
MODELING AND EXECUTING ADAPTIVE SENSOR NETWORK
APPLICATIONS WITH THE MATILDA UML VIRTUAL MACHINE

Hiroshi Wada, Pruet Boonma and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

email: {shu, pruet, jxs}@cs.umb.edu

Katsuya Oba
OGIS International, Inc.
San Mateo, CA 94404

email: oba@ogis-international.com

ABSTRACT
This paper proposes a model-driven development (MDD)
framework to manage the complexity of application devel-
opment for wireless sensor networks (WSNs). The pro-
posed framework consists of a Unified Modeling Language
(UML) profile for WSN applications and a UML virtual
machine, called Matilda. The proposed UML profile ab-
stracts the low-level details of WSNs and provides higher
abstractions for application developers to graphically de-
sign and maintain their applications. Matilda is a runtime
engine used to design, validate, deploy and execute WSN
applications consistently at the modeling layer. This paper
describes the design and implementation of the proposed
MDD framework, and presents how the framework is used
in WSN application development. Empirical evaluation re-
sults show that the proposed MDD framework can build
efficient WSN applications.
KEY WORDS
Model-driven software development, visual modeling lan-
guages, wireless sensor networks

1 Introduction
Wireless sensor networks (WSNs) are deployed to detect
events and/or collect data in physical operational environ-
ments. A variety of applications are developed with WSNs
for environmental observation, structural health monitor-
ing, human health monitoring, inventory tracking, home-
/office automation and military surveillance [1, 2]. Due to
the deeply-embedded pervasive nature of WSNs, they have
a potential to revolutionize the way that humans understand
and construct complex natural/physical systems [3].

Given this observation, WSNs have been rapidly in-
creasing in their scale and complexity. The decrease in unit
cost of sensor nodes allows WSN applications to leverage
more nodes to cover larger observation areas in higher spa-
tial resolutions. The increase in computing, storage and
networking capabilities in each node allows WSN applica-
tions to implement more advanced in-network functional-
ities such as data filtering, node clustering, data aggrega-
tion and failure recovery. These changes in scale and com-
plexity make WSN application development more com-
plicated, time-consuming and error-prone. For example,
even for implementing a simple node clustering mecha-
nism (e.g., cluster member selection, cluster head election

and data synchronization among members), application de-
velopers need to know many low-level mechanisms (e.g.,
memory management, routing, topology maintenance and
signal strength sensing) and carefully control the state and
behavior of each node with those mechanisms.

The complexity of WSN application development de-
rives from two major issues: (1) a lack of adequate abstrac-
tions in application development, and (2) a lack of coherent
tool chains for application development.

The first issue is a lack of adequate abstractions that
application developers can leverage for the rapid imple-
mentation of WSN applications. The level of abstraction
remains very low in the current practice of WSN applica-
tion development. A number of WSN applications are cur-
rently implemented in nesC [4], a dialect of the C language,
and deployed on the TinyOS operating system [5], which
provides low-level libraries for basic functionalities such
as sensor reading and node-to-node communication. nesC
and TinyOS hide hardware-level details; however, they do
not help developers to rapidly implement their applications.
Several virtual machines and script languages are available
to raise the level of abstraction in WSN application devel-
opment. However, their default implementations tend not
to fit application requirements. For example, in Bombilla
VM [6], the default packet structure is too simple to use in
many applications. Developers usually need to customize
the VM (e.g., parser and packet handler) for implement-
ing their own packet structures by using nesC and TinyOS.
(Bombilla is implemented with nesC and TinyOS libraries.)

The second issue is a lack of coherent tool chains
to configure and package WSN applications. In addition
to programming, WSN application development involves
a series of labor-intensive tasks such as the compilation
and verification of program code, configuration of a sim-
ulator or sensor nodes, and deployment/injection of com-
piled code to nodes. Application developers need to man-
ually work on these tasks in an-hoc manners with various
tools. Those tools are often not interoperable and not well
chained to improve developers’ productivity. As a result,
it takes considerable time through a long sequence of tasks
until developers run their applications. The agility of WSN
application development remains very low.

This paper proposes a new model-driven development
(MDD) framework, which is intended to manage the com-



plexity of WSN application development by addressing the
above two issues. The framework consists of (1) a Unified
Modeling Language (UML) profile to model WSN appli-
cations, and (2) a UML virtual machine, called Matilda, to
execute the models specified with the UML profile.

A UML profile extends (or specializes) the standard
UML elements (e.g., class and association) in order to pre-
cisely describe domain-specific or application-specific con-
cepts [7, 8]. The proposed UML profile abstracts away
the low-level details of WSNs and provides higher abstrac-
tions for application developers (even non-programmers) to
graphically design and maintain their applications. It also
allows developers to understand and communicate their ap-
plication designs in a visual and intuitive manner.

Matilda is a runtime execution engine (or virtual ma-
chine) for UML models [9]. It accepts a visual model de-
fined with the proposed UML profile and directly executes
the model through transforming it to executable code. Us-
ing Matilda, application developers can design, validate,
deploy and execute their applications consistently at the
modeling layer, without considering the low-level appli-
cation details (e.g., program code and configuration files).
The architecture of Matilda is designed as a pipeline of plu-
gins. Different plugins implement different functionalities
in Matilda, such as validating an input UML model against
the proposed profile, generating application code, compil-
ing/validating generated code and configuring a simulator.
The pipeline architecture allows Matilda to flexibly config-
ure its operation by replacing one plugin with another or
changing an execution sequence of plugins. A plugin se-
quence functions as an automated tool chain to configure
and package applications. This streamlines the process of
WSN application development and reduces the turnaround
time from application design to execution.

This paper is organized as follows. Section 2 de-
scribes the WSN application architecture that the proposed
MDD framework is currently designed for. Sections 3 and
4 describe the designs of the proposed UML profile and
model-to-code transformation rules, respectively. Section 5
describes the implementation of Matilda. Section 6 shows
simulation results to characterize the performance of WSN
applications built with the proposed MDD framework. Sec-
tions 7 and 8 conclude with some discussion on related
work and future work.

