
Model-Driven Integration for a Service Placement
Optimizer in a Sustainable Cloud of Clouds

Junichi Suzuki ∗, Dung H. Phan∗, Masatoshi Higuchi†, Yuji Yamano†, Katsuya Oba†
∗Department of Computer Science

University of Massachusetts, Boston, Boston, MA 02125, U.S.A.
Email: {jxs, phdung}@cs.umb.edu

†OGIS International, Inc.
San Mateo, CA 94402, U.S.A.

Email: {higuchi, yyamano, oba}@ogis-international.com

Abstract—“Cloud of clouds” (or federated cloud) is an emerg-
ing style of software deployment and execution to interoperate
application services and data across geographically-distributed
clouds. One of key research issues to realize this notion is inter-
cloud integration. This paper proposes a model-driven integration
(MDI) framework for federated clouds. The proposed MDI
framework consists of (1) a metamodel to graphically define inter-
cloud integration models using Enterprise Integration Patterns
(EIPs) and Cloud Computing Patterns (CCPs) and (2) an MDI
tool that accepts an integration model defined with the proposed
metamodel and transforms it to integration code (e.g., program
code and deployment configurations). This paper presents the
design of the proposed MDI framework and describes an inte-
gration case study to build a bio-inspired optimization engine for
dynamic service placement in a sustainable cloud of clouds.

Index Terms—Cloud of clouds, federated clouds, model-driven
system integration and sustainable clouds

I. INTRODUCTION

Cloud computing is a paradigm that realizes the vision of
“computing as a utility” by leveraging Internet data centers
(IDCs), each of which manages a pool of computing, storage
and networking resources (e.g., CPU cores, databases and
network bandwidth) [1]–[6]. A cloud computing environment
(or simply cloud) is an application deployment and execution
platform that operates on one or more IDCs. (Fig. 1). It
virtualizes resources available on IDCs and provides them to
applications on an on-demand basis.

As shown in Fig. 1, two major types of cloud users are
application providers and application users. Providers develop
their applications and upload/deploy them to a cloud(s) so
that users can access them via the Internet. Providers lease
virtualized resources in a “pay-per-use” manner. Therefore,
they pay higher resource utilization fees as their applications
process higher demands and consume more resources.

Currently, there exist three primary types of clouds [6]:
• Public cloud: Operated by a cloud provider and

used/shared by multiple application providers.
• Private cloud: Dedicated to a particular application

provider and not shared with others. May be operated by
an application provider or a third-party cloud provider.

• Community cloud: Dedicated to a particular community
(e.g., government and m life science communities) and
shared by application providers in the community.

As the variety of cloud types, offerings and use cases have
been expanding, the notion of “cloud of clouds” (or federated
cloud, or InterCloud) is conceived [7]–[11]. It is structured
and operated as a network (or federation) of geographically-
distributed clouds for extended resource utilization, workload
distribution, fault tolerance, cost effective (e.g., energy effi-
cient) service/data placement and avoidance of “lock-in” to
particular cloud providers. Fig. 2 shows an example federation
of clouds that on-premise applications interact with.

In order to make the notion of “cloud of clouds” a reality,
there are several research issues to address. A key research
issue is inter-cloud integration [8]. This issue introduces a new
type of cloud users, cloud integrators, who help application
providers interoperate application services and data with each
other across clouds (Fig. 1). Other issues include quality-of-
service (QoS) monitoring, service/data migration, security and
trust, billing, and governance across clouds [7]–[9].

This paper investigates a model-driven integration (MDI)
framework for federated clouds. The MDI framework consists
of (1) a metamodel to graphically define integration mod-
els for federated clouds and (2) an MDI tool that accepts
an integration model defined with the proposed metamodel
and transforms it to integration code (e.g., program code
and deployment configurations). The proposed metamodel
allows cloud integrators to describe and maintain inter-cloud
integration solutions as graphical models using Enterprise
Integration Patterns (EIPs) [12] and Cloud Computing Patterns
(CCPs) [13]. With the proposed EIP-CCP metamodel, inter-
cloud integration solutions can be modeled at a high-level
of abstraction without depending on any particular low-level
implementation, deployment and integration technologies. The
proposed MDI tool transforms high-level EIP-CCP models
into low-level integration code for integration middleware such
as Enterprise Service Bus (ESB).

