Self-Stabilizable Symbiosis for Cloud Data Center
Applications: A Game Theoretic Perspective

Junichi Suzuki
University of Massachusetts, Boston
Department of Computer Science
Boston, MA 02125, U.S.A.
jxs@cs.umb.edu

Abstract—This paper describes and evaluates a self-stabilizable
adaptation framework for data center applications. The de-
sign of the proposed architecture, SymbioticSphere, is inspired
by key biological principles such as decentralization, natural
selection, emergence and symbiosis. In SymbioticSphere, each
data center application consists of application services and
middleware platforms. Each service and platform is designed as a
biological entity, analogous to an individual bee in a bee colony,
and implements biological behaviors such as energy exchange,
migration, replication and death. SymbioticSphere allows services
and platforms to (1) adaptively invoke their behaviors according
to dynamic network conditions and (2) autonomously seek stable
behavior invocations as equilibria (or symbiosis) between them.
A symbiosis between a service and a platform is sought as a
Nash equilibrium in an extensive-form game. Simulation results
demonstrate that SymbioticSphere allows services and platforms
to successfully adapt to dynamic networks in a self-stabilizable
manner.

Index Terms—Adaptive networking, self-stabilization, Cloud
data center, game theory, extensive-form games

I. INTRODUCTION

One of key features in cloud data centers is elastic scaling
of their applications [1]. In order to provide this feature, cloud
data centers are required to dynamically adjust each applica-
tion’s configurations such as location, resource utilization and
availability [2], [3].

This paper investigates two properties in elastic scaling:

o Self-adaptation: allows applications to autonomously
adapt their configurations to dynamic network conditions
(e.g., workload and resource availability).

o Self-stabilization: allows applications to autonomously
seek stable adaptation decisions by avoiding non-
deterministic inconsistencies in decision making.

SymbioticSphere is an architecture to build self-adaptive
and self-stabilizable cloud applications. It is designed after
key biological principles and mechanisms based on an obser-
vation that various biological systems have attained autonomy,
adaptability and stabilizability.

In SymbioticSphere, each application is constructed with
two types of components: application services and middleware
platforms. Each of them is modeled as a biological entity, anal-
ogous to an individual bee in a bee colony. They are designed
to follow several biological principles such as decentralization,
emergence, natural selection and symbiosis. An application

Paskorn Champrasert
Chiang Mai University
Department of Computer Engineering
Chiang Mai, 50200, Thailand
paskorn@eng.cmu.ac.th

Chonho Lee
Nanyang Technological University
Department of Computer Engineering
Nanyang Ave., 639798, Singapore
leechonho@ntu.edu.sg

service is designed as a software agent. It implements a
functional service (e.g., web service) and biological behaviors
such as energy exchange, replication, migration and death.
A middleware platform provides runtime services that agents
use to perform their services and behaviors, and implements
biological behaviors such as energy exchange, replication and
death.

SymbioticSphere allows services and platforms to (1) adap-
tively invoke their behaviors according to dynamic network
conditions and (2) autonomously seek stable behavior invoca-
tions as equilibria (or symbiosis) between them. A symbio-
sis between a service and a platform is sought as a Nash
equilibrium in an extensive-form game. Simulation results
demonstrate that services and platforms successfully adapt to
dynamic networks in a self-stabilizable manner.

II. SYMBIOTICSPHERE

In SymbioticSphere, agents run on platforms, which in turn
run on network hosts. Each platform can operate multiple
agents, and at most one platform runs on a host.

A. Design Principles

SymbioticSphere leverages the following bio-inspired prin-
ciples to design agents and platforms.

Decentralization: There are no central entities (e.g., di-
rectories and resource managers) to control and coordinate
agents/platforms. Decentralization is intended to improve the
scalability and survivability of agents/platforms by avoiding a
single point of performance bottlenecks and failures.

