

Bionet

JacORB

Java IDL

Figure 4. Throughput of message exchanges

As Figure 4 shows, two cyber-entities running on

different platforms can send approximately 2,200
messages (i.e. 1,100 roundtrip interactions) per second
with each other. This result is competitive with well-
known Java-based distributed object platforms (JacORB2
and Java IDL 3), and we believe the bionet message
transport and bionet container are efficient enough.
Figure 4 also shows that the throughput remains mostly
constant as the number of cyber-entities grows up to
1,000, indicating that the bionet platform scales.

In the next measurement, we deployed a bionet
platform on a PC and multiple cyber-entities on the
platform. Each cyber-entity implements a web server
function that processes the HTTP GET request message.
An emulated user was deployed on the same PC, and it
sent GET requests to the cyber-entities. Upon receiving a
request, each cyber-entity locates, reads and returns a
requested file. It keeps five different files whose sizes are

2 www.jacorb.org
3 java.sun.com/products/jdk/idl/

500B, 5KB, 50KB, 500KB and 5MB. These five sizes are
representative in Webstone [27], a well-known web
server profiling tool. The request rate was 10 requests per
second.

0

10

20

30

40

50

60

70

80

90

10 50 90 13
0

17
0

21
0

25
0

29
0

31
0

33
0

35
0

of cyber-entities

C
PU

 u
til

iz
at

io
n

(%
) 500 B

5 kB

50 kB

500 kB

5MB

combined

Figure 5. CPU utilization of the cyber-entities that

implement web server functions

Table 3. Probability to request different sized files
File size (bytes) Probability (%)

500 35
5 K 50

50 K 14
500 K 0.9
5 M 0.1

Figure 5 shows the CPU utilization of the web server

cyber-entities and bionet platform. When the CPU
utilization goes around 75%, the total utilization on the
testbed PC reaches 100%; the other 25% is consumed by
the operating system. In the case of 500B file requests,
350 cyber-entities can be executed under 75% CPU
utilization. In 5M file requests, 50 cyber-entities can be
executed. A heavy line in Figure 5 shows the CPU
utilization in the case that a user requests different-sized
files based on the probability shown in Table 3, which is
defined by WebStone. In this measurement, 320 cyber-
entities can work simultaneously under 75% CPU
utilization. Also, the CPU utilization increases almost
linearly as the number of cyber-entities grows. Given
these results, we confirmed the bionet platform is scalable
enough in terms of the number of cyber-entities.

5. Related Work

The bionet platform is similar to existing mobile agent
platforms, such as Aglets4 and AgentSpace [28], in the
sense that it implements a weak migration mechanism for
agents. However, unlike them, the bionet platform
emphasizes on decentralized organization of agents.
Almost all the existing agent platforms assume the
existence of centralized entities (e.g. directories). Hive

4 http://sourceforge.net/projects/aglets/

addresses decentralization of agents [29], but its
implementation depends on a centralized directory (Java
RMI registry). In contrast, the bionet platform allows
agents (i.e. cyber-entities) to form a decentralized overlay
network among agents using their relationships and
perform distributed discoveries through the relationships
with the social networking service.

Pole is similar to our social networking service in the
sense that it implements a decentralized agent discovery
mechanism [31]. Its discovery process is performed on a
structured overlay5 with a distributed hash function. In
the discovery mechanisms based on distributed hash
functions (e.g. Chord [23]), it is expensive to maintain
their overlay structures in dynamic environment where
peers (or agents) often join and leave the network [32].
Also, they do not allow each peer to specify multiple
search criteria for each query. Unlike them, our social
networking service is designed on a loosely-structured
overlay5 among cyber-entities in order to assume dynamic
networks. It also provides a flexible discovery scheme
that allows cyber-entities to specify multiple search
criteria (as name-value pairs) for each query.

5. Concluding Remarks

This paper described our research effort to investigate
a platform for autonomic agents running on pervasive
networks. We presented the designs of our platform and
showed that the platform is efficient, scalable and
lightweight through measurement results.

As future work, we plan an extended set of
measurements. We evaluated scalability and efficiency of
our platform mechanisms in terms of the number of
cyber-entities running on platforms, but the network size
is still small. We will deploy the bionet platforms and
cyber-entities on larger-scale networks to identify the
impact of network size on the platform performance.