This paper presents the design of the proposed MDI frame-
work and describes how it is used in model-driven integration
for a cloud of clouds. This paper demonstrates a case study
that integrates geographically-distributed clouds and builds
an optimization engine that leverages evolutionary algorithms
to dynamically adjust service placement across clouds with
respect to the sustainability and performance applications.

Fig. 1. A Cloud and its Users

Fig. 2. An Example Cloud of Clouds

II. THE PROPOSED MDI FRAMEWORK

This section overviews Enterprise Integration Patterns
(EIPs) and Cloud Computing Patterns (CCPs) and describes
the proposed MDI framework.

A. Enterprise Integration Patterns (EIPs) and Cloud Comput-
ing Patterns (CCPs)

Enterprise Integration Patterns (EIPs) are architectural pat-
terns to specify system integration solutions based on messag-
ing architectures [12]. They capture best practices in system
integration and provide a common integration terminology
and modeling notation. Cloud Computing Patterns (CCPs) are
architectural patterns to describe cloud types, cloud service
models, cloud offerings and cloud application architectures in
an abstract form [13].

Figs. 3 and 4 show some of EIPs and CCPs, respectively.
Fig. 5 depicts an example integration model using two EIPs
(Message Channel and Message) and two CCPs (Public Cloud
and IaaS). This example model describes that four services
(“Green Monster” and three cloud monitors) run on four
different IaaS (Infrastructure-as-a-Service) clouds and interact
with each other across the clouds. In this example, Green
Monster sends an inquiry message to each cloud monitor
through a message channel, and each cloud monitor returns
the current health information of the local cloud through
another channel. The health information includes the number
of services running on the cloud, the number of requests
placed on each service, air temperature in the cloud and
renewable energy consumption of the cloud. Fig. 6 shows
another example model that specifies a similar integration logic

(a) Message
Channel

(b)
Guaranteed
Messaging

(c)
Message

(d) Message
Expiration

(e) Polling
Consumer

(f) Recipient
List

(g) Content-
based Router

(h) Content
Enricher

(i) Aggregator

Fig. 3. Enterprise Integration Patterns (EIPs)

(a) Public
Cloud

(b) Private
Cloud

(c)
Community
Cloud

(d) IaaS

Fig. 4. Cloud Computing Patterns (CCPs)

to the logic in Fig. 5 with two EIPs: Polling Consumer and
Message. In this example, Green Monster periodically polls
over cloud monitors to collect the current health information.

B. The Architecture of the Proposed MDI Framework

The proposed model-driven integration (MDI) framework
consists of an EIP-CCP metamodel and an MDI tool sup-
porting the metamodel. The proposed metamodel defines EIPs
and CCPs with the meta-meta model in the Generic Modeling
Environment (GME) [14]1 (Figs. 7 and 8). It provides a visual
and intuitive abstraction to model the architectures of inter-
cloud integration solutions. Given the EIP-CCP metamodel,
the proposed MDI tool allows cloud integrators to graphically

1http://www.isis.vanderbilt.edu/projects/gme/

Cloud&health&
inquiries&

Cloud&health&
info&

Green&
Monster&

Cloud&
Monitor&

Cloud&
Monitor&

Cloud&
Monitor&

Fig. 5. An Example Integration Model with Message Channel

Cloud&health&
inquiries&

Polling&
Consumer&Cloud&

Monitor&

Cloud&
Monitor&

Cloud&
Monitor&

Green&
Monster&

Fig. 6. An Example Integration Model with Polling Consumer

GME$Meta(meta(model$

EIP(CCP$Metamodel$

EIP(based$
integra6on$
models$$

EIP(based$
integra6on$
models$$

Integra6on$
models$with$
EIPsandCCPs$$

Integra6on$
Code$

The$Proposed$MDI$Framework$

MDI$
Transformer$

Fig. 7. The Architecture of the Proposed MDI Framework

describe and maintain inter-cloud integration models without
relying on low-level implementation, deployment and integra-
tion technologies such as programming languages, transport
protocols, security configurations and integration middleware
(e.g., Enterprise Service Bus (ESB)). The proposed MDI
tool also transforms EIP-CCP models to integration code
(e.g., program code and deployment configurations) for ESB
middleware.