Autonomy and emergence: Agents and platforms period-
ically sense their local network conditions, and based on the
conditions, they behave and interact with each other without
any intervention from/to other agents, platforms and human
users. For example, an agent may invoke the migration behav-
ior to move toward a host that receives a large number of user
requests for its services. This results in the adaptation of agent
location; the agent can improve its response time for users.
Moreover, a platform may invoke the replication behavior
to make its offspring on a neighboring host where resource
availability is high. This results in the adaptation of resource
availability; the platforms provide more resources to agents.
Through collective behavior invocations and interactions of

agents and platforms, desirable system characteristics such as
adaptability emerge in a swarm of agents and platforms. Note
that those desirable characteristics are not present in any single
agent/platform.

Energy exchange and natural selection: Agents and
platforms store and expend energy for living. Each agent
gains energy in exchange for performing its service to other
agents or human users, and expends energy to use network
and computing resources (Figure 1). Each platform gains
energy in exchange for providing resources to agents, and
periodically evaporates energy (Figure 1). The abundance or
scarcity of stored energy triggers selection of agents/platforms.
For example, an abundance of stored energy indicates higher
demand for an agent/platform; thus the agent/platform repli-
cates itself to increase its availability. A scarcity of stored
energy (an indication of lack of demand) causes death of the
agent/platform. Like in biological natural selection where more
favorable species in an environment becomes more abundant,
the population of agents/platforms dynamically changes based
on the demands for them.

Symbiosis: Agents and platforms are modeled as different
species. They spontaneously cooperate, in certain circum-
stances, to balance and augment their adaptability by allowing
the two species to pursue their mutual benefits (i.e., gaining
more energy to survive longer). To this end, they perform a
special type of behaviors: symbiotic behaviors. A symbiotic
behavior is a sequence of regular behaviors (e.g., migration
and replication) that an agent and its underlying platform
invoke in order.

As described above, agents and platforms are designed
to adapt to dynamic network conditions by invoking their
(regular) behaviors. However, behavior invocations of one
species (e.g., agents) can degrade the adaptation of the other
species (e.g., platforms) in some circumstances. For example,
if too many agents migrate to a host near a user for gaining
more energy from the user and reducing response time to
user requests, a platform on the host has a risk to crash
due to overloading or resource scarcity. Symbiotic behaviors
are intended for agents and platforms to invoke behaviors
as coalitional decisions in a cooperative manner rather than
individual decisions in a selfish manner.

B. Agents

Each agent consists of attributes, body and behaviors.
Attributes carry descriptive information on an agent, such as
its energy level, description of a service it provides, and price
(in energy units) of the service it provides. Body implements
a service that an agent provides. For example, an agent may
implement a web service, while another may implement a
physical model for scientific simulations. Behaviors implement
actions that are inherent to all agents:

« Replication: Agents may make a copy of themselves. A
replicated (child) agent is placed on the platform that its
parent agent resides on, and it inherits the half amount
of the parent’s energy level.

Users

it

/ /
Energy

Service Request Service
AN !

| |
| . 1
: Agent SymbioticSphere :
] VA 1
1 Energy Resource)
|]
})
|]
! Platform Platform :
Energy'_____________________________I
evaporation
Host | | Host | | Host

Fig. 1: Energy Exchange in SymbioticSphere

o Migration: Agents may move from one platform to
another.

o Death: Agents die due to energy starvation. When an
agent dies, its underlying platform removes the agent and
releases all resources allocated to the agent.

C. Platforms

Each platform consists of attributes, behaviors and runtime
services. Attributes carry descriptive information on the plat-
form, such as its energy level and health level. Health level is
defined as a function of three properties: the resource avail-
ability on, the age of, and the freshness of a host. Resource
availability indicates how much resources are available for
agents and platforms on a host. Age indicates how long a host
has been alive (i.e., how much stable the host is). Freshness
indicates how recently a host joined the network. Once a host
joins the network, its freshness gradually decreases from the
maximum. When a host resumes from a failure, its freshness
starts with the value that the host had when it went down.

