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Abstract. This paper describes and evaluates a new noise-aware dom-
inance operator for evolutionary algorithms to solve the multiobjective
optimization problems (MOPs) that contain noise in their objective func-
tions. This operator is designed with the Mann-Whitney U -test, which
is a non-parametric (i.e., distribution-free) statistical significance test. It
takes objective value samples of given two individuals, performs a U -test
on the two sample sets and determines which individual is statistically
superior. Experimental results show that it operates reliably in noisy
MOPs and outperforms existing noise-aware dominance operators par-
ticularly when many outliers exist under asymmetric noise distributions.
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1 Introduction

This paper focuses on noisy multiobjective optimization problems (MOPs):

min F (x) = [f1(x) + ε1, · · · , fm(x) + εm]T ∈ O
subject to x = [x1, x2, · · · , xn]T ∈ S

}
(1)

S denotes the decision variable space. x ∈ S is a solution candidate that
consists of n decision variables. It is called an individual in evolutionary mul-
tiobjective optimization algorithms (EMOAs). F : Rn → Rm consists of m
real-value objective functions, which produce the objective values of x in the
objective space O. In MOPs, objective functions often conflict with each other.
Thus, there rarely exists a single solution that is optimum with respect to all
objectives. As a result, EMOAs often seek the optimal trade-off solutions, or
Pareto-optimal solutions, by balancing the trade-offs among conflicting objec-
tives. A notion of Pareto dominance plays an important role to seek Pareto
optimality in EMOAs. An individual x ∈ S is said to dominate another individ-
ual y ∈ S (denoted by x � y) iif the both of the following two conditions are
hold: (1) fi(x) ≤ fi(y) ∀ i = 1, · · · ,m and (2) fi(x) < fi(y) ∃ i = 1, · · · ,m.

In Eq. 1, εi is a random variable that represents noise in the i-th objective
function. Given noise, each objective function can yield different objective values
for the same individual from time to time. Noise in objective functions often
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interferes with a dominance operator, which determines dominance relationships
among individuals. For example, a dominance operator may mistakenly judge
that an inferior individual dominates an superior one. Defects in a dominance
operator significantly degrade the performance to solve MOPs [2,11].

In order to address this issue, this paper proposes a new noise-aware domi-
nance relationship, called U-dominance, which extends the classical Pareto dom-
inance. It is designed with the Mann-Whitney U -test (U -test in short), which
is a non-parametric (i.e., distribution free) statistical significance test [12]. The
U -dominance operator takes objective value samples of given two individuals,
performs a U -test on the two sample sets to examine whether it is statistically
confident enough to judge a dominance relationship between the two individu-
als, and determines which individual is statistically superior/inferior. This pa-
per evaluates the U -dominance operator by integrating it with NSGA-II [4],
a well-known EMOA. Experimental results demonstrate that the U -dominance
operator reliably performs dominance ranking operation in noisy MOPs and
outperforms existing noise-aware dominance operators particularly when many
outliers exist under asymmetric noise distributions.

2 Related Work

There exist various existing work to handle uncertainties in objective functions
by modifying the classical Pareto dominance operator [2, 11]. Most of them as-
sume particular noise distributions in advance; for example, normal distribu-
tions [1, 8–10, 13], uniform distributions [14] and Poisson distributions [6, 17].
Given a noise distribution, existing noise-aware dominance operators collect ob-
jective value samples from each individual [6, 8, 9, 14, 17], or each cluster of in-
dividuals [1], in order to determine dominance relationships among individuals.
Those existing operators are susceptible to noisy MOPs in which noise follows
unknown distributions. In contrast, the U -dominance operator assumes no noise
distributions in advance because, in general, it is hard to predict and model them
in many (particularly, real-world) MOPs. Instead of estimating each individual’s
objective values based on a given noise distribution, the U -dominance opera-
tor estimates the impacts of noise on objective value samples and determines
whether it is statistically confident enough to compare individuals.