Fig. 9 presents the process of defining and transforming
EIP-CCP models with the proposed MDI framework. Cloud
integrators define an integration model with EIPs and CCPs.
The proposed MDI framework accepts an EIP-CCP model,
verifies it against the proposed EIP-CCP metamodel and
transforms it to a skeleton of configuration code (program
code and deployment configurations) for ESB middleware.
Cloud integrators and application providers complete the
generated skeleton code to be a compilable and deployable
form by adding method bodies (i.e., behavioral code) to
each application service and specifying various ESB-related
parameters (e.g., transport protocols, messaging timeout and
polling interval).

The proposed MDI framework allows EIP-CCP models
to be portable and reusable across different implementation,
deployment and integration technologies. For example, EIP-
CCP models can be independent across Java, C#, HTTP,
REST, JMS, Mule ESB2 and Microsoft BizTalk ESB. This
means that single EIP-CCP model can be mapped to different
sets of implementation, deployment and integration technolo-
gies simultaneously (Fig. 7). The proposed MDI framework
allows EIP-CCP models to be intact in switching from a set
of implementation, deployment and integration technologies

2http://www.mulesoft.org/

Integra(on*
Model*with*
EIPs*and*CCPs*

uses*

EIP6CCP*Metamodel*

define*

MDI*
Transformer*

Transforma(on*
Rules*

Cloud*
Integrators*

transform*

refers*to**

uses*

Integra(on*Code*for*ESB*

6*Program*Code*
6*Deployment**
Configura(ons*

implement*

App*
Providers*

implement*

Fig. 9. Model-to-Code Transformation

TABLE I
EIP-MULE MAPPING

EIP Mule Deployment Configuration
Messaging Endpoints
Message Endpoint Transport-specific inbound/outbound endpoint
Polling Consumer <poll>
Competing Consumer Implemented by a custom outbound router.
Message Dispatcher Implemented by a custom outbound router.
Selective Consumer <selective-consumer-router>
Idempotent Receiver <idempotent-message-filter>

Message Construction
Message Inherently supported by Mule.
Correlation Identifier Implemented by the correlation ID header.
Message Sequence Implemented by the sequence number header.
Message Expiration Implemented by the expiration header, which

specifies the expiration time and the maximum
count for messaging retries.

Messaging Channels
Message Channel Inherently supported by Mule.
Dead Letter Channel A combination of Message Expiration and

Content-Based Router.
Guaranteed Delivery Implemented by a custom outbound router.
Message Routing
Pipes and Filters Inherently supported by Mule.
Content-Based Router <choice>
Message Filter <expression-filter>
Recipient List <recipient-list>
Splitter <collection-splitter>

<splitter>
Aggregator <collection-aggregator>
Resequencer <resequencer>
Scatter-Gather A combination of Recipient List and Aggregator.
Message Transformation
Content Enricher <enricher>

(e.g., Java, JMS and Mule ESB) to another set (e.g., C#, HTTP
and BizTalk ESB).

C. EIP-to-Mule Transformation

The proposed MDI framework currently supports Java,
HTTP and Mule ESB as the target implementation, deploy-
ment and integration technologies in its model-to-code trans-
formation, although it does not depend on particular low-level
technologies (Fig. 7). Table I summarizes some of the EIP-to-
Mule transformation rules that the proposed MDI framework
implements.