2 A WSN Application Architecture
The proposed MDD framework is currently designed
for a WSN application architecture, called BiSNET
(Biologically-inspired architecture for Sensor NET-
works) [10, 11]. This architecture is designed to address
three issues in WSN applications for event detection1:
autonomy–the ability to operate in unattended areas with
the minimal aid from base stations and human administra-

1BiSNET can operate on multi-modal WSNs. A multi-modal WSN
deploys multiple types of sensor nodes. Data from different types of nodes
are aggregated, at base stations or through in-network processing, to pro-
vide a multi-dimensional view of collected data.

Figure 1: BiSNET Runtime Architecture

tors; scalability–the ability to scale to, for example, a large
number of nodes and a large amount of data generated by
nodes; and adaptability–the ability to adapt to dynamic
conditions of WSNs (e.g., network traffic and resource
availability) and dynamic conditions in nodes (e.g., sensor
readings and power consumption).

The design of BiSNET is motivated by an observation
that various biological systems have developed the mech-
anisms to overcome the above issues [12]. For example,
bees act autonomously, influenced by local environmen-
tal conditions and local interactions with other bees. A
bee colony can scale to a massive number of bees because
all activities of the colony are carried out without central-
ized control. A bee colony adapts to dynamic environ-
mental conditions. When the amount of honey in a hive
is low, many bees leave the hive to gather nectar from flow-
ers. When the hive is full of honey, bees rest in the hive
or expand the hive. Given this observation, BiSNET ap-
plies key biological mechanisms to design WSN applica-
tions [10, 11].

The BiSNET runtime consists of two software com-
ponents: agents and middleware platforms (Figure 1),
which are modeled after bees and flowers, respectively.
Each WSN application is designed as a decentralized col-
lection of multiple agents. This is analogous to a bee
colony (application) consisting of multiple bees (agents).
Agents collect sensor data (nectars) on platforms (flowers)
atop nodes, and carry the sensor data to base stations, which
are modeled as nests for bees. Agents perform these func-
tionalities by autonomously invoking biological behaviors
such as pheromone emission, pheromone sensing, repli-
cation and migration. A middleware platform runs atop
TinyOS in each node, and hosts one or more agents. It
provides runtime services that agents use to perform their
functionalities and behaviors.

Inspired by biological entities (e.g., bees), agents
sense their local and surrounding environment conditions,
and behave adaptively according to the conditions. Each
agent can perform the following behaviors.

(1) Food gathering and consumption: Biological
entities strive to seek food for living. For example, bees
gather nectar and digest it to produce honey. In BiSNET,
agents (bees) may read sensor data (nectar) and convert it
to energy (honey) in each duty cycle2. The current energy

2The concept of energy in BiSNET does not represent the amount of



level (E(t)) is updated with Equation 1. S represents the
absolute difference in sensor data between the current and
previous duty cycles. M is metabolic rate (or energy con-
version rate), which is a constant value between 0 and 1.

E(t) = E(t−1) + S ·M (1)

(2) Pheromone emission: Agents may emit dif-
ferent types of pheromones (replication and migration
pheromones) according to their local and surrounding en-
vironment conditions. For example, pheromone emission
may occur in response to the abundance of stored en-
ergy (i.e., significant changes in their sensor readings).
Different types of agents emit different types of repli-
cation pheromones, each of which contains sensor data.
For example, on fluorometers, agents emit replication
pheromones that contain fluorescence spectrum (fluoro-
pheromones). On infrared sensors measuring sea surface
roughness, agents emit replication pheromones that con-
tain surface roughness data (roughness pheromones). On
the other hand, agents emit migration pheromones on their
local nodes when they migrate to neighboring nodes. Each
pheromone has its own concentration. The concentration
decays by half at each duty cycle. A pheromone disappears
when its concentration becomes zero.

(3) Pheromone sensing: Agents may sense the
pheromones placed on the local and neighboring nodes.
This behavior is used to sense sensor data on the local and
neighboring nodes.

(4) Replication: Agents may make a copy of them-
selves. Replication may occur in response to the abundance
of energy and replication pheromones. A replicated agent
is placed on the platform that its parent resides on, and it
receives the half amount of the parent’s energy level. Each
child agent is intended to move toward a base station to
report collected sensor data.

(5) Migration: Agents may move from one node to
another. Migration may occur in response to energy abun-
dance (i.e., significant changes in their sensor readings).
It is used to transmit agents (sensor data) to base stations.
Each agent may implement one of or a combination of the
following three migration policies:

• Directional walk: Each agent may move to the near-
est base station through the shortest path. Each
base station periodically propagates a base station
pheromone to individual nodes in the network. Its
concentration decays on a hop-by-hop basis. Us-
ing base station pheromones, agents can approximate
where base stations exist, and move toward the base
stations by climbing pheromone gradients.
• Chemotaxis: Agents may follow migration

pheromone traces on which many others travel.
When no migration pheromones exist on neighboring
nodes, agents perform directional walk.

physical battery in a sensor node. It is logically affects agent behaviors.

• Detour walk: Each agent may go off a migration
pheromone trace and follow another path to a base sta-
tion when the concentration of migration pheromones
is too high on the trace (i.e., when too many agents
follow the same migration path). This avoids sep-
arating the network into islands. The network can
be separated with the migration paths that too many
agents follow, because the nodes on the paths con-
sume more power than others and they go down
earlier than others. In addition to the detour with
migration pheromones, agents may avoid moving
through the nodes where the concentration of replica-
tion pheromones is too high (i.e., where agents detect
significant changes in their sensor readings). This dis-
tributes power consumption of agent migration over
the nodes where agents detect no changes in their sen-
sor readings, thereby avoiding network separation.

On each intermediate node toward a base station, each
agent examines Equation 2 to determine which next node it
migrates to.

