DESIGN AND IMPLEMENTATION OF THE MATILDA DISTRIBUTED UML
VIRTUAL MACHINE

Hiroshi Wada and Junichi Suzuki

University of Massachusetts, Boston
Boston, MA 02125-3393
email: {shu, jxs} @cs.umb.edu

Manikya Madhu Babu Eadara
Department of Computer Science Prolifics

Waltham, MA 02451
email: em@cs.umb.edu

Adam Malinowski
Motorola, Inc.
Tewksbury, MA 01876
email: AdamMalinowski@motorola.com

Katsuya Oba
OGIS International, Inc.
Palo Alto, CA 94301
email: oba@ogis-international.com

ABSTRACT

This paper describes a distributed UML virtual machine,
called Matilda, which allows developers to design their ap-
plications as UML models and directly execute the mod-
els. Matilda accepts a UML model as an input, validates
it against the UML metamodel, constructs a Java abstract
syntax tree (JAST) according to the input model, and ex-
ecutes Java bytecode generated from the JAST. The ar-
chitecture of Matilda is designed as a pipeline of plugins,
each of which implements a functionality in Matilda such
as validating UML models. The pipeline architecture al-
lows Matilda to flexibly configure its structure and behav-
ior by replacing a plugin with another one or changing the
order of plugins. Also, Matilda can deploy plugins on mul-
tiple network hosts and seamlessly connect them to form a
pipeline. This facilitates distributed software development
in which developers collaboratively work on UML mod-
els at physically dispersed places. This paper describes the
design, implementation and performance of Matilda.

KEY WORDS

Software Design, Modeling Languages, Model Driven
Software Development

1 Introduction

Modeling is becoming a critical process in software devel-
opment, and software modeling technologies have matured
to the point where they can offer significant leverage in
all aspects of software development [1]. For example, the
Unified Modeling Language (UML) provides a rich set of
modeling notations and semantics, and allows developers
to specify and communicate their application designs at a
higher level of abstraction [2]. The notion of model-driven
development (MDD) aims to build application design mod-
els and transform them into running applications.

A key process in MDD is automated (or semi-
automated) transformation of implementation-independent
models to lower-level models (or application code) specific
to particular implementation technologies [3, 4]. Tradi-

tional MDD frameworks allow developers to model their
applications with a modeling language such as UML, gen-
erate skeleton code in a programming language such as
Java, and complete the generated skeleton code by, for ex-
ample, adding method code (Figure 1). The key issues
in this model transformation process are abstraction gap
between modeling layer and programming layer and lack
of traceability between models and programs. When pro-
grammers complete generated skeleton code to the final
(compilable) code, they often suffer from abstraction gap
between modeling layer and programming layer because
the granularity of skeleton code is usually much finer than
that of models. Skeleton code tends to be complicated to
read and maintain. Thus, it is hard for programmers to ob-
tain broader views of application designs, and they have
to repeatedly go up and down abstraction gap to identify
where to implement what in skeleton code. When pro-
grammers find bugs or design/implementation alternatives
in the final (compilable) code, they often change the code
directly rather than models. As a result, the program code
becomes untraceable from models by losing synchroniza-
tion with them. Due to the above two issues, traditional
MDD frameworks do not maximize the benefits of model-
ing application designs at a higher level of abstraction.

This paper describes a new MDD framework, called
Matilda, which addresses the above two issues. Matilda is
an execution runtime engine (or virtual machine) for soft-
ware models described in UML. It allows developers to
model their applications with UML and directly execute
the models through automatically transforming them to ex-
ecutable code (Figure 2). Matilda addresses the issues in
the current MDD practice (i.e., abstraction gap and lack of
traceability) by hiding the existence of source code from
developers. Using Matilda, developers analyze, design,
test, deploy and execute their applications consistently at
the modeling layer, rather than shifting between the mod-
eling and programming layers (Figure 2).

Matilda accepts a UML model (UML 2.0 class di-
agrams and sequence diagrams) as an input, validates it
against the UML metamodel and transforms the input

model to an implementation specific model by applying a
given transformation rule (Figure 2). Matilda allows devel-
opers (model transformation engineers in Figure 2) to de-
fine arbitrary transformation rules, each of which specifies
how to specialize an input model to particular implementa-
tion and/or deployment technologies. For example, a trans-
formation rule may specialize an input model to a database
system, while another rule may specialize it to a remoting
middleware. Currently, Matilda transforms an implemen-
tation specific model to a Java abstract syntax tree (JAST)
and generates Java bytecode from the JAST.

Abstraction

Level Describe
A models

c

g Modelers Model
. Transformation
% g Implementation g Engineers
T2 Independent Model

& Define rules
Model Programmers
[Transformer] adi= ::)ﬁ?ﬁJ
Write

Transformation rules
method

R

'g Code Code
o
3< In'plementatlon Skeleton Code
Specific Model
“VisuaiModels " Textual Code
Representation
Figure 1. Traditional MDD Process
Abstraction
Level Describe
A models
c
B! , T Wodelrs Model
_u:’% | Implementation Tran.sformatlon
%’g | Independent Model Define rules Engineers
I n
i WV Matilda UMLVM K
1
! Model
1 [Transformer] > g E:}ﬁg_ﬁj
c E Transfomation rules
o1
T Code
= ©
5! ':D => .E
82!
— < Implementatlon
' Specific Model Executable Code
L e — e —
Visual Models Textual Code

Representation
Figure 2. Development Process with Matilda

The architecture of Matilda is designed as a pipeline
of plugins. Different plugins implement different function-
alities in Matilda, such as visualizing UML models, val-
idating UML models and building a JAST. The pipeline
architecture allows Matilda to flexibly configure its struc-
ture and behavior by replacing a plugin with another one
or changing the order of plugins. Also, Matilda’s pipeline
can be distributed. Matilda can spread plugins over multi-
ple network hosts and seamlessly connect them to form a
pipeline. This enables distributed software development in
which developers can collaboratively build, integrate and
execute UML models at physically dispersed places.