Fig. 8. The Proposed EIP-CCP Metamodel

III. CASE STUDY: MODEL-DRIVEN INTEGRATION FOR A
SUSTAINABLE CLOUD OF CLOUDS

This section describes a case study where the proposed MDI
framework aids to integrate and operate a cloud of clouds in
a sustainable manner.

Since clouds have been increasing in scale and complexity,
they are a significant source of energy consumption and CO2

emission. They reportedly consumed 271.8 TWh worldwide
in 2010, which accounted for 1.5% of the total electricity
usage [15]. It is 3.8 times greater than the energy consumption
of clouds in 2000. In 2007, the information and communica-
tion technology (ICT) industry produced 2% of global CO2

emission, which is on par with the aviation industry3. Clouds
were responsible for 23% of the ICT industry’s emission. This
trend has prompted increased scrutiny from regulators and
non-governmental organizations (NGOs) [16]–[18].

In order to replace conventional fuels and reduce CO2 emis-
sion, many countries actively pursue more renewable sources
of energy through capital infrastructure projects or grid feed-in
tariff incentive schemes. As a result, the capacity of renewable
energy has increased exponentially in the past decade [19]. In
2010, renewable energy provided 312 GW worldwide, which
accounted for 3% of global electricity generation4.

Green Monster is an optimization engine to operate a fed-
eration of clouds in a sustainable manner [20]. It dynamically
moves services (i.e., workload) to clouds with more desirable
energy profiles while their maintaining performance (e.g.,
response time). It makes decisions of service migration and
placement with an evolutionary multiobjective optimization
algorithm (EMOA) that evolves a set of solution candidates
(or individuals) under given constraints. Each individual rep-
resents a particular placement configuration of individual
services. Green Monster considers conflicting optimization ob-

3http://www.gartner.com/it/page.jsp?id=530912
419% if hydroelectricity is included

!"# !"#

!"#$%$&'#$()

$%&&'()*'+,&%

!"#
!"#

Fig. 10. Interactions between Green Monster and Clouds

jectives: renewable energy consumption (RE), cooling energy
consumption (CE) and user-to-service distance (USD). CE
implies the power usage effectiveness (PUE) of clouds [21],
and USD represents the response time of services to users.
See [20] for full discussion on the EMOA in Green Monster.

Fig. 10 shows an architectural overview of the interactions
between Green Monster and clouds. Green Monster periodi-
cally collects each cloud’s health information such as service
request rate and performs optimization for dynamic service
migration and placement. It is designed pluggable for various
types of optimization algorithms including EMOAs. Once
an optimization algorithm determines a service placement
configuration, Green Monster disseminates it to individual
IDCs in order to trigger service migration.

This paper focuses on a model-driven integration between
Green Monster and clouds. This integration case study as-
sumes a federation of nine geographically-dispersed clouds in
nine major European countries: Denmark, Germany, Greece,
Ireland, Italy, Netherlands, Spain, UK and Portugal (Fig. 11).
In order to meet this inter-cloud integration requirement, this
case study uses the EIP-CCP model shown in Fig. 12. This

>25000GWh

5000 - 10000GWh

2000 - 5000GWh

<2000GWh

<10GWh
10 - 50 GWh

500 - 1000 GWh
2000 - 4000 GWh

Fig. 11. A Federation of Clouds

Cloud&&
Health&
inquiry&

Content&
Enricher&

Recipient&
List&

Aggregated&&
Cloud&health&info&

Msg&aggregator&

Cloud&
health&
info&

Sca<er=Gather&

Green&
Monster&

Cloud&
Monitor&

Cloud&
Monitor&

Cloud&
Monitor&

Fig. 12. An Integration Model with Scatter-Gather

model specifies the integration logic extended from those in
Figs. 5 and 6. It uses three EIPs (Content Enricher, Recipient
List and Message Aggregator) to form a compositete EIP
Scatter-Gather.