WS j =

3∑
t=1

wt
Pt, j−Ptmin

Ptmax −Ptmin

(2)

An agent calculates this weighted sum (WS j) for each
neighboring node j, and moves to a node that generates
the highest weighted sum. t denotes pheromone type; P1 j,
P2 j and P3 j represent the concentrations of base station,
migration and replication pheromones on the node j. Ptmax

and Ptmin denote the maximum and minimum concentration
of Pt among neighboring nodes.

w1 is non negative, and w2 and w3 can be negative.
These weight values govern how agents perform the migra-
tion behavior. For example, if an agent has zero for w2 and
w3, the agent performs directional walk by ignoring migra-
tion and replication pheromones. If an agent has a positive
value for w2, it performs chemotaxis. A negative w2 and
w3 values allows an agent to perform detour walk.

3 A UML Profile for WSN Applications
The proposed UML profile specifies the conventions to
build UML models for event detection WSN applications,
and defines stereotypes and tagged-values to precisely de-
scribe computationally-complete input models3.

In the proposed UML profile, an input model is de-
fined as a set of UML 2.0 class diagrams, sequence dia-
grams and an instance diagram. A class diagram is used
to define the structure of agents and sensor data that the
agents carry to base stations. A sequence diagram is used
to define a sequence of behaviors that an agent performs at
each duty cycle. An instance diagram is used to define the
topology and nodes in a WSN.

3.1 Class Diagram
Figure 2 shows an example class diagram defined with
the proposed UML profile, and Figure 3 shows the defi-

3“Computationally complete” means sufficiently expressive so that
Matilda can interpret and execute models.



nition of stereotypes provided by the proposed profile. A
class stereotyped with �agentType� represents an agent,
and defines the sensor data it carries to a base station. In
Figure 2, the class FluorometerAgent specifies that its in-
stance carries fluorescenceSpectrum and timestamp to a
base station.

<<agentType>>

FluorometerAgent
{energy_conversion_rate = 5 ,
migration_weight_basestation = 50 ,
migration_weight_migration = 50 ,
migration_weight_replication = −50 ,
type = "Fluoremeter" }

−timestamp : Integer
−fluorescenceSpectrum : Integer
<<agentAttribute>>−agent_id : Integer

<<executeOnDuty>>+behave()

<<agentType>>

InfraredAgent
{energy_conversion_rate = 2 ,
migration_weight_basestation = 10 ,
migration_weight_migration = −2 ,
migration_weight_replication = 26 ,
type = "Infrared" }

−infraredSpectrum : Integer

<<executeOnDuty>>+execute()

Figure 2: An Example Class Diagram

1 0..*

UML 2.0 metamodel

《stereotype》AgentTypetype: Stringenergy_conversion_rate: Integermigration_weight_replication: Integermigration_weight_basestation: Integermigration_weight_migration: Integer

Kernel::Class Kernel::Property Kernel::Operation

《stereotype》AgentAttribute
《stereotype》ExecuteOnDuty1 1

Proposed UML profile
《agentType》Agent

getEnergyLevel(): IntegergetSensorReading(): Integerreplicate()emitPheromone( PheromoneType,Integer, Integer)sensePheromones(PheromoneType, Integer): Integer[]migrate()die()

PredefinedModel Elements

《agentType》FluorometerAgent

User-defined Agents

Figure 3: The Definition of the Proposed UML Profile (Class)

A series of tagged-values are used to configure
each agent. The tagged-value type specifies the type
of sensor device that an agent reads data from. Figure
2 shows that FluorometerAgent and InfraredAgent

read data from fluorometers and infrared sensors,
respectively. energy_conversion_rate specifies an
energy conversion rate (or metabolic rate) used in Equa-
tion 1 (Section 2). migration_weight_basestation,
migration_weight_migration and
migration_weight_replication specify w1, w2 and
w3 in Equation 2 (Section 2).

The proposed profile provides not only stereotypes
but also the Agent abstract class, which defines a set of
behaviors agents invoke (see Section 3.2). Each agent is
defined as an subclass of the class Agent and its param-
eters are configures through the use of tagged-values of
�agentType�.

An attribute stereotyped with �agentAttribute�
represents an attribute of an agent, rather than an attribute
of a message. In order to save the energy of WSNs, an

agent can carry multiple messages at a time and reduce the
number of message transmissions. Since normal attributes
of a class, e.g., timestamp and fluorescenceSpectrum,
are considered as attributes of messages, an instance
of an agent may have multiple set of timestamp and
fluorescenceSpectrum at a time (Figure 4). An instance
of an agent, however, has only one instance (value) of an
attribute stereotyped with �agentAttribute�.

<<agentType>>:FluorometerAgentagent_id = 100timestamp = 0004fluorescenceSpectrum = 24 Normalattributestimestamp = 0151fluorescenceSpectrum = 24timestamp = 0530fluorescenceSpectrum = 23

An attribute with<<agentAttribute>>

Figure 4: An Example of an Instance of an Agent

An operation stereotyped with �executeOnDuty�
represents an operation that executed on each duty cy-
cle. The behavior of an operation is defined in a se-
quence diagram. The proposed UML profile assumes each
class with �agentType� must have one operator with
�executeOnDuty�.

3.2 Sequence Diagram
Figure 5 shows an example sequence diagram defined with
the proposed UML profile. The purpose of sequence di-
agrams is to define an agent’s operation by selecting bio-
inspired behaviors with conditions to invoke them. A se-
quence diagram hides the details of implementation and al-
lows application developers to work at a higher abstraction
level, and application developers can rapidly explore the
design space by developing differing versions of agent be-
havior.

