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Abstract—“Cloud of clouds” (or federated cloud) is an emerg-
ing style of software deployment and execution to interoperate
application services and data across geographically-distributed
clouds. One of key research issues to realize this notion is inter-
cloud integration. This paper proposes a model-driven integration
(MDI) framework for federated clouds. The proposed MDI
framework consists of (1) a metamodel to graphically define inter-
cloud integration models using Enterprise Integration Patterns
(EIPs) and Cloud Computing Patterns (CCPs) and (2) an MDI
tool that accepts an integration model defined with the proposed
metamodel and transforms it to integration code (e.g., program
code and deployment configurations). This paper presents the
design of the proposed MDI framework and describes an inte-
gration case study to build a bio-inspired optimization engine for
dynamic service placement in a sustainable cloud of clouds.

Index Terms—Cloud of clouds, federated clouds, model-driven
system integration and sustainable clouds

I. INTRODUCTION

Cloud computing is a paradigm that realizes the vision of

“computing as a utility” by leveraging Internet data centers

(IDCs), each of which manages a pool of computing, storage

and networking resources (e.g., CPU cores, databases and

network bandwidth) [1], [2]. A cloud computing environment

(or simply cloud) is an application deployment and execution

platform that operates on one or more IDCs. (Fig. 1). It

virtualizes resources available on IDCs and provides them to

applications on an on-demand basis.

As shown in Fig. 1, two major types of cloud users are

application providers and application users. Providers develop

their applications and upload/deploy them to a cloud(s) so

that users can access them via the Internet. Providers lease

virtualized resources in a “pay-per-use” manner. Therefore,

they pay higher resource utilization fees as their applications

process higher demands and consume more resources.

Currently, there exist three primary types of clouds [2]:

• Public cloud: Operated by a cloud provider and

used/shared by multiple application providers.

• Private cloud: Dedicated to a particular application

provider and not shared with others. May be operated by

an application provider or a third-party cloud provider.

• Community cloud: Dedicated to a particular community

(e.g., government and m life science communities) and

shared by application providers in the community.

As the variety of cloud types, offerings and use cases have

been expanding, the notion of “cloud of clouds” (or federated

cloud, or InterCloud) is conceived [3], [4]. It is structured

and operated as a network (or federation) of geographically-

distributed clouds for extended resource utilization, workload

distribution, fault tolerance, cost effective (e.g., energy effi-

cient) service/data placement and avoidance of “lock-in” to

particular cloud providers. Fig. 2 shows an example federation

of clouds that on-premise applications interact with.

In order to make the notion of “cloud of clouds” a reality,

there are several research issues to address. A key research

issue is inter-cloud integration [4]. This issue introduces a new

type of cloud users, cloud integrators, who help application

providers interoperate application services and data with each

other across clouds (Fig. 1). Other issues include quality-of-

service (QoS) monitoring, service/data migration, security and

trust, billing, and governance across clouds [3], [4].

This paper investigates a model-driven integration (MDI)

framework for federated clouds. The MDI framework consists

of (1) a metamodel to graphically define integration mod-

els for federated clouds and (2) an MDI tool that accepts

an integration model defined with the proposed metamodel

and transforms it to integration code (e.g., program code

and deployment configurations). The proposed metamodel

allows cloud integrators to describe and maintain inter-cloud

integration solutions as graphical models using Enterprise

Integration Patterns (EIPs) [5] and Cloud Computing Patterns

(CCPs) [6]. With the proposed EIP-CCP metamodel, inter-

cloud integration solutions can be modeled at a high-level

of abstraction without depending on any particular low-level

implementation, deployment and integration technologies. The

proposed MDI tool transforms high-level EIP-CCP models

into low-level integration code for integration middleware such

as Enterprise Service Bus (ESB).

This paper presents the design of the proposed MDI frame-

work and describes how it is used in model-driven integration

for a cloud of clouds. This paper demonstrates a case study

that integrates geographically-distributed clouds and builds

an optimization engine that leverages evolutionary algorithms

to dynamically adjust service placement across clouds with

respect to the sustainability and performance applications.









1 <mule ...>
2 <http:endpoint name="CloudMonitor1" host=... port=... method="POST" exchange-pattern="one-way" />
3 <http:endpoint name="CloudMonitor2" host=... port=... method="POST" exchange-pattern="one-way" />
4 ...
5 <flow name="Green Monster">
6 <inbound-endpoint address=... exchange-pattern="request-response"/>
7 <component class="edu.umb.cs.gm.GreenMonster"/>
8

9 <enricher target="#[header:recipients]">
10 <component class="edu.umb.cs.gm.Enricher"/>
11 </enricher>
12

13 <recipient-list enableCorrelation="ALWAYS" evaluator="header" expression= "recipients"/>
14 </flow>
15

16 <flow name=" Cloud Monitor 1 - Green Monster">
17 <inbound-endpoint address=... exchange-pattern="request-response"/>
18 <object-to-byte-array-transformer />
19 <component class="edu.umb.cs.gm.CloudMonitor1"/>
20 <message-properties-transformer scope="outbound">
21 <add-message-property key="MULE_CORRELATION_ID" value=... />
22 <add-message-property key="MULE_CORRELATION_GROUP_SIZE " value="9"/>
23 </message-properties-transformer>
24 <http:outbound-endpoint host=... port=... path="" method="POST" exchange-pattern="one-way" />
25 </flow>
26

27 <flow name="Aggregator - Green Monster">
28 <inbound-endpoint address=... exchange-pattern="request-response" />
29 <object-to-byte-array-transformer />
30 <collection-aggregator timeout=... failOnTimeout="false"/>
31 <component class="edu.umb.cs.gm.GreenMonster"/>
32 </flow>
33 ...
34 </mule>

Listing 1. Mule Deployment Configuration
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Fig. 11. Daily Service Request Rates

configuration, integrates clouds with the completed deploy-

ment configuration and evaluates an integrated cloud of clouds

through a preliminary experiment. This experiment deploys 10

services (Green Monster and nine cloud monitors) on 10 hosts

that are accessible through the HTTP transport. In this exper-

iment, each host emulates a cloud environment that operates

a varying number of servers (8–200) and application services

(16–400). Hosts are connected with an overlay topology in line

with the European Optical Network (Fig. 9). Three types of

services are emulated to run on clouds: data, voice and video

services. Each host is supplied a set of cloud emulation data.

Fig. 11 shows the daily service request rates emulated on dif-

ferent clouds. The average total rate is two million requests per
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Fig. 12. Renewable Energy Production

day. The dynamic changes in the request rates are configured

by adapting the traffic trace in Akamai’s data centers [11]5.

The rates are configured across clouds in proportion to the

populations of their host countries. In each cloud, requests are

evenly distributed to all emulated services. For the temperature

variations in each cloud, this experiment uses the data from

the European Climate Assessment & Dataset project, which

records real temperature data in Europe6. Fig. 12 shows the

total renewable energy production in the host country of each

cloud from January 2007 to December 2009. This data is

produced with the data available from the International Energy

5In order to represent long-term fluctuations in request rates, this evaluation
study adds a number of randomly distributed surges and falls on Akamai’s
short-term trace data.

6http://eca.knmi.nl