In Fig. 12, Green Monster periodically sends out a health
information inquiry to nine cloud monitors through a Content
Enricher and a Recipient List. A Content Enricher obtains a
list of endpoints representing individual cloud monitors and
inject the list to a header of an incoming inquiry message. A
Recipient List replicates an incoming message and distributes
replicated messages to nine cloud monitors. (Figure 12 shows
only three cloud monitors due to space limitation.) Each
cloud monitor returns the current health information of the
local cloud. A Message Aggregator aggregates nine incoming
messages into a single message and transmits an aggregated
message to Green Monster. A cloud health inquiry requests
the following seven information to each cloud monitor:

• Services (IDs of the services) that are currently running
on the cloud

• Request rate (# of requests) placed on each service
• Per-request CPU utilization for each service
• Availability of renewable energy for the cloud
• Indoor and outdoor temperature

S
e

rv
ic

e
 R

e
q

u
e

st
s

Ireland

UK

Portugal

Spain

Italy

Greece

Netherlands

Germany

Time (Days)

S
e

rv
ic

e
 R

e
q

u
e

st
s

Germany

Denmark

Fig. 13. Daily Service Request Rates

6000

4000

R
e

n
e

w
a

b
le

 E
n

e
rg

y
 P

ro
d

u
ct

io
n

 (
G

W
h

) UK

Greece

Netherlands

Portugal

Denmark

Germany

Ireland

Italy

Time (months)
1 2 3 4 5 6 7 8 9 10 11 12

2000

0

R
e

n
e

w
a

b
le

 E
n

e
rg

y
 P

ro
d

u
ct

io
n

 (

Italy

Spain

Fig. 14. Renewable Energy Production

• Per-request volume of data transmission for each service
• Capacity constraint of the cloud (the maximum number

of service requests allowed for the cloud)

Listing 1 shows a part of the Mule deployment configuration
that the proposed MDI framework generates from the EIP-CCP
model in Fig. 12. As defined in Table. I, the proposed MDI
framework transforms Content Enricher, Recipient List and
Message Aggregator to <enricher>, <recipient-list>
and <collection-aggregator>, respectively.

This case study completes the generated Mule deployment
configuration, integrates clouds with the completed deploy-
ment configuration and evaluates an integrated cloud of clouds
through a preliminary experiment. This experiment deploys 10
services (Green Monster and nine cloud monitors) on 10 hosts
that are accessible through the HTTP transport. In this exper-
iment, each host emulates a cloud environment that operates
a varying number of servers (8–200) and application services
(16–400). Hosts are connected with an overlay topology in line
with the European Optical Network (Fig. 11). Three types of
services are emulated to run on clouds: data, voice and video
services. Each host is supplied a set of cloud emulation data.

1 <mule ...>
2 <http:endpoint name="CloudMonitor1" host=... port=... method="POST" exchange-pattern="one-way" />
3 <http:endpoint name="CloudMonitor2" host=... port=... method="POST" exchange-pattern="one-way" />
4 ...
5 <flow name="Green Monster">
6 <inbound-endpoint address=... exchange-pattern="request-response"/>
7 <component class="edu.umb.cs.gm.GreenMonster"/>
8

9 <enricher target="#[header:recipients]">
10 <component class="edu.umb.cs.gm.Enricher"/>
11 </enricher>
12

13 <recipient-list enableCorrelation="ALWAYS" evaluator="header" expression= "recipients"/>
14 </flow>
15

16 <flow name=" Cloud Monitor 1 - Green Monster">
17 <inbound-endpoint address=... exchange-pattern="request-response"/>
18 <object-to-byte-array-transformer />
19 <component class="edu.umb.cs.gm.CloudMonitor1"/>
20 <message-properties-transformer scope="outbound">
21 <add-message-property key="MULE_CORRELATION_ID" value=... />
22 <add-message-property key="MULE_CORRELATION_GROUP_SIZE " value="9"/>
23 </message-properties-transformer>
24 <http:outbound-endpoint host=... port=... path="" method="POST" exchange-pattern="one-way" />
25 </flow>
26

27 <flow name="Aggregator - Green Monster">
28 <inbound-endpoint address=... exchange-pattern="request-response" />
29 <object-to-byte-array-transformer />
30 <collection-aggregator timeout=... failOnTimeout="false"/>
31 <component class="edu.umb.cs.gm.GreenMonster"/>
32 </flow>
33 ...
34 </mule>