[getSensorReading() > 300]

[sensePheromones(REPLICATION, 0)−>sum /
  sensePheromones(REPLICATION, 0)−>size > 300]

replicate

ref

migrate

ref

opt

emitPheromone(REPLICATION,1,getSensorReading())

ref

opt

<<agentType>>

 : FluorometerAgent

[getSensorReading() > 300]

[sensePheromones(REPLICATION, 0)−>sum /
  sensePheromones(REPLICATION, 0)−>size > 300]

replicate

ref

migrate

ref

opt

emitPheromone(REPLICATION,1,getSensorReading())

ref

opt

Figure 5: An Example Sequence Diagram of an Agent

As described in Section 3.1, an operation stereo-
typed with �executeOnDuty� executed on each duty cy-
cle. A sequence diagram defines a control flow using
InteractionOperators such as opt and alt. The opt op-
erator designates that an enclosed fragment represents a



choice of behaviors where either the behaviors happen or
nothing happens. Agent behaviors are defined as opera-
tions in the Agent class in Figure 2, and they can be refered
as InteractionUses, represented as a rectangle with the la-
bel ref, in sequence diagrams.

The sequence diagram in Figure 5 defines an al-
gorithm, called Gossip Filtering, to decide when an
agent sends a message to a base station. An agent
checks if the current sensor reading, which is obtained by
getSensorReading operation, exceeds 300(nm). If the con-
dition is met, an agent broadcasts the current sensor reading
to one hop neighbor nodes as a replication pheromone us-
ing emitPheromone operation. After that, the agent checks
if the average of replication pheromones from neighbors
exceeds 300(nm). Each platform keeps each neighbor’s
replication pheromone value sent by emitPheromone, and
sensePheromones operation retrieves them. The second
argument specifies the number of hops to access, e.g., 0
means that the operation retrieves data from only a local
node and 1 means that it retrieves data from one hop neigh-
bors. When the second condition is met, an agent replicates
itself and migrates to a base station according to Equation
2.

3.3 Instance Diagram
Figure 6 shows an example instance diagram defined with
the proposed UML profile, and Figure 7 shows the defini-
tion of stereotypes which can be used in instance diagrams.

《sensorNode》: NodeWithFSensorid = 6position ={x=100,y=140,z=0}commrange = 150

《sensorNode》: NodeWithFSensorid = 6position ={x=100,y=140,z=0}commrange = 150
《sensorNode》: NodeWithFSensorid = 9position ={x=105,y=200,z=0}commrange = 150

《sensorNode》: NodeWithFSensorid = 9position ={x=105,y=200,z=0}commrange = 150

《sensorNode》: NodeWithFSensorid = 8position ={x=50,y=297,z=0}commrange = 150

《sensorNode》: NodeWithFSensorid = 8position ={x=50,y=297,z=0}commrange = 150

《sensorNode》: NodeWithFSensorid = 5
《sensorNode》: NodeWithFSensorid = 5

《sensorNode》: NodeWithFSensorid = 3
《sensorNode》: NodeWithFSensorid = 3

《sensorNode》: NodeWithFSensorid = 2
《sensorNode》: NodeWithFSensorid = 2

《sensorNode》: NodeWithFSensorid = 1
《sensorNode》: NodeWithFSensorid = 1

《sensorNode》: NodeWithFSensorid = 4
《sensorNode》: NodeWithFSensorid = 4

《sensorNode》: NodeWithFSensorid = 7
《sensorNode》: NodeWithFSensorid = 7

《baseStation》: NodeWithFSensorid = 0
《baseStation》: NodeWithFSensorid = 0

《wirelessLink》{bitErrorRate = 5} 《wirelessLink》{bitErrorRate=15}

《wirelessLink》{bitErrorRate = 5}

《wirelessLink》{bitErrorRate = 0}

《wirelessLink》{bitErrorRate = 9}

《wirelessLink》{bitErrorRate=50}

《wirelessLink》{bitErrorRate = 5}

《wirelessLink》{bitErrorRate = 10}

《wirelessLink》{bitErrorRate = 5}

《wirelessLink》{bitErrorRate = 5}

《wirelessLink》{bitErrorRate = 0}

Figure 6: An Example Instance Diagram

Each deployed sensor node is represented as an in-
stance of a class stereotyped with �sensorNode�. The
�SensorNode� stereotype has the type tagged-value rep-
resenting the type of sensor node (mote), e.g., Mica2, Mi-
caZ and Telos, and the sensingRange tagged-value repre-
senting a sensing range of a sensor. The proposed UML
profile defines not only stereotypes but also the Platform
abstract class, which defines a set of operations platforms
can invoke. Each node is defined as a subclass of the class
Platform as the class NodeWithFSensor in Figure 7.

A class with �sensorNode� can have one operation
with �executeOnDuty�, which is executed on each duty

Kernel::Association
《stereotype》WirelessLinkbitErrorRate:Integer

1 0..*

UML 2.0 metamodel

《stereotype》SensorNodetype: StringsensingRange:Integer
《stereotype》SensorNodetype: StringsensingRange:Integer

Kernel::Class
《stereotype》BaseStation

Proposed UML profile
《sensorNode》Platformid: Integerposition: Positioncommrange: IntegergetDutyCycle(Integer)setDutyCycle(): IntegergetAgents(): Agents[]getEnergyLevel(): Integer

Predefine Model Elements

Kernel::Operation

0..1《stereotype》ExecuteOnDuty

《sensorNode》{type = “Mica2” ,sensingRange = 150}NodeWithFSensor

User-defined Nodes

Figure 7: The Definition of the Proposed UML Profile (Instance)

cycle. It allows application developers to define platform’s
behavior. For example, depending on the energy level of a
platform, a node changes its duty cycle (the more energy,
the shorter the cycle becomes) as illustrated in Figure 8.

 : NodeWithFSensor

setDutyCycle(100/getEnergyLevel())

ref

setDutyCycle(100/getEnergyLevel())

ref

Figure 8: An Example Behavior of a Platform

As illustrated in Figure 6, a network topology is
described as a set of instances of classes extending the
Platform class. Each instance has three attributes; id,
position and commrange represent node’s ID, physical lo-
cation and communication range, respectively. The at-
tributes position and commrange are optional. For every
combination of two nodes that specifies their positions,
the quality of their communication channel is calculated
from the distance between them and their commranges. The
quality of communication channels is represented as a bit
error rate, which is a value in the range (0, 100) represent-
ing the probability a bit sent by a source node will be cor-
rupted (flipped) when a destination node receives it. For
example, since nodes with id 6, 8 and 9 in Figure 6 (lower
right) specify their positions and commranges, the qualities
of their communication channels are calculated from their
distances and communication ranges.