Health level affects how platforms and agents invoke their
behaviors. For example, higher health level indicates longer
uptime of and/or higher resource availability on a host that
a platform resides on. Thus, the platform may replicate itself
on a neighboring host if the host is healthier than the local
host. This results in the adaptation of platform locations.
Platforms strive to favor long-lived and resource-rich hosts.
Also, lower health level indicates that a platform runs on a
host that is short-lived and/or poor in resources. Thus, agents
may leave the platform and migrate to a healthier neighboring
hosts. This results in the adaptation of agent locations. Agents
strive to favor stable and/or resource-rich hosts. In this case,
the platforms on short-lived and/or resource-poor hosts will
eventually die due to energy starvation because few agents
run on the platforms and transfer energy to them. This results
in the adaptation of platform population. Platforms strive to
avoid running on the hosts that are short-lived and/or poor in
resources.

Behaviors are the actions inherent to all platforms:

« Replication: Platforms may make a copy of themselves.
A replicated (child) platform is placed on a neighboring
host that does not run a platform. It inherits the half of
the parent’s energy level.

o Death: Platforms die due to lack of energy. A dying
platform kills agents running on it, uninstalls itself and
releases all resources the platform uses. Despite the death
of a platform, its underlying host remains active so that
another platform can run on it in the future.

Runtime services are the middleware services that agents
and platforms use to perform their behaviors

D. Agent-Platform Symbiosis

There are two types of symbiotic behaviors: (1) agent-
initiated symbiotic behaviors, each of which is a sequence
of an agent’s behavior and its underlying platform’s behavior,
and (2) platform-initiated symbiotic behaviors, each of which
is a sequence of a platform’s behavior and its local agent’s
behavior.

SymbioticSphere employs a game theoretic approach to
implement symbiotic behaviors. Each agent and its underlying
platform play an extensive-form game to find an equilibrium
where they can agree on (i.e., a rational sequence of regular
behaviors) and invoke it as a symbiotic behavior.

An extensive-form game is a particular specification of
games in game theory [4]. This form describes each game as
a tree. See Figure 2 for the structure of an example extensive-
form game for agent-initiated symbiosis between an agent
(A) and its underlying platform (P). Each non-terminal node
represents a player (A or P), and the player chooses a certain
behavior at that node. The behavior choice is represented as an
edge leading from that node to another node in a lower tier. aé.
denotes a behavior choice in which player ¢ (A or P) invokes
behavior j (R: replication, M: migration or D: do nothing).
Thus, A has three behavior choices (a4, a4, and a%), and B
has two behavior choices (af and ab).

A P
®P 2 a8y Patiag)

A P
®Ps a8y Pag.at)

A P
2w ®Pa 2 Pag at)
A P
o @Ps a2y Pag o)
A P
® p(:@,asw pgaé,as)
Prag a2y Pras.at)

Fig. 2: Agent-Plaform Game for Agent-initiated Symbiosis

An extensive-form game begins at the root node and flows
through a path (i.e., a set of edges) depending on the behaviors
that players choose. A game ends when it reaches a terminal
node, and payoffs are assigned to players. In Figure 2, A
chooses a behavior first at the root node. (Note that Figure 2
depicts agent-initiated symbiosis.) P observes A’s behavior

choice and decides its own behavior. There are six potential
outcomes represented by six terminal nodes after A and B
choose one behavior each. A payoff is denoted as p% where
S denotes a sequence of behaviors. In Figure 2, if A chooses
a4, and P chooses aky, A’s payoff is p(élfpaﬁ) and P’s payoff
is pﬁﬁﬂg).

Unlike a normal-form game, an extensive-form game mod-
els a sequential interaction between players. If all players have
chosen behaviors and no players can gain higher payoffs by
changing their behaviors while the other players keep their
behaviors unchanged, the current sequence of behaviors and
its corresponding payoffs constitute a Nash equilibrium. It is
theoretically proven that there exist at least one Nash equilibria
in an extensive-form game [4]

Equation 1 shows how to compute a payoff A). p represents
a particular network condition. A is computed as the difference
between the current network condition (p;) and an estimated
network condition that a symbiotic behavior yields (psy1).
A positive A value indicates that a symbiotic behavior is
estimated to improve a network condition. A negative A value
indicates that a symbiotic behavior is estimated to degrade a
network condition.