2 Design Principles

Matilda is designed based on the following principles.

1. Avoidance of Round-Tripping. In order to address
the issues described in Section 1 (i.e., abstraction gap
and traceability issues), Matilda inherently avoids the
round-trips between models and source code by hid-
ing the existence of source code from developers. All
design changes are directly made on models instead
of source code (see Figure 2).

2. Metamodel-Driven. Matilda performs all of its func-
tionalities in a metamodel-driven manner. For exam-
ple, UML model validation is performed against the
UML metamodel, and JAST generation is performed
with a metamodel of Java program elements. By fol-
lowing metamodels consistently, plugins in Matilda
avoid to perform their functionalities in an ad-hoc
manner. It represents UML and Java metamodels as
a set of objects (APIs), and aids its plugins to imple-
ment their functionalities on metamodel basis.

3. Modularity and Loose Couping. Matilda is designed
to maximize the reusability of plugins by making them
modular and loosely coupled. Matilda decomposes its
functionalities into independent processing units and
implements them as plugins. The functionality of each
plugin does not depend on other plugins. Plugins are
intended to be reused in a wide range of development
projects (i.e., various pipeline configurations).

4. Configurability. Matilda is expected to be used in a
variety of development projects; from in-house devel-
opment, distributed open-source development to off-
shore development. Different projects use different
sets of plugins in different orders. For example, a
project may require a plugin for generating Java byte-
code, and another project may require a plugin for
generating particular deployment descriptors as well
as Java code generation plugin. Therefore, Matilda
is designed to make pipelines configurable and exten-
sible. It defines standard interfaces for pipelines and
plugins so that each developer can choose plugins and
configure a pipeline of the plugins. Matilda also al-
lows developers to implement new plugins with its
standard plugin interface.

5. Transparent Distribution. Matilda supports dis-
tributed execution of plugins for distributed software
development. Different plugins can run on different
hosts in the network. For example, the plugins for
model visualization and validation can run at a place,
and the plugins for code generation can run at a dif-
ferent remote place. Plugins can be transparently dis-
tributed; each of them does not have to know whether
it invokes a local or remote plugin in a pipeline.

3 Architecture

There are four roles of users who involve development
process with Matilda. The modeler, or application devel-
oper, builds application design models (M1 models) and
load them to Matilda (Figure 2). The metamodel engineer
builds and/or registers metamodels (M2 models) including
the UML metamodel and UML profiles. The plugin en-
gineer develops and registers plugins. The transformation
engineer is a special type of plugin engineer, who defines
transformation rules and implements them as plugins (Fig-
ure 2). The VM maintenance engineer is responsible for
configuring pipelines with plugins.

The pipeline architecture of Matilda is designed based
on the Pipes and Filters architectural pattern [S, 6]. This
pattern provides a structure of the systems that process a
stream of data. The task of a system is divided into several
processing steps. These steps are connected through the
data flow in the system—an output data in a step becomes
an input to a subsequent step. Each processing step is im-
plemented as a filter, and filters are connected with pipes.
The Pipes and Filters pattern is best suited when a system
can naturally decompose its data processing task into inde-
pendent steps and the requirements for the data processing
task are likely to change over time. This pattern increases
the reusability of filters, and allows a system to be flexible
through exchanges and recombinations of filters [5].

In Matilda, each plugin works as a filter, and im-
plements an individual step to process UML models and
JASTs (Figure 3). For example, a model loader plugin ac-
cepts a UML model in the format of XML Metadata Inter-
change (XMI) [7] and transforms it to an in-memory rep-
resentation. A model validation plugin validates a UML
model against the UML metamodel. A JAST generation
plugin transforms a UML model to a JAST.

Blackboard
P |

A

r— Matilda VM
Matilda VM

plug-in repository

repository host

Read & Write .

Download
& Install

[T Y s ¥ v e Yy

Matilda VM

~—

| MatidavM | | Matidavm |

development hosts

Figure 3. The Architecture of Matilda

A collection of plugins is called a pipeline (Figure
3). Each pipeline instantiates plugins and connects them
with pipes based on a configuration file that a VM main-
tenance engineer defines. (a pipe works as a pointer to a
subsequence plugin.) The configuration file specifies plu-
gins used in a pipeline and the execution order of plugins.
Plugins are executed in a sequential or a parallel manner.

As described in Section 2, plugins can be transpar-
ently distributed on multiple hosts in the network. Each
plugin operates on a Matilda VM, which in turn runs atop
of a Java VM. Plugins can be dynamically downloaded
from a plugin repository and deployed in a pipeline (Fig-
ure 3). Pipelines can be configured dynamically at runtime
as well as statically before executing plugins.

A common issue of the Pipes and Filters pattern
is lack of robust error handling, because there is no
global system state information and multiple asynchronous
threads of execution exist in a system [5]. In order to over-
come this issue, Matilda implements a shared repository,
called blackboard, based on the Blackboard architectural
pattern (Figure 3) [5]. This pattern is organized as a col-
lection of independent processing units that work cooper-
atively on a common data structure. Each processing unit
specializes to process a particular part of the overall task.
It fetches data from a blackboard (shared data repository),
and stores a result of its data processing to the blackboard.