References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific
American September, 1991.
[2] D. Norman, The Invisible Computer, MIT Press, 1998.
[3] M Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
IEEE Personal Communications, August, 2001.
[4] K. Henricksen, J. Indulska and A. Rakotonirainy, “Infrastructure for
Pervasive Computing: Challenges,” Proc. of Workshop on Pervasive
Computing INFORMATIK 01, 2001.
[5] S. Acharya, “Application and Infrastructure Challenges in Pervasive
Computing,” Proc. of NSF Workshop on Context-Aware Mobile
Database Management, January 2002.
[6] G. Banavar and A. Bernstein, “Software Infrastructure and Design
Challenges for Ubiquitous Computing Applications,” CACM, vol. 45,
no. 12, December 2002.
[7] P. Maes, “Modeling Autonomous Adaptive Agents,” Artificial Life, I
(1&2)9, 1994.

5 See [32] for the details in structured and loosely-structured overlays.

[8] S. Franklin and A. Graesser, “Is it an agent or just a program?: A
Taxonomy for Autonomous Agents,” Proc. of ATAL’96, 1996.
[9] A. G. Ganek and T. A. Corbi, “The dawning of the Autonomic
Computing Era,” IBM System Journal, vol. 42, no. 1, 2003.
[10] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking
Architecture: The Biologically Inspired Approach to the Design of
Scalable, Adaptive, and Survivable/Available Network Applications,” In
K. Park (ed.) The Internet as a Large-Scale Complex System, Princeton
University Press, 2002
[11] M. Wang and T. Suda, “The Bio-Networking Architecture: A
Biologically Inspired Approach to the Design of Scalable, Adaptive, and
Survivable/Available Network Applications,” Proc. of the 1st IEEE
SAINT, 2001.
[12] J. Suzuki, T. Nakano, K. Fujii, N. Ikeda and T. Suda, “Dynamic
Reconfiguration of Network Applications and Middleware Systems in
the Bio-Networking Architecture,” Proc. of IEEE LARTES, 2002.
[13] J. Suzuki and T. Suda, “Adaptive Behavior Selection of
Autonomous Objects in the Bio-Networking Architecture,” Proc. of
AINS, 2002.
[14] T. Hong, “Performance,” Peer-to-Peer, A. Oram (ed.), Chapter 14,
Wiley, 2001.
[15] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile Agents
for Dynamic Network Routing,” Software Agents for Future
Communications Systems, 1999.
[16] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent
Coordination Models for Internet Applications,” Computer 33(2):82-89,
February 2000.
[17] C. Castelfranchi, “Guarantees for Autonomy in Cognitive Agent
Architecture,” Proc. of ECAI-94 Workshop on Agents Theories,
Architectures, and Languages, Springer, 1995.
[18] M. Luck and M. P. D’Inverno, “A Formal Framework for Agency
and Autonomy,” Proc. of MAS”95, 1995.
[19] T. Itao, T. Nakamura, M. Matsuo, T. Suda and T. Aoyama, “The
Model and Design of Cooperative Interaction for Service Composition,”
Proc. of the DICOMO, 2001.
[20] OMG, The CORBA Specification, version 3.0, 2002.
[21] OMG, The Trading Object Service, 2000.
[22] I. Clarke et al., “Freenet: A Distributed Anonymous Information
Storage and Retrieval System in Designing Privacy Enhancing
Technologies,” Proc. International Workshop on Design Issues in
Anonymity and Unobservability, LNCS 2009, Springer, 2001.
[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” Proc. of ACM SIGCOMM 2001, 2001.
[24] OMG, The Trading Object Service, 2000.
[25] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code
Mobility,”. IEEE Trans. on Software Engineering, 24(5), May 1998.
[26] J. Suzuki and T. Suda, “Design and Implementation of an Scalable
Infrastructure for Autonomous Adaptive Agents,” Proc. of the 15th
IASTED International Conference on Parallel and Distributed
Computing and Systems, November 2003.
[27] G. Trent and M Sake, ”WebStone: The First Generation in HTTP
Server Benchmarking,” Mindcraft, Inc., 1995.
[28] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T.
Brazier, “Supporting Internet-Scale Multi-Agent Systems,” Data
Knowledge Engineering (4)2-3, 2002.
[29] N. Minar, M. Gray, O. Roup, R. Krikorian and P. Maes, “Hive:
Distributed Agents for Networking Things,” Proc. of ASA99, 1999.
[30] S. Sameshima, J. Suzuki, S. Steglich and T. Suda, “Platform
Independent Model (PIM) and Platform Specific Model (PSM) for Super
Distributed Objects,” OMG final adopted specification, September 2003.
[31] B. Overeinder et al, “Integrating Peer-to-Peer Networking and
Computing in AgentSpace Framework,” Proc. of IEEE International
Conference on Peer-to-Peer Computing, 2002.
[32] S. Androutsellis-Theotokis, “A Survey of Peer-to-Peer File Sharing
Technologies,” Athens University of Economics and Business, 2002.