Voß et al. [16] and Boonma et al. [3,18] study similar dominance operators to
the U -dominance operator in that they assume no noise distributions in objective
value samples of each individual and statistically examine the impacts of noise on
those samples. Voß et al. propose an operator that considers an uncertainty zone
around the median of samples on a per-objective basis. A dominance decision is
made between two individuals only when their uncertainty zones do not overlap
in all objectives. The uncertainty zone can be the inter-quartile range (IQR) of
samples or the bounding box based on the upper and lower quartiles (BBQ) of
samples. Unlike the U -dominance operator, this operator is susceptible to high
noise strength and asymmetric heavy-tailed noise distributions. Boonma et al.
propose an operator that classifies objective value samples with a support vector
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Algorithm 1 The U -Dominance Operator: uDominance(A, B, α)
Input: A and B, Objective value samples of individuals a and b, respectively
Input: α, The confidence level used in a U-test
Output: Dominance relationship between a and b
1: pA, pB = 1
2: for each (the i-th) objective do
3: Perform a U-test on A and B in the i-th objective.
4: if A is superior than B with the confidence level α in the i-th objective then
5: pA = 1 ∗ pA
6: pB = 0
7: else if B is superior than A with the confidence level α in the i-th objective then
8: pA = 0
9: pB = 1 ∗ pB

10: end if
11: end for
12: if pA = 1 and pB = 0 then
13: return 1 /*** a U-dominates b. ***/
14: else if pA = 0 and pB = 1 then
15: return −1 /*** b U-dominates a. ***/
16: else
17: return 0 /*** a and b are non-U-dominated. ***/
18: end if

machine, which can be computationally expensive. In contrast, the U -dominance
operator is designed lightweight; it requires no classification and learning.

3 The U -Dominance Operator

U -dominance is a new noise-aware dominance that is designed with the
Mann-Whitney U -test (U -test in short), which is a non-parametric (i.e., distribution-
free) statistical significance test [12]. An individual a is said to U -dominate an
individual b (denoted by a �U b) with the confidence level α iif:

– In all objectives, b is not superior than a using a U -test with the confidence
level of α.

– In at least one objective, a is superior than b using a U -test with the confi-
dence level of α.

The U -dominance operator takes objective value samples of given two indi-
viduals, estimates the impacts of noise on the samples through a U -test, examines
whether it is statistically confident enough to judge a dominance relationship
between the two individuals, and determines which individual is statistically
superior/inferior (Algorithm 1).

Given two sets of objective value samples, A and B, which are collected from
two individuals a and b, a U -test is performed on A and B in each objective
(Algorithm 1). First, A and B are combined into a set S = A∪ B. The samples
in S are sorted in ascending order based on their objective values in an objective
in question. Then, each sample obtains its rank, which represents the sample’s
position in S. The rank of one is given to the first sample in S (i.e., the best
sample that has the minimum objective value). If multiple samples tie, they
receive the same rank, which is equal to the mean of their positions in S. For
example, if the first two samples tie in S, they receive the rank of 1.5 ( 1+2

2 ).
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Once ranks are assigned to samples, the rank-sum values, RA and RB, are
computed for A and B, respectively. (RA sums up the ranks for the samples
in A.) For a large sample size (> 10), the sampling distributions of RA and RB
are approximately normal [12]. Therefore, the standardized value of a rank-sum
is a standard normal deviate whose significance can be tested under the standard
normal distribution. The standardized value of RA is given as follows.

zRA =
RA − µRA

σRA

(2)

µRA and σRA denote the mean and standard deviation of RA, respectively.

µRA =
|A| × (|A|+ |B|+ 1)

2
(3)

σRA =

√
|A| × |B| × (|A|+ |B|+ 1)

12
(4)

With the confidence level of α, the U -test determines that A and B are not
drawn from the same distribution if F (zRA) ≤ (1− α) or F (zRA) ≥ α. (F (z) is
the cumulative distribution function of the standard normal distribution.) This
means that A and B are significantly different with the confidence level of α.
The U -test concludes that a is superior than b with respect to an objective in
question if F (zRA) ≤ (1− α) and that b is superior than a if F (zRA) ≥ α.