In Matilda, a blackboard stores data that each plugin
generates (e.g., UML models, JASTs and Java bytecode),
and makes the data available to subsequent plugins (Fig-
ure 3). It also stores the data processing log in each plu-
gin (e.g., successful completion, errors, warnings and time
stamp) in order to trace the processing status in a pipeline.
In Matilda, data flow between a blackboard and plugins,
and processing control flows between plugins (Figure 3).

4 Matilda UML Profile

This section describes a UML profile, called the Matilda
UML profile, which Matilda uses to interpret UML models
and transforms them to Java bytecode.

A UML profile is an extension to the standard UML
metamodel. The UML metamodel specifies the syntax (or
notation) and semantics of every standard (default) model
element (e.g., class, interface and association) [2]. In addi-
tion to standard model elements, UML provides extension
mechanisms (e.g., stereotypes and tagged-values) to spe-
cialize the standard model elements to precisely describe
domain or application specific concepts [8]. A stereotype is
applied to a standard model element, and specializes its se-
mantics to a particular domain or application. Each stereo-
typed model element can have data fields, called tagged-
values, specific to the stereotype. Each tagged-value con-
sists of a name and value. A particular set of stereotypes
and tagged-values is called a UML profile.

The Matilda UML profile specifies the conven-
tions to build input UML models for Matilda, and de-
fines stereotypes and tagged-values to precisely describe
computationally-complete input models'.

In Matilda, a UML input model is defined as a set of
UML 2.0 class diagrams and sequence diagrams. Class di-
agrams are used to define the structure of an application,

l“Computationally complete” means sufficiently expressive so that
Matilda can interpret and execute models.

and sequence diagrams are used to define the behavior of
the application. Each sequence diagram specifies the body
of a method (operation). The model elements in a class
diagram are mapped to structural elements in a Java pro-
gram, such as Java types, generalization (inheritance) rela-
tionships, data fields and method declarations. The model
elements in a sequence diagram are mapped to behavioral
elements in a Java program, such as object instantiations,
value assignments, method calls and control flows.

The Matilda UML profile defines two types of stereo-
types: (1) stereotypes for application semantics, and (2)
stereotypes for Java mapping. Stereotypes for applica-
tion semantics include three stereotypes shown in Figure
4. A message stereotyped with < UMLVMarrayelement >
represents an array access (i.e., data retrieval or insertion
on an array). Its tagged-value index specifies the array
index where data retrieval or insertion is performed, and
element specifies a data element to be inserted to an ar-
ray (Table 1). A message or comment stereotyped with
< UMLVMexpression>> has Java expressions or state-
ments. A class stereotyped with < UMLVMexecutable>>
indicates an entry point at which a model execution starts.
The class must contain a main method (public static
void main (String[])). Each application has an ex-
actly one class stereotyped with < UMLVMexecutable>>.

UML 2.0 metamodel

Figure 5 shows an example sequence diagram defined
with the Matilda UML profile. It repeats a sequence that
(1) abcInc (an instance of Corporation) creates a new
instance of Engineer, and (2) abcInc inserts the new
Engineer instance into the array engineers (an array
of Engineers). A message stereotyped with <create>
indicates that the message instantiates a class?. For data
insertion on the array engineers, a message stereotyped
with < UMLVMarrayelement>> specifies that abcInc in-
serts an Engineer instance (contained in the variable
emp) to the array at the index of currIndex. At the
end, abcInc increments currIndex by using a comment
stereotyped with < UMLVMexpression>>.

The Matilda UML profile also defines a stereotype
and five tagged-values to specify the mapping between
UML models to Java (Table 2). A class stereotyped
with «JavaInterface>> represents a Java interface.
JavaStrict fp indicates whether a Java class is FP-strict.
If it is true, all float and double values in the class are
used in the IEEE standard float/double size during float-
ing point calculation. JavaStatic indicates whether a
class/interface is static in Java. JavaDimensions spec-
ifies the number of array dimensions declared by corre-
sponding field or parameter in Java. JavaFinal indicates
whether a parameter is final in Java.

Table 2. Tagged Values in the Matilda UML Profile

<<metaclass>>
BasicInteractions::Message

<<metaclass>>
Kernel::Comment

<<metaclass>>
Kernel::Class

<<stereotype>>
UMLVMarrayelement

<<stereotype>>
UMLVMexpression

<<stereotype>>
UMLVMexecutable

+ index : Integer
+ element : String

Matilda UML Profile for Java

Figure 4. Stereotypes in the Matilda UML Profile

Table 1. Tagged Values of < UMLVMarrayelement>>

Name ‘ Type ‘ Description

index Integer | Index of an array element to be accessed (re-
trieved or inserted). Must be between 0 and

(array size — 1).

element | String If null is assigned, array access is data re-
trieval. Otherwise, it is data insertion. Rep-

resents a variable that contains an element to

be inserted.

employees

: Corporation : Engineer]
T <<create>> T
emp = new Engineer()
“1: Engineer

<<UMLVMarrayelement>>
{index = currlndex, element = emp}

_____ <<UMLVMexpression>> D
T currlndex++; _ i

Figure 5. An Example Model using Matilda UML Profile

Name ‘ Type ‘ Applied To Description
JavaStrictfp Boolean | Class Indicates
a class s
FP-strict.
JavaStatic Boolean | Classor Inter- | Indicates a
face class/interface
is static.
JavaDimensions | Integer Property or | Indicates
Parameter the number
of array
dimensions.
JavaFinal Boolean | Parameter Indicates a
parameter is
final.

5 Implementation

Matilda is implemented in Java. Currently, it provides 10
plugins shown in Figure 6. Its current code base contains
approximately 18,000 lines of Java code, and has been open
for public use since May 2005°.