A link stereotyped with �wirelessLink� can be
used to specify the quality of a communication channel
directly. The tagged-value bitErrorRate represents a bit
error rate. It facilitates simulating a WSN with a simple
radio model, i.e., bit error rate is fixed within a commu-
nication range. Moreover, the tagged-value bitErrorRate
can override a bit error rate calculated from the distance
between two nodes. It allows simulating the situation that
the quality of a communication channel cannot be calcu-
lated from the distance between nodes. For example, when
there is an obstacle between two nodes, the quality of their



communication channel significantly drops. In Figure 6,
since the nodes with id 8 and 9 (lower right) are connected
with a link with �wirelessLink�, the quality of their
communication channel is specified with the tagged-value
bitErrorRate regardless of the distance between them.

4 Model-to-Code Transformation
This section describes the details of the transformation
rules for each UML diagram. A set of UML diagrams, i.e.,
class, sequence and instance diagrams, are transformed into
compilable code and a configuration file for a WSN sim-
ulator. Since each agent is implemented in AgentScript,
i.e., an extension of TinyScript to implement BiSNET ap-
plications, class and sequence diagrams are primarily trans-
formed into code in AgentScript. Moreover, class diagrams
are transformed into nesC code to customize Bombilla VM
to support new message structures. An instance diagram is
transformed into a configuration file that specifies a topol-
ogy of a WSN in a simulator.

4.1 Transformation Rules for Agents
A class with �agentType� is transformed into two types
of agents, i.e., stationary and migratory agents. A sta-
tionary agent stays on a node, obtains sensor readings and
senses/emits pheromones. When a stationary agent sends
a message to a base station, it replicates itself to create a
migratory agent. A migratory agent brings sensor readings
to a base station.

Listing 1 is a fragment of code generated from the
class diagram in Figure 2. It is deployed on each sen-
sor node and executed once to initialize a stationary agent
when a node is activated.

Listing 1: Agent Initialization Code
1 agent agent = create_stationary_agent();
2 if(get_node_type() == Fluorometer) then
3 set_sensor_type(agent, Fluorometer);
4 set_energy_conversion_rate(agent, 5);
5 set_migration_weight(agent,BASETATION_PHEROMONE ,50);
6 set_migration_weight(agent,MIGRATION_PHEROMONE ,50);
7 set_migration_weight(agent,REPLICATION_PHEROMONE ,-50);
8 else if(get_node_type() == Infrared) then
9 ...

10 end if
11 end if

A stationary agent is instantiated by
create_stationary_agent(). Then the code checks
the type of sensor that a node supports by calling
get_node_type(), e.g., fluorometer sensor, infrared sensor
or temperature sensor. When the type of agent specified
with the tagged-value type (Figure 2) is the same as the
type of sensor, a stationary agent is configured based on its
tagged-values.

A sequence diagram that corresponds to an operator
with �executeOnDuty� is transformed into AgentScript
code, and the code is executed on each duty cycle. List-
ing 2 is a fragment of generated code from the sequence
diagram in Figure 5.

Listing 2: Agent Behavior Code
1 agentlist agents = get_local_agents();
2 agent s_agent = agents[0];

3 private node_id = get_next_hop();
4 private num_of_agents = bsize(agents);
5
6 if (get_sensor_reading() > 300 ) then
7 pheromone_emission(
8 s_agent, REPLICATION , 1, get_sensor_reading() );
9 if(sum(pheromone_sensing(0))/

10 size(pheromone_sensing(0))>300) then
11 replication(s_agent);
12 for i = 1 to num_of_agents - 1
13 migration(agents[i]);
14 next i
15 end if
16 end if

BiSNET restricts which types of agents can perform
which behaviors. For example, stationary agents can per-
form replication behavior, but cannot perform migration
behavior. The proposed UML profile hides these restric-
tions, and application developers do not need to consider
which agent performs which behavior. The generated code
invokes behavior on appropriate agents.

In Listing 2, a stationary agent, which stored at the
head of an agent list that each platform maintains, is as-
signed to the variable s_agent (Line 1). emit_pheromone
and replication operations are called on the s_agent.
migration operation is called on each migratory agent,
which is stored in the agent list. The conditions to call op-
erations are generated from conditions defined in an input
sequence diagram (Figure 5).

4.2 Transformation Rules for VM Cus-
tomizations

Bombilla VM is required to be customized using nesC to
support new message structures corresponding to classes
with �agentType�. Listing 3, which is generated
from the class FluorometerAgent, consists of two mes-
sage structures in nesC, i.e., FluorometerAgent_Data and
FluorometerAgent_Agent. As described in Section 3.1, an
agent can have multiple instances of data structure con-
sisting of normal attributes. As in Listing 3, a class with
�agentType� is transformed into two data structures of
which names are XXX_Agent and XXX_Data. (XXX is the
name of an input class.) XXX_Agent, which defines the
structure of an agent, can contain multiple XXX_Data, which
defines the structure of sensor data. In this transforma-
tion, a String in UML is transformed into an array of
char and an Integer is transformed into an eight bit in-
teger (uint8_t) in nesC

Listing 3: A Definition of a Message Structure

1 typedef struct {
2 uint8_t timestamp;
3 uint8_t fluorescenceSpectrum;
4 } FluorometerAgent_Data;
5
6 typedef struct {
7 uint8_t agent_id;
8 FluorometerAgent_Data sensor_readings[MATE_BUF_LEN];
9 } FluorometerAgent_Agent;

In addition to these data structures in nesC, functions
in AgentScript are also generated to handle them, e.g.,
functions to create an instance of new data structures, to
set attribute values and to send/receive data with agents via
wireless communication.