This paper integrates the U -dominance operator with NSGA-II [4], a well-
known EMOA. It is integrated with a binary tournament operator and a dom-
inance ranking operators in NSGA-II. NSGA-II uses binary tournament in its
parent selection process, which selects a parent individual to be used in crossover,
and uses dominance ranking in its environmental selection process, which selects
the next-generation population from the union of the current population and its
offspring [4]. Fig. 1 shows how to perform binary tournament with with the U -
dominance operator. In Lines 1 and 2, two individuals a and b are randomly
drawn from the population P. Then, in Lines 3 and 4, their objective value sam-
ples are obtained to invoke the U -dominance operator at Line 5. Based on the
U -dominance relationship between a and b, one of them is returned as a parent
individual (Lines 6 to 16).

Fig. 2 shows how to rank individuals with the U -dominance operator. From
Line 1 to 12, U -dominance relationships are determined among N individuals in
the population P. The U -dominance operator is invoked in Line 5. Unlike the
classical Pareto dominance, U -dominance relationships are not transitive. When
a �U b and b �U c, a �U c is not guaranteed. When objective functions contain
high-level noise, c might even U -dominate a. If a loop exists in U -dominance
relationships (e.g., a �U b, b �U c and c �U a), the U -dominance operator
deletes the U -dominance relationships among a, b and c, and concludes that
they are non-U -dominated with each other (Line 13 to 15 in Algorithm 2).
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Input: P, The population of N individuals
Output: A parent individual to be used in

crossover
1: a = randomSelection(P)
2: b = randomSelection(P)
3: A = samplesOf(a)
4: B = samplesOf(b)
5: r = uDominance(A, B, α)
6: if r = 1 then
7: return a
8: else if r = −1 then
9: return b

10: else
11: if random() > 0.5 then
12: return a
13: else
14: return b
15: end if

16: end if

Fig. 1. Binary Tournament

Input: P, The population of N individuals
Output: F , Ranked and sorted N individuals
1: for each p ∈ P do
2: for each q ∈ P do
3: P = samplesOf(p)
4: Q = samplesOf(q)
5: r = uDominance(P, Q, α)
6: if r = 1 then
7: Sp = Sp ∪ {p}
8: else if r = −1 then
9: np = np + 1

10: end if
11: end for
12: end for
13: for each p ∈ P do
14: clearDominanceRelationLoop(p)
15: end for
16: for each p ∈ P do
17: if np = 0 then
18: F1=F1 ∪ {p}
19: end if
20: end for
21: i = 1
22: while Fi 6= ∅ do
23: H = ∅
24: for each p ∈ Fi do
25: for each q ∈ Sp do
26: nq = nq − 1
27: if nq = 0 then
28: H = H∪ {q}
29: end if
30: end for
31: end for
32: i = i+ 1
33: Fi=H
34: end while

35: return F

Fig. 2. U -dominance Ranking

4 Experimental Evaluation

This section evaluates the U -dominance operator by integrating it with NSGA-
II. This variant of NSGA-II is called NSGA-II-U in this paper. It is compared
with the following five other variants of NSGA-II.

– NSGA-II: The original NSGA-II. It takes only one sample and uses its ob-
jective values in the default Pareto dominance operator. It never considers
noise in its dominance operator.

– NSGA-II-Median: takes multiple samples, obtains median values in different
objectives and use them in NSGA-II’s default dominance operator.

– NSGA-II-Mean: takes multiple samples, obtains mean values in different
objectives and use them in NSGA-II’s default dominance operator.

– NSGA-II-N: replaces NSGA-II’s default dominance operator with a noise-
aware dominance operator proposed in [8]. This noise-aware operator as-
sumes Gaussian noise in objective functions in advance (c.f. Section 2).

– NSGA-II-IQR: replaces NSGA-II’s default dominance operator with a noise-
aware dominance operator proposed in [16] (c.f. Section 2).
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All NSGA-II variants are evaluated with ZDT and DTLZ family problems (10
problems in total) [5,19]. Experiments were configured as shown in Table 1 and
conducted with jMetal [7]. The total number of generations in each experiment
is 200 in ZDT problems, 500 in DTLZ3 and 250 in the other DTLZ problems.
Every experimental result is obtained from 20 independent experiments.