Figure 6 shows a typical pipeline configuration in
Matilda. Plugins are categorized into two groups: fron-
tend and backend. Frontend plugins are used to validate
UML models, and backend plugins are used to transform

The stereotype < create>> is one of the standard stereotypes de-
fined in UML 2.0 specification. The UML notation of a message is an
arrow in a sequence diagram.

3http://umlvm.cs.umb.edu/

validated UML models to Java bytecode through JASTs.
Plugins can read/write UML model information from/to a
blackboard. A pipeline executes plugins in a sequential or
parallel manner, and controls the execution of plugins. For
example, when a blackboard receives an execution error log
form a plugin, a pipeline stops executing plugins (Figure 6).

3rd Party UML '
Modeling Tools |
: , frontend

UML Metamodel

v
Matilda UML Profile
Validator (D CD Validator
Model Loader

\ \ Integrated
: Diagram
/ \ i / Validator
Matilda UML D v
s,)
\

v

Modeling GUI Matilda UML Profile

SD Validator

Blackboard _ ¥

T v \d

> A

I © 0

JavaExecuter JAST2Bytecode JAST SD2JAST CD2JAST
Transformer Validator Transformer Transformer

backend

Figure 6. Typical Sequence of plugins

5.1 Plugin Implementation

Matilda accepts a UML model as an input in two ways: us-
ing Matilda’s modeling GUI or third-party modeling tools.
Matilda provides a UML modeling GUI, which allows de-
velopers to define UML class diagrams and sequence dia-
grams (Figure 7(a) and 7(b)). The modeling GUI serializes
a UML model into XMI data and writes it to a blackboard
(Figure 6). It is implemented with Eclipse Rich Client
Platform (RCP), and runs on the Eclipse platform. Model-
Loader is a plugin used to read XMI data from third-party
modeling tools and store it in a blackboard.

Iy St
oLk

GateLifeLineMessage ,—4| :I
Lifel i

Vi
1
I

DataType>
Strin

K]

(5 Bxtension #|
DataType

LifeLineGate

i T o7

(a) Class Diagram (b) Sequence Diagram

Figure 7. Matilda Modeling GUI

Each UML model is validated with four validators:
UML Metamodel Validator, Matilda UML Profile Class
Diagram (CD) Validator, Matilda UML Profile Sequence
Diagram (SD) Validator and Integrated Diagram Valida-
tor. UML Metamodel Validator validates an input model

against the UML metamodel using the UML2vValidator
class provided by Eclipse UML2*. Matilda UML Profile CD
Validator and Matilda UML Profile SD Validator check if an
input model is valid against the Matilda UML profile. The
purpose of this validation step is to determine whether the
model is ready to transform to a JAST. This step is imple-
mented by extending Eclipse UML2.

The code fragment shows a simplified model valida-
tion in Matilda UML Profile CD Validator. First, the plugin
reads an UML model from a blackboard and executes val-
idation process. It checks whether the model is compliant
with the Matilda UML profile. For example, a model ele-
ment stereotyped with < UMLVMexecutable>> should be
a class that has a main method (see also Section 4).

class MatildaProfileCDValidator implements Plugin {
void execute () {
// obtain a reference/proxy of a blackboard
blackboard = pipeline.getBlackboard();
// read a UML model from a blackboard
model = blackboard.read(ModelID);
// validate the obtained model
validate (model);
}
void validate(Model model) {
foreach (element in model) {
// check if each model element is stereotyped
// with <<UMLVMexecutable>>
if(element.stereotyped("UMLVMexecutable")){
// checks whether

// - the element is a class

// - the class has a main method

// - the main method conforms a

// predefined signature (public void main(...))

b}
// if validation fails, an exception is thrown.
if(valid != true){
throw new InvalidModelException();
by}

<<interface>>
Plugin
+execute()

<<interface>> <<interface>> | [JAST2BytecodeTransformer
ModelLoader Validator
+load() +validate() -transform()

/\

| |

|UML2MetamodeIValidator |

[1
|MatiIdaProfiIeCDVaIidator | |Mati|daPr0fiIeSDVaIidator |

|IntegratedDiagramVaIidator |

<<interface>> I I
~ lUML2JASTTransformer JASTValidator bavaExecuterl
+transform() i
+join() -validate()
[1
|CD2JASTTransformer | |SDZJASTTransformer |

Figure 8. Design of Plugins

Integrated Diagram Validator checks the consistency
between a class diagram and sequence diagrams. Its ma-
jor responsibility is to validate that sequence diagrams are
defined corresponding to all methods in each class.

“http://www.eclipse.org/uml2

After validating with its frontend plugins, Matilda
transforms a valid UML model to a JAST with two back-
end plugins: CD2JAST Transformer and SD2JAST Trans-
former. They transform a class diagram and sequence dia-
grams, respectively, to a JAST based on the data structure
in the Eclipse Java Development Tooling (JDT). CD2JAST
Transformer creates a new JAST based on the type (class
and interface), member field and method declarations ap-
peared in a UML model, and then it generates a JAST com-
pilation unit for each type declaration. SD2JAST Trans-
former reads a JAST from a blackboard and updates it with
method definitions mapped from each sequence diagram.

JAST Validator validates the generated JAST, and
JAST2Bytecode Transformer generates Java bytecode (i.e.,
class files) using Eclipse JDT. Finally, the last plugin in the
pipeline, JavaExecuter, reads the generated Java bytecode,
determines which class is executable, sets up the execution
environment (JVM), and executes class files.

Figure 8 shows how each plugin is designed in
Matilda. All plugins implements the Plugin interface.
Matilda provides additional interfaces (ModelLoader,
Validator and JAST2BytecodeTransformer) for
common functions.