4.3 Transformation Rules for Simulator
Configurations

Matilda currently uses TOSSIM, a TinyOS simulator.
TOSSIM simulates a WSN based on a configuration file
that specifies a set of bit error rates of communication
channels between nodes. An instance diagram describ-
ing a network topology is transformed into a configuration
file for TOSSIM. For example, Listing 4 is a fragment of
a configuration file generated from the instance diagram
in Figure 6. Each line specifies an error rate of a con-
nection with the format <source node ID>:<destination
node ID>:<bit error rate>. A bit error rate is in range
(0, 1).

Listing 4: An Example Configuration File for TOSSIM
1 0:0:0.0
2 0:1:0.0
3 0:2:1.0
4 0:3:1.0
5 ...
6 1:0:0.0
7 1:1:0.0
8 1:2:0.05
9 1:3:1.0

10 1:4:0.05
11 ...

5 The Matilda UML Virtual Machine
This section describes the architecture of Matilda, the pro-
posed UML virtual machine, and the implementation of
each plugins for WSN event detection applications.

5.1 The Architecture of Matilda
The architecture of Matilda is designed as a pipeline of plu-
gins. Different plugins different functionalities in Matilda,
such as validating UML models, transforming UML mod-
els into compilable code, compiling and executing the
code. The pipeline architecture allows Matilda to flexibly
configure its structure and behavior by replacing a plugin
with another one or changing the order of plugins. The
pipeline architecture of Matilda is designed based on the
Pipes and Filters architectural pattern [13,14]. This pattern
provides a structure of the systems that process a stream of
data. The task of a system is divided into several process-
ing steps. These steps are connected through the data flow
in the system—an output data in a step becomes an input to
a subsequent step. Each processing step is implemented as
a filter, and filters are connected with pipes. The Pipes and
Filters pattern is best suited when a system can naturally
decompose its data processing task into independent steps
and the requirements for the data processing task are likely
to change over time. This pattern increases the reusability
of filters, and allows a system to be flexible through ex-
changes and recombinations of filters [13].

In Matilda, each plugin works as a filter, and imple-
ments an individual step to process UML models and run
an application. For example, a model loader plugin accepts
a UML model in the format of XML Metadata Interchange
(XMI) [15] and transforms it to an in-memory representa-
tion. A model validation plugin validates a UML model

Matilda VM Matilda VM Matilda VMdevelopment hosts
pipeline

repository host BlackboardMatilda VM
plugins

plug-in repositoryMatilda VM
Download& InstallRead & Write

pipe
Figure 9: The Architecture of Matilda

against the UML metamodel. A code generation plugin
generates compilable code from the input UML model.

A collection of plugins is called a pipeline (Figure 9).
Each pipeline instantiates plugins and connects them with
pipes based on a configuration file. The configuration file
specifies plugins used in a pipeline and the execution order
of plugins. Plugins are executed in a sequential or a parallel
manner.

Plugins can be transparently distributed on multiple
hosts in the network. Each plugin operates on a Matilda
VM, which in turn runs atop of a Java VM. Plugins can
be dynamically downloaded from a plugin repository and
deployed in a pipeline (Figure 9). Pipelines can be con-
figured dynamically at runtime as well as statically before
executing plugins.

A common issue of the Pipes and Filters pattern
is lack of robust error handling, because there is no
global system state information and multiple asynchronous
threads of execution exist in a system [13]. In order to over-
come this issue, Matilda implements a shared repository,
called blackboard, based on the Blackboard architectural
pattern (Figure 9) [13]. This pattern is organized as a col-
lection of independent processing units that work cooper-
atively on a common data structure. Each processing unit
specializes to process a particular part of the overall task.
It fetches data from a blackboard (shared data repository),
and stores a result of its data processing to the blackboard.

In Matilda, a blackboard stores data that each plugin
generates (e.g., compilable code), and makes the data avail-
able to subsequent plugins (Figure 9). It also stores the data
processing log in each plugin (e.g., successful completion,
errors, warnings and time stamp) in order to trace the pro-
cessing status in a pipeline. In Matilda, data flow between
a blackboard and plugins, and processing control flows be-
tween plugins (Figure 9).

5.2 Implementation of Plugins for WSN Ap-
plications

The pipeline shown in Figure 10 configures a set of plug-
ins implemented for WNS applications. Plugins are cate-
gorized into two groups: frontend and backend. Frontend
plugins are used to transform UML models into code and
a configuration file, and backend plugins are used to cus-
tomize Bombilla VM and execute WSN applications on a



TOSSIM simulator.

Blackboard

ModelLoader
SD2AgentScript

3rd Party UMLModeling ToolsXMI

AgentScript NesC

CD2AgentScript CD2NesC DD2TOSSIMConf

TOSSIM
Conf

VMBuilderTOSSIMExecutorCodeDeployer
TOSSIM

Sim.

Log

frontend

backend

ModelValidator

Figure 10: Typical Sequence of plugins

By leveraging the plugin ModelLoader plugin,
Matilda accepts a UML model as an input and stores it
in a blackboard (Figure 10). After that, ModelValidator
plugin validates the input model, e.g., it checks if all
classes with �agentType� has exactly one operation
with �executeOnDuty�. After that, CD2AgentScript and
SD2AgentScript plugins transform class diagrams and se-
quence diagram into AgentScript code as described in Sec-
tion 4.1, respectively. SD2NesC plugin transforms class di-
agrams into nesC code. OD2TOSSIMConf plugin transforms
an instance diagram into a configuration file for a TOSSIM
simulator. The VMBuilder plugin customizes a virtual ma-
chine and builds a TOSSIM simulator using the customized
virtual machine. The TOSSIMExecutor plugin runs the
TOSSIM simulator with a network topology specified by
a TOSSIM configuration file generated by OD2TOSSIMConf
plugin, and then CodeDeployer plugin deploys AgentScript
code on each node in a simulator.