Table 1. Experimental Configurations

Parameter Value Parameter Value

Confidence level α 0.55 Population size N 100
# of samples per individual 20 Crossover rate 0.9
γ (Eq. 8) 3 Mutation rate 1/(# of decision variables)
Noise strength β (Eq. 6–9) 0.1 or 0.5 Total # of generations 200, 250 or 500

This paper uses the hypervolume ratio (HVR) metric to compare NSGA-II
variants and evaluate the U -dominance operator. HVR is calculated as the ratio
of the hypervolume (HV ) of non-dominated individuals (D) to the hypervolume
of Pareto-optimal solutions (P ∗) [15].

HV R(D) =
HV (D)

HV (P ∗)
(5)

HV measures the union of the volumes that non-dominated individuals dom-
inate. Thus, HVR quantifies the optimality and diversity of non-dominated in-
dividuals D. A higher HVR indicates that non-dominated individuals are closer
to the Pareto-optimal front and more diverse in the objective space.

In order to turn ZDT and DTLZ family problems to be noisy problems, this
paper defines four kinds of additive noise in objective functions (c.f. Eq. 1).

– Gaussian noise: This noise distribution is characterized with a symmetric
shape and a very limited number of outliners.

εi = βN (0, 1) (6)

N (0, 1) is the standard normal (or Gaussian) distribution.
– Cauchy noise: This noise distribution is used to generate more outliers

than the Gaussian distribution does.

εi = β
N (0, 1)

N (0, 1) + e
(7)

e is set to be a very small value in order to prevent division by zero.
– Chi-squared noise: This distribution is asymmetric and heavy-tailed in

contrast to Gaussian and Cauchy distributions. It contains outliers.

εi = β

γ∑
i=1

Ni(0, 1)2 (8)
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– Log-normal noise: This distribution is characterized with an asymmetric
and heavy-tailed shape and outliers.

εi = β × exp(N (0, 1)) (9)

4.1 Experimental Results

Tables 2 to 5 show the average HVR values that six EMOAs yield at the last
generation in 10 different test problems with different noise distributions. In each
table, a number in parentheses indicates a standard deviation among different
experiments. A bold number indicates the best result among six algorithms on
a per-row basis. A double star (**) or a single star (*) is placed for an average
HVR result when the result is significantly different from NSGA-II-U’s result
based on a single-tail t-test. A double star is placed with the confidence level of
99% while a single star is placed with the confidence level of 95%.

Table 2 shows the experimental results under Gaussian noise. NSGA-II-U
clearly outperforms NSGA-II, NSGAII-Median and NSGA-II-IQR in all prob-
lems except ZDT2. NSGA-II-Mean and NSGA-II-N are more competitive against
NSGA-II-U because noise follows a normal distribution and the distribution is
symmetric. NSGA-II-U significantly outperforms NSGA-II-Mean and NSGA-II-
N in DTLZ1 and DTLZ3 with the confidence level of 99% while the three EMOAs
perform similarly in the other problems.

Table 3 shows the results under Cauchy noise. NSGA-II-U clearly outper-
forms NSGA-II, NSGA-II-Mean, NSGA-II-N and NSGA-II-IQR. In contrast to
Table 2, NSGA-II-Median outperforms NSGA-II-Mean because Cauchy noise
contains a lot of outliers. NSGA-II-U significantly outperforms NSGA-II-Median
in DTLZ1 and DTLZ3 with the confidence level of 99% while NSGA-II-Median
yields similar or better performance than NSGA-II-U in the other problems.

Under chi-squared noise (Table 4) and lognormal noise (Table 5), NSGA-
II-U significantly outperforms five other EMOAs in almost all problems except
ZDT2. In ZDT2, NSGA-II-Median performs better than NSGA-II-U when noise
strength is 0.5. However, there is no significant difference between the two al-
gorithms when noise strength is 0.1. Tables 4 and 5 demonstrate that the U -
dominance operator reliably operates when many outliers exist in objective value
samples under asymmetric noise distributions.