5.2 Pipeline Implementations

Matilda pipeline can contain arbitrary number of plugins,
and executes them in a sequential or a paralell manner. The
following is a fragment of a plugin configuration file. A
pipeline is configured to load and execute plugins as spec-
ified in the configuration file. As described in Section 3, a
pipeline can dynamically download plugins’ bytecode from
a plugin repository, and deploy and configure them at at
runtime. Each plugin’s name and class file are specified by
the tags name and class respectively. If a plugin takes pa-
rameters other than data from a blackboard (e.g., name of a
model), they are specified by the tag input.

<plugin>
<name>Model Loader</name>
<class>matilda.plugins.frontend.XMI2Loader</class>
<input>
<param-name>Model Filename</param-name>
<param-value>models/model.uml2</param-value>
</input>
</plugin>
<plugin>
<name>Class to JAST Transformer</name>
<class>matilda.plugins.backend.CD2JASTTransforder</class>
</plugin>
<plugin>
<name>Sequence to JAST Transformer</name>
<class>matilda.plugins.backend.SD2JASTTransformer</class>
</plugin>
<plugin>
<name>Java Executer</name>
<class>matilda.plugins.backend.JavaExecuter</class>

<input>
<param-name>arguments</param-name>
<param-value>34 + 2 - 8 x 10 / 4</param-value>
</input>
</plugin>

In this example, a pipeline loads a UML
model that specified with parameters (param—-name
and param-value) using a model loader plugin
(xMI2Loader). After that, the pipeline transforms the

loaded UML model (class and sequence diagrams) into a
JAST using transformer plugins (CD2JASTTransformer
and SD2JASTTransformer), and executes the JAST
using executer plugin (JavaExecuter).

As described in Section 3, one of key features of
a pipeline is that it can be transparently distributed. To
achieve this feature, Matilda employs Java RMI that allows
Java objects to transparently communicate with each other
in a distributed envitonment. In Matilda, a pipeline and a
blackboard are implemented as Java RMI objects, and they
can communicate in a distributed manner. Plugins are im-
plemented as regular Java objects, but they are contained
in a pipeline and a pipeline allows plugins to communicate
with a blackboard. This design hides details of a remoting
infrastructure (i.e., Java RMI) from plugins, and plugin de-
velopers do not need to know the detail. It makes easy to
develop and deploy plugins.

Figure 9 shows a class structure around Pipeline.
The class VirtualMachine contains the class Pipeline.
BlackboardImpl is the implementation of a black-
board, and runs in a different process from Pipeline.
BlackboardProxy hides the detail of remoting infras-
tructure and allows Pipelines to communicate with
BlackboardImpl in a distributed manner. Pipeline
maintains a set of Plugins.

Config
-blackboardURL
+load()
VirtualMachine +getPlugins(
-name <<interface>> Data
+createPipeline() Blackboard [@]

t+serialize()
Hdeserialize()

+initialize()
+read()

+write()

Pipeline
-name éﬁ L‘
+initialize() L>| BlackboardProxy BlackboardImpl
+start()
+executeNextPlugin() :izﬁ:zﬁ’;;g:ﬁ;? -dataSet/\

e -

<<interface>>
Plugin remote
communication

+execute()

Figure 9. A Class Structure of Pipeline

By leveraging the feature that a pipeline can be trans-
parently distributed, Matilda enables distributed software
development as depicted in Figure 10. In this figure, there
are two types of developers, one defines a class diagram
and the other defines a sequence diagram. Matilda provides
a set of plugin sequences for both types of developers. Af-
ter they define UML models, plugins validate the models
and a blackboard stores them. Then, the Integrated Dia-
gram Validator checks the consistency between the class
diagram and the sequence diagram, and the models are con-
verted into a JAST and executed as described in the back-
end process of Figure 6.

Class Diagram (CD) Development

UML Metamodel ~ Matilda UML Profile
Validator CD Validator

Matilda UML e @ E— @
Modeling GUI .
A\ I - N\ Execution

Blackboard r | \‘
SD |- CD > e
(XMI) (XM >

Integrated

: N A Diagram
—-0-0 =

3rd Party UML . Model Loader UML Metamodel ~ Matilda UML Profile
Modeling Tools Validator SD Validator

Sequence Diagram (SD) Development

Figure 10. Distributed Software Development with Matilda

6 An Example Application

This section describes a simple example application built
with Matilda, and demonstrates how to describe UML
models for Matilda. It is a command-line calculator that ac-
cepts an arithmetic expression in Reverse Polish Notation
and returns a calculation result. It supports summation, dif-
ference, division, multiplication and factorial operations.

<<UMLVMexecutable>> Tokenizer
Calculator {JavaStrictfp=true}
{JavaStrictfp=true}

- operandStack: java.util.Stack

-operators: java.util.HashMap
-exprArr: java.lang.String[]

+ Calculator() -currIndex: int

+ calculate(java.lang.String[]) : Double

+ main(java.lang.String[]) : void

+ Tokenizer(java.lang.String[])
+ getNextToken() : ExprToken

<<Javalnterface>>
ExprToken
{JavaStrictfp=true}

+ execute(java.util.Stack) . double

Operand Operator
- value: java.lang.Double # notation: java.lang.String

+ Operand(java.lang.Double) | [+ Operator()

[\ |
MultiplyOperator DivideOperator FactorialOperaton

+ MultiplyOperator()

+ DivideOperator() + FactorialOperator()

PlusOperator MinusOperator

+ PlusOperator() + MinusOperator()

Figure 11. Class Diagram of an Example Application

Figure 11 shows the class diagram for the calculator
example application. Calculator is the execution entry
class, which is stereotyped with < UMLVMexecutable>;
it has a main method to which an input arithmetic expres-
sion is passed. The input expression can be passed with
the part of Java Executor configuration in a pipeline con-
figuration (see a pipeline configuration example in Section

5.2). Except local variables, all variables and methods are
defined in the class diagram. (local variables are defined in
sequence diagrams.) UML attributes and associations are
mapped to Java data fields. UML operations are mapped to
Java method declarations that have empty bodies.