Listing 1. Mule Deployment Configuration

Fig. 13 shows the daily service request rates emulated on dif-
ferent clouds. The average total rate is two million requests per
day. The dynamic changes in the request rates are configured
by adapting the traffic trace in Akamai’s data centers [22]5.
The rates are configured across clouds in proportion to the
populations of their host countries. In each cloud, requests are
evenly distributed to all emulated services. For the temperature
variations in each cloud, this experiment uses the data from
the European Climate Assessment & Dataset project, which
records real temperature data in Europe6. Fig. 14 shows the
total renewable energy production in the host country of each
cloud from January 2007 to December 2009. This data is
produced with the data available from the International Energy
Agency (IEA)7.

Given the aforementioned experimental configurations,
Green Monster transmits a daily health inquiry to each cloud
monitor and runs its EMOA every other week throughout
12 emulated months. In order to evaluate the performance
of Green Monster, it is compared with the following two
benchmark algorithms:

• Static placement: Randomly-selected two services are
placed on each server at the beginning of an experiment.
They do not dynamically migrate during an experiment.

• Random placement: Services dynamically migrate at ran-

5In order to represent long-term fluctuations in request rates, this evaluation
study adds a number of randomly distributed surges and falls on Akamai’s
short-term trace data.

6http://eca.knmi.nl
7http://www.iea.org/stats/surveys/elec archives.asp

dom every other week while satisfying a given capacity
constraint for each cloud.

Fig. 15 shows how Green Monster and two benchmark
algorithms yield objective values (RE, CE and USD values)
during emulated months. These results illustrate that Green
Monster successfully migrates services according to dynamic
changes in the health status of individual clouds and yields
superior performance than two benchmark algorithms.

This case study verifies that the proposed MDI framework
successfully aids to integrate and operate a cloud of clouds
intuitively.

IV. RELATED WORK

EIPs have been implemented by several ESB middleware
such as Mule, Camel8 and Service Mix9. Some of these ESB
middleware have proprietary GUI tools that implement EIP
drawing capability (e.g., Mule Studio for Mule10 and Fuse
IDE for Camel11). The proposed MDI framework is similar
to those EIP drawing tools; however, it is not designed to be
dedicated to any particular ESB and other middleware.

CCPs are proposed as a catalogue of architectural patterns in
a natural language [13]. No tools have implemented them. To
the best knowledge of the authors of this paper, the proposed
MDI framework is the first attempt to implement and evaluate
EIPs and CCPs in the viewpoint of inter-cloud integration.

8http://camel.apache.org/
9http://servicemix.apache.org/
10http://www.mulesoft.com/mule-studio
11http://fusesource.com/products/fuse-ide/

400

450

500

550

600
R

e
n

e
w

a
b

le
 E

n
e

rg
y
 (

M
W

h
)

200

250

300

350

0 100 200 300

Static

Random

Green Monster

Time(days)

R
e

n
e

w
a

b
le

 E
n

e
rg

y
 (

(a) Renewable Energy Consumption (RE)

C
o

o
li

n
g

 E
n

e
rg

y
 (

M
W

h
)

1050

1150

1250

1350

1450

1550

Static

Random

Green Monster

Time(days)

C
o

o
li

n
g

 E
n

e
rg

y
 (

650

750

850

950

1050

0 100 200 300

(b) Cooling Energy Consumption (CE)

U
S
D

U
S
D

(c) User-to-Service Distance (USD)

Fig. 15. Objective Values

Guarana [23] is similar to the proposed MDI framework
in a sense that both implement EIPs. However, it does not
provide any mappings to integration platforms while the
proposed framework provides a mapping to Mule. Inter-cloud
integration and CCPs are out of the scope of Guarana’s foci.

Various research efforts have addressed a series of issues
in federated clouds; for example, scalability [8], authentica-
tion [10], availability, integrity and confidentiality of data [11],
and service discovery and match-making [9]. Unlike these
work, this paper focuses on model-driven inter-cloud integra-
tion with EIPs and CCPs.