A = Pt+1 — Pt (L

Three kinds of network conditions are considered to com-
pute an agent’s payoff.

e Hop count: The number of network hop counts between
an agent and the users who request the agent’s service.

e Resource availability: The amount of resources that the
underlying platform made available.

e Workload: The workload (i.e., the number of service
requests) dispatched to an agent.

Two kinds of network conditions are considered to compute
an platform’s payoff.

e Resource availability: The amount of resources that a
platform provides to agents.

o The number of agents: The number of agents that runs
on a platform.

In order to compare two payoffs and determine which
one is superior, SymbioticSphere uses a dominance ranking
mechanism that considers the Pareto optimality [5].

SymbioticSphere performs backward induction to obtain a
Nash equilibrium in a game between an agent and platform. In
backward induction, each player attempts to maximize its pay-
off by looking ahead which behaviors the other players invoke.
In a game in Figure 2, a platform (P) first considers which
behavior (af;, or k) it should choose to maximize its pay-
off: max(pﬁlg’ap),pég’ag)), max(pgﬁ’ag),péfpag)), and
max(pgg7ag),p(ag7ag)) if an agent (A) chooses ajq, af; and
ag, respectively. The platform P chooses ag if A chooses aé
and p@ 40P > pﬁl A Py This behavior choice is depicted as

R’7’R R’ D
a thick edge from the top P node to the top terminal node
in Figure 2. Similarly, P chooses ab if A chooses a4, and

Service requests

Data Center
Fig. 3: Simulated Data Center

P P
p(a Py < p(a

A, Py It chooses ag if A chooses aé and
M’"R

ap
Plag.a) = Plag.af)

Given the knowledge of P’s behavior choices (i.e.,
thick edges in Figure 2), A considers which behavior
(af, ayy %r ap) itA should ihoose to miximize its pay-
off: max(p(ag’ag),p(aﬁ’ag),p(ag’ag)). If Plag ok 18 highest
among the three payoffs, A chooses a. This behavior choice
is shown as a thick edge from the bottom A node to the bottom
P node in Figure 2. As a result, a sequence of a7 and a, is
determined as a Nash equilibrium’.

It is theoretically proven that this backward induction pro-
cess reaches at least one Nash equilibrium in an extensive-
form game regardless of players’ internal states (e.g., the
history of behavior invocations by an agent and its underlying
platform) and external states (e.g., network conditions) [4].
Thanks to this stability (i.e., reachability to at least one
Nash equilibrium), SymbioticSphere guarantees that agents
and platforms deterministically performs symbiotic behaviors
in an adaptive and stable manner.

III. SIMULATION RESULTS

This section shows a set of simulation results to evaluate
the self-adaptation and self-stabilization properties of agents
and platforms. Simulations were conducted with the Sym-
bioticSphere simulator, which implements the mechanisms
described in Section II.

Figure 3 shows a simulated cloud data center. It consists
of 100 hosts in a grid topology. The grid topology is chosen
based on recent findings on efficient topology configurations
in data centers [6]. Each agent implements an HTTP service.
Users send service requests to agents via the user access point.
This paper assumes that a single (virtual) user runs on the
access point, and it emulates multiple users to send out service
requests. Figure 4 shows how the (virtual) user changes service
request rate over time. It is obtained from the workload trace
of the 1998 Soccer World Cup official website. The peak
workload is 2,500 requests/second. At the beginning of each
simulation, one agent and one platform are deployed on a host
that is furtherest from the user access point.

This simulation study evaluates the following three varia-
tions of SymbioticSphere:

I'The same backward induction is used to determine a Nash equilibrium in
a game for platform-initiated symbiosis. Note that Figure 2 shows a game for
agent-initiated symbiosis.