Currently, Matilda requires developers to define a se-
quence diagram for each operation/method. Figure 12
shows the sequence diagram for getNextToken () of
Tokenizer (see also Figure 11). Each sequence diagram
is described with the sd frame. The upper left corner of
each sd frame indicates the method signature that the frame
(sequence diagram) models.

getNextToken () is used to obtain tokens of an input
arithmetic expression one by one. The tokens are stored
in exprArr (an array of string data)’. Tokenizer keeps
track of the index of the next token to be obtained, using
currIndex, and getNextToken () returns an instance of
Operator or Operand depending on the type of the token
being obtained.

The entry and exit points to/from a sequence dia-
gram is represented by an arrow (message) from/to the
left most edge of the diagram. The arrow labeled with
getNextToken () shows the entry point, and the arrow la-
beled with next Token shows the exit point. (nextToken
contains a value returned to a caller of getNextToken ().)

The object this and its lifeline represent the execu-
tion flow of a method (or sequence diagram). Each se-
quence diagram can reference the data fields and meth-
ods declared in the class of this. For example, the di-
agram in Figure 12 can reference exprArr, operators
and currIndex, which are the data fields of Tokenizer.

sd Tokenizer::get NextToke n(): ExprToken /l 1
| ExprToken nextToken = null; \

exprArr
sjava.lang.String[]

operators
java.util. HashMap

this: Tokenizer

getNextToken() | 1
———»!

°|’t/ [currIndex < exprArr.length]

1
| <<UMLVMarrayelement>>

1
1
1
1
1
1 { index =currIndex} 1

String currTok =
< exprArr[currIndex]

T
!
1
1
1
I
1
1
1
1
I
! 1
W [operators.contains Key(currTok)] :
1
al

1
| get (currTok)

nextToken =
(Operator) operators.get (currTok)

|| tewes .

<<create>> Double value = new Double(curr1:ok) 1java.lang.Double

i 1
<<create>> nextToken = new Operand(value) ;| :0perand

T T T

1 + +

! 1 1
----1 currIndex++; 1 1 1

! 1 1

! 1 1

Figure 12. A Sequence Diagram of an Example Applica-
tion

Matilda uses the opt, alt and loop fragments to
specify control flows. Figure 12 uses the opt and alt

SCalculator is designed to pass an input arithmetic expression to
Tokenizer via its constructor. In the constructor, Tokenizer tok-
enizes the passed expression and stores tokens in exprArr.

frames to define if and if-then control flows, respectively.
Guard conditions for the frames are represented by the ex-
pressions between [and].

The messages (arrows) between the objects in
a sequence diagram are either synchronous, reply or
< create>> messages. A synchronous message indicates
a method call and parameters associated with the call.
For example, in Figure 12, calling get () on the instance
operations of HashMap is expressed with a synchronous
message. A reply message represents the return from a
method call, and indicates the assignment of a return value
to a variable. In Figure 12, the return value of calling
get () on operations is casted to Operator®, and the
casted value is assigned to next Token. A < create>> mes-
sage represents an instantiation of a class. It points a class
being instantiated, passes parameters to the class’s con-
structor, and specifies the assignment of a newly created
instance to a variable. In Figure 12, an instance of Double
is created, and the instance is assigned to variable.

Local variables are defined as the notes attached to sd
frames or fragments (e.g., ExprToken nextToken in Fig-
ure 12), within a reply message (e.g., Token nextToken,
or within a <create>> message (e.g., Double value).
The scope of each local variable is limited to the innermost
fragment or sd frame.

7 Empirical Evaluation

This section empirically evaluates the execution overhead
and memory footprint of Matilda. Matilda’s pipeline is
sequentially configured with eight plugins in order to (1)
load an input model with Model Loader (MV), (2) validate
the input model with UML Metamodel Validator (UMV),
Matilda UML Profile CD Validator (CDV) and Matilda
UML Profile SD Validator (SDV), (3) transform the vali-
dated model to a JAST with CD2JAST Transformer (CDJ)
and SD2JAST Transformer (SDJ), (4) transform the gen-
erated JAST to Java bytecode with JAST2Bytecode Trans-
former (JBC), and (5) execute the generated Java bytecode
with Java Executer (JE). All measurements use a Sun J2SE
5.0.4 VM running on a Windows 2000 PC with an AMD
Sempron 3.0 Ghz CPU and 512 MB memory space. Plug-
ins are executed on the same process in the PC, and a black-
board run on a different process on the same PC.

Figure 13 shows the overhead to execute each plu-
gin. The overhead includes the time for each plugin to
process an input model, which contains varying numbers
of classes (from 1 to 100 classes)’ and read/write the in-
put model from/to a blackboard. The proportion of each
plugin’s overhead to total overhead does not change sig-

Soperations maintains pairs of a string and object representing an
operator (e.g., a pair of “+” and an instance of PlusOperator)

7Each class has a method that contains message sequences correspond-
ing to 100 lines of code (LOC) in Java. This LOC is obtained from the
average per-class LOC (101.2) in major development environments such
as J2SE 5.0 standard library, JBoss 4.0.4, Mule ESB 1.2, ArgoUML 0.20
and Teamwork 3.0.

nificantly against varying the number of classes in an input
model. The overhead of MV is extremely larger than that of
other plugins. It occupies over 60% of total overhead. This
result comes from the performance of UML2Validator in
Eclipse UML2, which Matilda uses to validate input UML
models. The execution of MV can be omitted to improve
the total overhead by extending the Matilda modeling GUI
(Figure 7) so that it validates an input model in background
while developers are drawing the model.