V. CONCLUSIONS

This paper proposes and describes an MDI framework that
consists of (1) a metamodel to graphically define integration
models for federated clouds using EIPs and CCPs and (2) an
MDI tool that transforms EIP-CCP models to integration code
for ESB middleware. This paper also reports an integration
case study to build a service placement optimizer for a
sustainable cloud of clouds.

Future work include extending the proposed MDI frame-
work to implement transformations from EIP-CCP models
to other ESB middleware than Mule. Extended case study
experiments are planned as well.

VI. ACKNOWLEDGEMENTS

The authors of this paper thank Priyanka Das, Manali
Kulkarni and Mayuri Mangireddy for their programming con-
tributions. Special thanks go to Raymond Carroll, Sasitharan
Balasubramaniam and William Donnelly for sharing experi-
mental data used in this paper.

REFERENCES

[1] A. Weiss, “Computing in the Clouds,” ACM netWorker Magazine,
vol. 11, no. 4, 2007.

[2] J. Varia, “Cloud Architectures,” Amazon Web Services, Tech. Rep.,
2007.

[3] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall, “Cloud
computing,” IBM High Performance On Demand Solutions, Tech. Rep.,
2007.

[4] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud
computing: Distributed internet computing for it and scientific research,”
IEEE Internet Computing, vol. 13, no. 5, 2009.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” University of California,
Berkeley, EECS Dept., Tech. Rep., 2009.

[6] P. Mell and T. Grance, “The nist definition of cloud computing,” National
Institute of Standards and Technology, Tech. Rep., 2011.

[7] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - protocols and formats for cloud com-
puting interoperability,” in Proc. Int’l Conference on Internet and Web
Applications and Services, 2009.

[8] R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Proc. Int’l Conference on Algorithms and Architectures for
Parallel Processing, 2010.

[9] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud
architectures to enable cross-federation,” in Proc. IEEE Int’l Conference
on Cloud Computing, 2010.

[10] ——, “Security and cloud computing: Intercloud identity management
infrastructure,” in Proc. Int’l Workshop on Enabling Technologies:
Infrastructures for Collaborative Enterprises, 2010.

[11] A. Bessani, M. Correia, B. Quaresma, F. Andr, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” in Proc. ACM
European Conference on Computer Systems, 2011.

[12] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison Wesley, 2003.

[13] C. Fehling, F. Leymann, J. Rutschlin, and D. Schumm, “Pattern-based
development and management of cloud applications,” Future Internet,
vol. 4, no. 1, 2012.

[14] M. M. Ledeczi, A. and, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling
environment,” in IEEE Int’l Workshop on Intelligent Signal Proc., 2001.

[15] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Analytics Press, 2011.

[16] The. U.S. Environmental Protection Agency (EPA), “Report to congress
on server and data center energy efficiency public law 109-431,” 2007.

[17] Global Action Plan, “Green ICT handbook: A guide to green ICT,”
2009.

[18] European Commission, “Code of conduct on data centres energy effi-
ciency, version 1.0,” 2008.

[19] Renewable Energy Policy Network for the 21st Century (REN21),
Renewables 2011: Global Status Report, 2011.

[20] D. H. Phan, J. Suzuki, R. Carroll, S. Balasubramaniam, W. Donnelly, and
D. Botvich, “Evolutionary multiobjective optimization for green clouds,”
in Proc. of ACM Genetic and Evol. Computat. Conference, 2012.

[21] C. Malone and C. Belady, “Metrics to characterize data center and it
equipment energy use,” in Proc. Digital Power Forum, 2006.

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in Proc. ACM
SIGCOMM Conference, 2009.

[23] R. Z. Frantz, A. M. R. Quintero, and R. Corchuelo, “A domain-specific
language to design enterprise application integration solutions,” Int’l J.
of Cooperative Information Systems, vol. 20, no. 2, 2011.