3000

2500 -

2000 -

1500 4

1000 A

Service request rate
(# of requests / sec)

%3

(=3

(=]
L

(=]

0 24 48 72 96 120 144 168
Simulation time (hour)

Fig. 4: Request Rate

o SymbioticSphere-GT (SS-GT): All agents/platforms pe-
riodically play games for agent-initiated and platform-
initiated symbiotic behaviors that are described in Sec-
tion II-D.

o SymbioticSphere-GTR (SS-GTR): All agents/platforms
periodically play games for agent-initiated and platform-
initiated symbiotic behaviors. When an agent and a
platform choose ag and a}) (“do-nothing”) as a symbiotic
behavior, they invoke regular behaviors that are described
in Sections II-B and II-C.

o SymbioticSphere-R (SS-R): All agents and platforms
periodically perform regular behaviors. They never invoke
symbiotic behaviors.

Fig. 5 shows the average response time that agents in SS-
GT, SS-GTR and SS-R yield over time. Fig. 6 shows the av-
erage throughput that agents yield over time. At the beginning
of a simulation, response time is high (25.45 seconds) because
there is only one agent and one platform need to process the
entire demand placed on them. As a result, throughput does not
reach 100% (51%). However, as agents and platforms replicate
themselves and agents migrate toward the user access point,
response time drops under four seconds in two hours in SS-
GTR, three hours in SS-GT and six hours in SS-R. Throughput
improves immediately as well in the beginning of a simulation.
Agents yield the throughput of 99% in three hours in SS-GTR,
five hours in SS-GT and six hours in SS-R.

After the initial improvement at the beginning of a simula-
tion, response time and throughput constantly remain accept-
able in SS-GT and SS-GTR. SS-GT never yields the response
time of five seconds or higher. SS-GTR yields the response
time of six seconds or higher only once and five seconds
or higher six times throughout the entire simulation period
(168 hours). SS-GT never yields the throughput of 99% or
lower. SS-GTR yields the throughput of 99% or lower 13 times
throughout the entire simulation period.

Tables I and II show the minimum, maximum, average,
median and standard deviation of hour-by-hour response time
and throughput results in Figs. 5 and 6. Table I compares
SS-GT and SS-R, while Table II compares SS-GTR and SS-
R. SS-GT and SS-GTR outperform SS-R in the minimum,

15
SS-GT
SS-GTR --sreseesremseeseeseees
SS-R i
10
5
Y AV,
0 24 48 72 96 120 144 168
Simulation time (hour)
Fig. 5: Response Time (Second)
0 24 48 72 96 120 144 168

Simulation time (hour)

Fig. 6: Throughput (%)

average and median response time. SS-GT and SS-GTR yield
51% and 41% lower response time on average, respectively,
than SS-R. Moreover, SS-GT and SS-GTR outperform SS-R
in the average and median throughput. SS-GT and SS-GTR
yields the median throughput of 100% while SS-R fails to
active it.

Superiority of SS-GT and SS-GTR over SS-R comes from
symbiotic behaviors. When workload spikes, the number of
symbiotic behavior invocations dramatically increases. Partic-
ularly, agents and platforms often invoke a symbiotic behavior
in which both an agent and a platform replicate themselves. In
this symbiotic behavior, agents replicate themselves on their
local platforms and platforms replicate themselves on nearby
inactive hosts so that they can rapidly increase their availability
and effectively process service requests. This allows replicated
agents to migrate to replicated platforms to process a higher
workload with more resources, thereby improving response
time and throughput.