MW 10 classes
W 25 classes
@ 50 classes
070 classes
[0 100 clases

Execution Overhead (sec)

Figure 13. Execution Overhead of Plugins

Table 3. Execution Overhead of the Frontend and Backend

Matilda (sec)
of classes Frontend ‘ Backend ‘ Total | javac (sec)
10 15.2 44 184 1.0
25 37.3 11.0 452 1.2
50 76.7 21.6 92.1 14
70 108.2 30.4 129.9 1.5
100 153.9 459 187.2 1.7

Table 3 shows the execution overhead to execute fron-
tend plugins (ML, MV, CDV and SDV) and backend plu-
gins (ML, CDJ, SDJ and JBC) as well as the overhead of
javac to compile Java code equivalent to input models.
By comparing the backend overhead and javac overhead,
because javac does not validate UML model elements,
Table 3 shows that Matilda’s performance is comparable
with javac when the number of classes is less than 25 in
an input model. (Matilda’s overhead is less than 10 times
of the javac overhead.)

Figure 14 shows the breakdown of plugin execution
overhead. Each plugin’s overhead is divided to the time to
process an input model containing 25 classes and the time
to access a blackboard to write/read the model. Every plu-
gin is efficient enough to process an input model except
MV. Since it is relatively heavyweight to transform XMI
data to an in-memory model representation®, the time to

8When a plugin reads XMI data from a blackboard, it compresses the
data with the zip encoding to reduce the data transmission overhead be-

access a blackboard is much longer than the time to pro-
cess an input model (except the case of MV). For example,
in CDV, blackboard access takes 23 times longer than pro-
cessing an input model. Note that JBC reads a JAST from
a blackboard; however, the blackboard access overhead is
very small (less than 0.1 second) because JBC simply trans-
forms the JAST to Java bytecode rather than transforming
it to an in-memory model representation.

30

259 -
@ Time to process a model

O Time to access a blackboard

20 -

10 +

Execution Overhead (sec)

26
01 1.1 02

23 01
05
o [MMoslos] 5] o1 el [o4]. oo [24]

ML Mv CcCbv sSbv CDJ SbJ JBC JE

Figure 14. Breakdown of Plugin Execution Overhead

In order to eliminate the blackboard access overhead,
Matilda can deploy multiple plugins in a single process
so that they can pass an in-memory model representation
between them. Table 4 shows a variation of Table 3; it
measures the frontend and backend overhead when all the
eight plugins run in the same process. As shown in this Ta-
ble, Matilda (backend overhead) is comparable with javac
when the number of input classes is less than 70. Tables
3 and 4 show that Matilda works efficiently in small to
medium scale applications.

Table 4. Execution Overhead of the Frontend and Backend
in the Case that Plugins are Deployed in the Same Process

Matilda (sec)
of classes Frontend ‘ Backend ‘ Total | javac (sec)
10 12.2 24 13.7 1.0
25 29.7 5.7 33.1 1.2
50 61.8 11.2 68.2 1.4
70 87.3 15.6 96.2 1.5
100 123.8 24.7 138.8 1.7

Figure 15 shows the cumulative memory consump-
tion of each plugin to execute an input model containing
70 classes. In this measurement, Java VM’s garbage col-
lection is disable. Therefore, the memory consumption in-
cludes the footprint of each plugin and the amount of data
the plugin generates. Compared with the size of XMI data
each plugin reads from a blackboard (11 MB in the case
of 70 classes in an input model), Matilda’s memory con-
sumption is acceptable in small to medium scale applica-
tions. MV consumes memory space most because it loads

tween the plugin and blackboard. For example, the XMI data containing
100 classes is compressed from 15.7 MB to 1.0 MB. This significantly re-
duces the data transmission overhead between plugins and a blackboard.
However, it is still a heavyweight process to transform XMI data to an
in-memory model representation.

an input model and the definition of UML metamodel and
Matilda UML profile, and validates the model against the
UML metamodel definitions.

120

90

60

30

Cumulative Memory Utilization (MB)

ML MV CDV SDV CDJ SDJ JBC JE

Figure 15. Memory Consumption of Plugins

8 Related Work

There are several work to investigate UML virtual ma-
chines. [9] addresses the issues of validating models and
generating executable code. It maintains causal connec-
tions among four meta layers in UML (MO to M3 layers),
and uses the connections to validate models and propagate
changes between models. For example, the connections
can be used to validate the consistency between M1 and
M2 models and reflect changes in an M2 model to M1 mod-
els. Although Matilda implements model validation, it does
not explicitly maintains causal connections among differ-
ent meta layers. [9] does not support behavioral modeling,
and it is not clear how to transform models to executable
code. Matilda supports behavior modeling, and provides
workable plugins to generate executable code.

ASM virtual machine [10] and USE (UML-based
Specification Environment) [11] address the issue of val-
idating models. They support Object Constraint Language
(OCL) [2] to validate the consistency and integrity of mod-
els. Matilda is similar to ASM VM and USE in that it
also supports model validation; however, the model vali-
dation logic in Matilda is hard coded in model validator
plugins rather than using OCL. Matilda currently puts a
higher priority on model execution through operating plug-
ins in distributed environments. Matilda validates the con-
sistency and integrity of class diagrams and sequence di-
agrams, while ASM VM and USE checks those of class
diagrams only. They do not focus on model execution.