6 Empirical Evaluation
This simulation study emulates a WSN deployed on the sea
to detect oil spills in the Dorchester Bay of Massachusetts
The WSN consists of fluorometers sensors4 deployed in an
6x7 grid topology in an area of approximately 620x720
square meters, and sensor nodes modeled after MICA2
mote with outdoor transmission range (radius) of about
150 meters, bandwidth of 38.4kbps and 128kB of program
memory space (flash memory). A node at one of corners
works as a base station. This study assumes that 100 bar-
rels (approximately 3,100 gallons) of crude oil is spilled
at the center of the WSN. Simulation data set is generated
with an oil spill trajectory model implemented in the Gen-
eral NOAA Oil Modeling Environment [17]. A sensor data
(fluorescent intensities) is 280nm when there is no oil, and

4Fluorescence is a strong indication of the presence of oils. Certain
compounds in oil absorb ultraviolet light, become electronically excited
and fluoresce [16].

it reaches to 318nm when there is thick oil. Since oil does
not dissolve in water, the area of which fluorescent intensi-
ties is 318nm spreads during a simulation. Each sensor has
a white noise that is simulated as a normal random variable
with its mean of zero and standard deviation of five percent
of sensor data.

This simulation study measures the differences be-
tween algorithms shown in Figure 5 (Gossip Filtering), Fig-
ure 11 (Neighborhood Filtering) and Figure 12 (Local Fil-
tering).

[getSensorReading() > 300]

[sensePheromones(1)−>sum /
  sensePheromones(1)−>size > 300]

replicate

ref

migrate

ref

opt

opt

<<agentType>>

 : FluorometerAgent

emitPheromone(REPLICATION,0,getSensorReading())
ref

[getSensorReading() > 300]

[sensePheromones(1)−>sum /
  sensePheromones(1)−>size > 300]

replicate

ref

migrate

ref

opt

opt

emitPheromone(REPLICATION,0,getSensorReading())
ref

Figure 11: Neighborhood Filtering

[getSensorReading() > 300]

replicate

ref

migrate

ref

opt

<<agentType>>

 : FluorometerAgent

[getSensorReading() > 300]

replicate

ref

migrate

ref

opt

Figure 12: Local Filtering

In Neighborhood Filtering in Figure 11, each agent
checks if the average of its neighbors’ sensor readings ex-
ceeds 300(nm) or not to send a message to a base station. In
Local Filtering in Figure 12, each agent checks if the local
sensor reading exceeds 300(nm) or not.

Figure 13(a) and Figure 14 show the number of pack-
ets to transmit migratory agents from nodes to the base
station and the number of false positive sensor data. Lo-
cal Filtering starts sending migratory agents immediately
once a sensor reading exceeds 300(nm) (Figure 13(a)) but
most of them are false positive (Figure 14) since each sta-
tionary agent decides whether to send migratory agents
independently. Neighborhood Filtering and Gossip Fil-
tering use an average of sensor readings within one hop
neighbors and it lowers the possibility to send false pos-
itive data. However, as shown in Figure 13(b), station-
ary agents send/obtain sensor readings among neighbors
via replication pheromones in Neighborhood Filtering and
Gossip Filtering, and it consumes much energy compare



0
50

100
150
200
250

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(a) Packet Transmission

0
50

100
150
200
250
300

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(b) Control Overhead

050
100150200250300350400450500

0 50 100 150 200Time (min)

Local FilteringNeighborhood FilteringGossip Filtering

(c) Total Packet Transmission

Figure 13: Packet Transmission

with Local Filtering. However, Gossip Filtering algorithm
consumes less energy than Neighborhood Filtering since it
uses emitPheromone (broadcasts) to exchange sensor data
among nodes, instead of node-to-node communications us-
ing sensePheromones.

0
2
4
6
8

10

0 50 100 150 200time (min)The 
Num
. of F
alse 
Posi
tive 
Sens
or D
ata Local FilteringNeighborhood FilteringGossip Filtering

Figure 14: The Number of False Positive Sensor Data

7 Related Work
This work is extensions to the authors’ prior work [9–
11]. [9] investigated Matilda for a UML profile for Java
command-line applications. This work retargets Matilda’s
application area to WSNs by proposing a UML profile for
WSN applications and supporting various implementation
technologies for WSNs. [10, 11] implemented BiSNET in
nesC and evaluated the implementation through simula-
tions. Based on the experience of low-level application
programming, this work proposes to raise the level of ab-
straction in WSN application development and investigates
a supporting MDD framework.

There are several work to investigate direct execution
of UML models. [18] addresses the issues of validating
models and generating executable code. It maintains causal
connections among four meta layers in UML (M0 to M3
layers), and uses the connections to validate models and
propagate changes between models. For example, the con-
nections can be used to validate the consistency between
M1 and M2 models and reflect changes in an M2 model
to M1 models. Although Matilda implements model vali-
dation, it does not explicitly maintains causal connections
among different meta layers. [18] does not support behav-
ioral modeling, and it is not clear how to transform models
to executable code. Matilda supports behavior modeling,
and provides workable plugins to generate executable code.

Similar to Matilda, executable UML (xUML) focuses
on directly executing models. In xUML, developers use
class diagrams for structural modeling, and statechart dia-
grams and textural action languages for behavioral model-
ing [19–21]. Action languages implement the UML ac-
tion semantics, defined as a part of the UML specifica-
tion [8]. However, the UML action semantics does not
provide the standard language syntax; therefore, different
action languages have different syntax with different (pro-
prietary) extensions (e.g., [22, 23]). This means that de-
velopers need to learn action language syntax every time
they use different xUML tools. Also, there is no interop-
erability of models between different xUML tools because
different xUML tools assume different subsets of the UML
metamodel. Thus, an xUML tool cannot correctly inter-
pret a model that is defined with other xUML tools. On the
other hand, Matilda uses the UML metamodel and its stan-
dard extensions (profiles) for both structural and behavioral
modeling. (Matilda does not require developers to use non-
standard mechanisms to build and execute models.) It is
more open for future extensions and integration with third
party tools such as code generators and optimizers. Fur-
thermore, Matilda inherently supports the distributed exe-
cution of plugins. No xUML tools do not address this issue.