Tables I and II also illustrate the performance stability of

l [SS-GT [SSR || Difference |

Min 1.70 2.70 1.00 (37%)

Max 2045 | 20.45 0.00 (0%)

Response time ~ Avg 2.30 4.77 247 (51%)
Med 2.05 3.80 1.75 (46%)

Sd 1.61 3.27 1.66 (51%)

Min 51.0 51.0 0.00 (0%)

Max 100 100 0.00 (0%)

Throughput Avg 99.37 | 97.87 1.50 (1.5%)
Med 100 99.50 || 0.50 (0.5%)

Sd 4.39 5.40 1.01 (18%)

TABLE I: Comparison between SS-GT and SS-R

l [[SS-GIR [SSR [Difference |

Min 1.85 2.70 0.85 (31%)

Max 20.45 20.45 0.00 (0%)

Response time Avg 2.81 4.77 1.96 (41%)
Med 2.47 3.80 1.33 (35%)

Sd 1.63 3.27 1.64 (50%)

Min 51.0 51.0 0.00 (0%)

Max 100 100 0.00 (0%)

Throughput Avg 99.24 97.87 1.37 (1.3%)
Med 100 99.50 || 0.50 (0.5%)

Sd 4.08 5.40 1.32 (24%)

TABLE II: Comparison between SS-GTR and SS-R

SS-GT, SS-GTR and SS-R as the standard deviation of hour-
by-hour response time and throughput results. SS-GT is 51%
more stable in response time than SS-R. SS-GTR is 24% more
stable in throughput than SS-R.

Fig. 5, Fig. 6, Table I and Table II demonstrate that SS-
GT and SS-GTR allow agents and platforms to successfully
yield high performance (i.e., low response time and high
throughput) by self-adapting their populations and locations
against dynamic demand changes. Agents and platforms also
effectively leverage symbiotic behaviors to self-stabilize their
adaptation decisions, thereby stabilizing their response time
and throughput performance.

Fig. 7 shows the resource efficiency in SS-GT, SS-GTR
and SS-R. It is computed as % where S denotes the total
number of service requests that agents process in the entire
data center and R denotes the total amount of memory space
that agents and platforms consume in the entire data center.
Higher resource efficiency means that agents and platforms
process more service requests with a less amount of resources.
In both SS-GTR and SS-R, resource efficiency follows the
changes in service request rate (Fig. 4). Given the throughput
performance in Fig. 6, this means that agents and platforms
self-adapt their availability (i.e., the number of replicas) and
in turn resource utilization as service request rate changes.

SS-GTR and SS-R yield qualitatively similar resource ef-
ficiency; however, SS-R’s resource efficiency is often a little
higher than SS-GTR’s. This is because (1) SS-R’s throughput
is lower than SS-GTR’s (Fig. 6) and (2) SS-GTR encourages
agents and platforms to cooperate with symbiotic behaviors
to survive longer, thereby maintaining their higher availabil-
ity than in SS-R. Higher availability means higher resource
utilization; i.e., higher R.

SS-GT’s resource efficiency consistently remains low be-

400

300

I L i
Pt r

aerin

200

100

MEMANN A AR

0 24 48 72 96 120 144 168

Simulation time (hour)

Fig. 7: Resource Efficiency

cause agents and platforms never die while they can replicate
themselves. Note that symbiotic behaviors do not consider the
death of agents and platforms. Agents and platforms never
invoke regular behaviors including the death behavior in SS-
GT. This means that, in SS-GT, the availability of agents
and platforms can increase but never decrease. This property
allows SS-GT to outperform SS-GTR in response time and
throughput (Figs. 5 and 7).

IV. RELATED WORK

This paper extends the authors’ prior work [7], [8]. This
paper investigates symbiotic behaviors as well as regular
behaviors, while only regular behaviors are studied in [7].
Symbiotic behaviors are studied in [8]. However, in [8], each
symbiotic behavior is designed as a statically pre-defined
sequence of regular behaviors. Agents and platforms agree on
and invoke symbiotic behaviors with a coevolutionary genetic
algorithm (GA). In this paper, each agent and its underlying
platform dynamically seek an equilibrium sequence of regular
behaviors with a game theoretic algorithm and invoke it
as a symbiotic behavior. Stabilizability in adaptive behavior
invocation is not studied in [7], [8].