Similar to Matilda, executable UML (xUML) focuses
on directly executing models. In xUML, developers use
class diagrams for structural modeling, and statechart di-
agrams and textural action languages for behavioral mod-
eling [12, 13, 14]. Action languages implement the UML
action semantics, defined as a part of the UML specifica-
tion [2]. However, the UML action semantics does not
provide the standard language syntax; therefore, different
action languages have different syntax with different (pro-
prietary) extensions (e.g., [15, 16]). This means that de-
velopers need to learn action language syntax every time
they use different XUML tools. Also, there is no interop-

erability of models between different xXUML tools because
different XUML tools assume different subsets of the UML
metamodel. Thus, an XUML tool cannot correctly inter-
pret a model that is defined with other XUML tools. On the
other hand, Matilda uses the UML metamodel and its stan-
dard extensions (profiles) for both structural and behavioral
modeling. (Matilda does not require developers to use non-
standard mechanisms to build and execute models.) It is
more open for future extensions and integration with third
party tools such as code generators and optimizers. Fur-
thermore, Matilda inherently supports the distributed exe-
cution of plugins. No xXUML tools do not address this issue.

openArchitectureWare® is similar to Matilda in that it
provides a set of plugins (e.g., model loader, validators and
transformers) and allows developers to form a sequence
of plugins using its workflow language. However, unlike
Matilda, it does not support executing models and deploy-
ing plugins in a distributed manner.

As discussed in Section 1, the current common prac-
tice in MDD is to model application designs with UML and
transform them to skeleton source code (e.g., OptimalJ'?
Rose XDE!!, Together!?, UMLX [17], KMF [18], J3 [19],
[20] and [21]). Unlike them, Matilda focuses on direct ex-
ecution of UML models so that no manual programming is
necessary (see Figures 1 and 2).

9 Conclusion

This paper describes and empirically evaluates a new MDD
framework, called Matilda, which accepts UML models
and directly executes them through transforming them to
executable code. Matilda allows developers to analyze, de-
sign and execute their applications consistently at the mod-
eling layer by hiding the existence of programming layer.
It also enables distributed software development in which
developers can collaboratively build, integrate and trans-
form UML models at physically dispersed places. Em-
pirical measurement results show that Matilda works ef-
ficiently with a small memory consumption in small to
medium scale applications.

10 Acknowledgment

The work by Hiroshi Wada and Junichi Suzuki are sup-
ported in part by OGIS International, Inc. The authors
would like to thank Chengjing Hu, Anu Lall, Murtaza
Qureshi, Gina Skaff and Kathiresan Solaiappan for their
contributions to implement Matilda.

References

[1] B. Selic. The Pragmatics of Model-Driven Development.
IEEE Software, September/October 2003.

9
10
11
12

www.openarchitectureware.org/
www.compuware.com/products/optimalj/
www.ibm.com/software/awdtools/developer/rosexde/
www.borland.com/together/architect/

(2]
(3]

[4

—

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

Object Management Group. UML2.0 Super Structure Spec-
ification, October 2004.

G. Booch, A Brown, S Iyengar, J. Rumbaugh, and B. Selic.
An MDA Manifesto. In The MDA journal: Model
Driven Architecture Straight from the Masters, chapter 11.
Meghan-Kiffer Press, December 2004.

S. Sendall and W. Kozaczynki. Model Transformation: The
Heart and Soul of Model-Driven Software Development.
IEEE Software, September/October 2003.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John
Wiley & Sons, August 1996.

A. Vermeulen, G. Beged-Dov, and P. Thompson. The
Pipeline Design Pattern. OOPSLA Workshop on Design
Patterns for Concurrent Parallel and Distributed Object-
Oriented Systems, October 1995.

Object Management Group. MOF 2.0 XML Metadata In-
terchange, 2004.

L. Fuentes and A. Vallecillo. An Introduction to UML
Profiles. The European journal for the Informatics Profes-
sional, April 2004.

D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe.
The Architecture of a UML Virtual Machine. ACM Int’l
Conference on Object-Oriented Programming, Systems,
Languages and Applications, 2001.

W. Shen, K. Compton, and J. Huggins. A Method of Im-
plementing UML Virtual Machines With Some Constraints
Based on Abstract State Machines. IEEE Asia-Pacific Soft-
ware Engineering Conference, 2003.

M. Gogolla, J. Bohling, and M. Richters. Validation of
UML and OCL Models by Automatic Snapshot Generation.
Int’l Conference on Unified Modeling Language, 2003.

S. Mellor and M. Balcer. Executable UML: A Foundation
for Model Driven Architecture. Addison-Wesley, 2002.

C. Raistrick, P. Francis, and J. Wright. Model Driven Archi-
tecture with Executable UML. Cambridge University Press,
March 2004.

M. Balcer. An Executable UML Virtual Machine. the 4th
OMG Workshop On UML for Enterprise Applications: De-
livering the Promise of MDA, June 2003.

Project Technology. BridgePoint Tutorial, 2000.

Kennedy Carter Ltd. The UML Action Specification Lan-
guage Reference Guide, November 2004.

E. Willink. UMLX: A Graphical Transformation Language
for MDA. ACM Int’l Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications, Nov. 2002.
O. Patrascoiu. Mapping EDOC to Web Services using
YATL. Int’l Conference on Enterprise Distributed Object
Computing, September 2004.

J. White, D. Schmidt, and A. Gokhale. Simplifying Auto-
nomic Enterprise Java Bean Applications. ACM/IEEE Int’l
Conference on Model Driven Engineering Languages and
Systems, October 2005.

W. Harrison, C. Barton, and M. Raghavachari. Mapping
UML designs to Java. the 15th ACM Int’l Conference
on Object-Oriented Programming, Systems, Languages and
Applications, October 2000.

Z. Ahmed and C. Umrysh. Developing Enterprise Java Ap-
plications with J2EE and UML. Addison-Wesley, 2002.