[24] proposes a visual language to design WSN ap-
plications. The purpose of the language is to visualize lan-
guage primitives in nesC, e.g., module, interface and wire,
and models are transformed into nesC. The proposed pro-
file in this paper focuses on the desing of WSN applications
based on bio-inspired behaviors, rather than simply visu-
alizing low-level language primitives. Moreover, Matilda
allows running model directly. It improves the productiv-
ity of application developers. [25] proposes a simulating
framework for WSNs which supports a visual language,
however, it does not support code generation. Matilda also
runs visual models directly, but it generates code running
on actual sensor nodes. The framework proposed in [25]
can be used only for simulation, but the proposed frame-
work in this paper facilitates WSN application develop-
ment.

8 Conclusion
This paper describes and empirically evaluates a new MDD
framework to manage the complexity of WSN application



development. The proposed framework consists of a UML
profile for WSN applications and a UML virtual machine,
called Matilda. The proposed UML profile abstracts away
the low-level details of WSNs and provides higher abstrac-
tions for application developers to graphically design and
maintain their applications. It also allows developers to
understand and communicate their application designs in
a visual and intuitive manner. Matilda is a runtime exe-
cution engine (or virtual machine) to design, validate, de-
ploy and execute applications consistently at the model-
ing layer, without considering the low-level application de-
tails (e.g., program code and configuration files). Matilda
also serves as an automated yet customizable tool chain to
configure and package WSN applications. This stream-
lines the process of application development and reduces
the turnaround time from application design to execution.
Empirical evaluation results show that the proposed MDD
framework can build efficient WSN applications.

9 Acknowledgment
This work is supported in part by OGIS International, Inc.
The authors would like to thank Ogidika Iloabachie, Chih-
Yi Lin and Anubha Shrivastava for their contributions.

References

[1] N Xu. A Survey of Sensor Network Applications. IEEE
Communications Magazine, 40(8), Aug. 2002.

[2] Th. Arampatzis, J. Lygeros, and S. Manesis. A Survey of
Applications of Wireless Sensors and Wireless Sensor Net-
works. IEEE Int’l Sym. on Intelligent Control, June 2005.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
Century Challenges: Scalable Coordination in Sensor Net-
works. ACM Int’l Conf. on Mobile Computing and Net-
works, Aug. 1999.

[4] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. ACM Conf. on Program-
ming Language Design and Implementation, June 2003.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, ,
and K. S. J. Pister. System Architecture Directions for Net-
worked Sensors. ACM Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, Nov.
2000.

[6] P. Levis and D. Culler. Mate: A Tiny Virtual Machine for
Sensor Networks. ACM Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, 2002.

[7] L. Fuentes and A. Vallecillo. An Introduction to UML
Profiles. The European journal for the Informatics Profes-
sional, 5(2), Apr. 2004.

[8] Object Management Group. UML2.0 Super Structure Spec-
ification, Oct. 2004.

[9] H. Wada, E. M. M. Babu, A. Malinowski, J. Suzuki, and
K. Oba. Design and Implementation of the Matilda Dis-
tributed UML Virtual Machine. IASTED Int’l Conf. on Soft-
ware Engineering and Applications, Nov. 2006.

[10] P. Boonma and J. Suzuki. BiSNET: A Biologically-Inspired
Middleware Architecture for Self-Managing Wireless Sen-
sor Networks. Elsevier Journal on Computer Networks,
51(16), Nov. 2007.

[11] P. Boonma and J. Suzuki. An Adaptive, Scalable and
Self-Healing Sensor Network Architecture for Autonomous
Coastal Environmental Monitoring. IEEE Conf. on Tech-
nologies For Homeland Security, June 2007.

[12] T. Seeley. The Wisdom of the Hive. Harvard University
Press, 2005.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. John
Wiley & Sons, Aug. 1996.

[14] A. Vermeulen, G. Beged-Dov, and P. Thompson. The
Pipeline Design Pattern. ACM OOPSLA Workshop on
Design Patterns for Concurrent Parallel and Distributed
Object-Oriented Systems, Oct. 1995.

[15] Object Management Group. MOF 2.0 XML Metadata In-
terchange, 2004.

[16] J. M. Andrews and S. H. Lieberman. Multispectral Fluo-
rometric Sensor for Real Time in-situ Detection of Marine
Petroleum Spills. In The Oil and Hydrocarbon Spills, Mod-
eling, Analysis and Control Conf., July 1998.

[17] C. Beegle-Krause. General NOAA Oil Modeling Environ-
ment (GNOME): A New Spill Trajectory Model. Interna-
tion Oil Spill Conf., Mar. 2001.

[18] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe.
The Architecture of a UML Virtual Machine. ACM Int’l
Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications, 2001.

[19] S. Mellor and M. Balcer. Executable UML: A Foundation
for Model Driven Architecture. Addison-Wesley, 2002.

[20] C. Raistrick, P. Francis, and J. Wright. Model Driven Archi-
tecture with Executable UML. Cambridge University Press,
Mar. 2004.

[21] M. Balcer. An Executable UML Virtual Machine. OMG
Workshop On UML for Enterprise Applications: Delivering
the Promise of MDA, June 2003.

[22] Project Technology. BridgePoint Tutorial, 2000.
[23] Kennedy Carter Ltd. The UML Action Specification Lan-

guage Reference Guide, Nov. 2004.
[24] P. Volgyesi, M. Maroti, S. Dora, E. Osses, and A. Ledeczi.

Software Composition and Verification for Sensor Net-
works. Sci. of Computer Programming, 56(1-2), Apr. 2005.

[25] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao. Mod-
eling of Sensor Nets in Ptolemy II. Int’l Sym. on Informa-
tion Processing in Sensor Networks, Apr. 2004.