Many GAs have been used for adaptation of cloud/grid
applications (e.g., [9], [10]). They seek the optimal adaptation
solutions; it is out of their scope to seek equilibrium solutions.
They do not consider stability in adaptation. In Symbiotic-
Sphere, agents and platforms seek equilibria in their adaptation
as symbiotic behaviors.

Game theoretic algorithms have been used in several aspects
of cloud/grid applications; for example, task allocation [11],
application placement [12]-[14] and data replication [15]. [11]
maintains stability in seeking equilibria; however, it assumes
static networks whose conditions (e.g., network traffic) never
change over time. [12], [13] formulate equilibria in application
placement and use greedy algorithms to seek equilibrium so-
lutions. Thus, they fail to attain stability in seeking equilibria.
In contrast, SymbioticSphere maintains stability in finding

equilibrium solutions (i.e., symbiotic behaviors) in dynamic
networks. [14], [15] is similar to SymbioticSphere in that
it maintains stability to seek equilibria. However, it does
not consider both optimality and stability in adaptation of
applications, while SymbioticSphere does.

V. CONCLUDING REMARKS

This paper describes a game theoretic adaptation mechanism
in SymbioticSphere and evaluates its impacts on the self-
adaptation and self-stabilization properties in cloud appli-
cations. Simulation results show that agents and platforms
autonomously adapt to dynamic network conditions (e.g.,
network traffic and resource availability) with limited perfor-
mance fluctuations.

REFERENCES

[11 M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” University of California,
Berkeley, EECS Dept., Tech. Rep., 2009.

[2] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proc. ACM Symposium on
Cloud Computing, 2011.

[3] A. Gulati, G. Shanmuganathan, I. Ahmad, and A. Holler, “Cloud scale
resource management: Challenges and techniques,” in Proc. USENIX
Workshop on Hot Topics in Cloud Computing, 2011.

[4] R. Cressman, Evolutionary Dynamics and Extensive Form Games. MIT
Press, 2003.

[5] N. Srinivas and K. Deb, “Multiobjective function optimization using
nondominated sorting genetic algorithms,” Evol. Computat., vol. 2, no. 3,
1995.

[6] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu, “DCell: A scalable
and fault-tolerant network structure for data centers,” in Proc. ACM Int’l
SIGOMM Conference, 2008.

[7] P. Champrasert and J. Suzuki, “Symbioticsphere: A biologically-inspired
autonomic architecture for self-adaptive and self-healing server farms,”
in Proc. IEEE Int’l Workshop on Autonomic Communications and
Computing, 2006.

, “Building self-configuring data centers with cross layer coevolu-

tion,” Journal of Software, vol. 2, no. 5, 2007.

[9] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “Evolutionary deploy-
ment optimization for service oriented clouds,” Software: Practice and
Experience, vol. 41, no. 5, 2011.

[10] Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-
aware task scheduling for homogeneous high-performance computing
data centers: a cyber-physical approach,” IEEE T. Parall. Distr. Syst.,
vol. 19, no. 11, 2008.

[11] R. Subrata, A. Zomaya, and B. Landfeldt, “Game-theoretic Approach for
Load Balancing in Computational Grids,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 1, 2008.

[12] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” J.
Supercomput., vol. 54, no. 2, 2010.

[13] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, and
E. Varvarigos, “Adjusted fair scheduling and non-linear workload predic-
tion for qos guarantees in grid computing,” Computer Communications,
vol. 30, no. 3, 2007.

[14] C. Lee, J. Suzuki, A. V. Vasilakos, Y. Yamano, and K. Oba, “An
evolutionary game theoretic approach to adaptive and stable application
deployment in clouds,” in Proc. of ACM Workshop on Bio-Inspired
Algorithms for Distr. Syst., 2010.

[15] S. Khan and I. Ahmad, “A pure Nash equilibrium based game theoretical
method for data replication across multiple servers,” IEEE Trans. Knowl.
Data Eng., vol. 21, no. 4, 2009.