5 Conclusions

This paper proposes and evaluates a new noise-aware dominance operator, called
the U -dominance operator, which never assumes noise distributions in advance
by leveraging the Mann-Whitney U -test. Experimental results show that it op-
erates reliably in noisy MOPs and outperforms existing noise-aware dominance
operators particularly when many outliers exist in objective value samples under
asymmetric noise distributions.
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Table 2. HVR Results under Gaussian Noise
β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.732(0.050)** 0.922(0.007)** 0.931(0.007) 0.923(0.006)** 0(0)** 0.932(0.006)
0.5 0.004(0.015)** 0.604(0.066)** 0.690(0.045) 0.652(0.050) 0(0)** 0.684(0.056)

ZDT2
0.1 0.086(0.177) 0.716(0.264)** 0.813(0.150)** 0.347(0.404) 0(0)** 0.256(0.386)
0.5 0(0) 0.010(0.044) 0.024(0.059) 0(0) 0(0) 0(0)

ZDT3
0.1 0.814(0.045)** 0.948(0.006) 0.951(0.018) 0.945(0.022) 0.003(0.004)**0.952(0.006)
0.5 0.066(0.066)** 0.679(0.108) 0.757(0.081) 0.731(0.077) 0(0)** 0.716(0.087)

ZDT4
0.1 0.764(0.139)** 0.908(0.105) 0.938(0.016) 0.839(0.134)* 0(0)** 0.917(0.053)
0.5 0.004(0.019)** 0.558(0.197)* 0.679(0.163) 0.672(0.191) 0(0)** 0.685(0.181)

ZDT6
0.1 0.233(0.077)** 0.698(0.028)** 0.721(0.031) 0.691(0.033)** 0(0)** 0.732(0.023)
0.5 0(0)** 0.067(0.055)* 0.181(0.094)* 0.071(0.054)* 0(0)** 0.112(0.073)

DTLZ1
0.1 0.022(0.056)** 0.397(0.390)** 0.477(0.369)** 0.546(0.353)** 0(0)** 0.895(0.010)
0.5 0(0)** 0(0)** 0.007(0.032)** 0.014(0.055)** 0(0)** 0.519(0.138)

DTLZ2
0.1 0.319(0.101) 0.756(0.0141) 0.775(0.011) 0.736(0.020) 0(0)** 0.780(0.014)
0.5 0(0) 0.006(0.015) 0.070(0.091)** 0.204(0.132)** 0(0) 0.002(0.008)

DTLZ3
0.1 0.015(0.069)** 0.007(0.024)** 0.059(0.178)** 0(0)** 0(0)** 0.725(0.151)
0.5 0(0)** 0.002(0.011)** 0.009(0.030)** 0(0)** 0(0)** 0.417(0.151)

DTLZ4
0.1 0.469(0.122)** 0.801(0.131) 0.862(0.010) 0.810(0.091) 0(0)** 0.819(0.134)
0.5 0.046(0.058)** 0.354(0.106) 0.407(0.093) 0.474(0.088)** 0(0)** 0.373(0.137)

DTLZ7
0.1 0.234(0.050)** 0.733(0.037)** 0.764(0.032) 0.728(0.035)** 0(0)** 0.770(0.030)
0.5 0(0)** 0.153(0.063)** 0.229(0.059)** 0.182(0.059)** 0(0)** 0.069(0.084)
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Table 4. HVR Results under Chi-squared Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.689(0.045)** 0.893(0.009)** 0.898(0.012)** 0.897(0.009)**0.001(0.002)**0.922(0.010)
0.5 0.173(0.059)** 0.532(0.066)** 0.587(0.053)** 0.615(0.061)** 0(0)** 0.713(0.037)

ZDT2
0.1 0.46(0.169) 0.727(0.256) 0.733(0.258) 0.279(0.374) 0(0)** 0.603(0.370)
0.5 0(0) 0.208(0.085)** 0.120(0.149) 0(0) 0(0) 0.027(0.087)

ZDT3
0.1 0.675(0.059)** 0.915(0.010)** 0.920(0.008)** 0.914(0.009)**0.002(0.003)**0.930(0.005)
0.5 0.071(0.091) 0.490(0.081) 0.521(0.085) 0.550(0.081) 0(0)** 0.556(0.066)

ZDT4
0.1 0.610(0.204)** 0.891(0.086) 0.884(0.081) 0.866(0.056)** 0(0)** 0.926(0.027)
0.5 0.218(0.150)** 0.685(0.115) 0.569(0.205) 0.623(0.154) 0(0)** 0.732(0.156)

ZDT6
0.1 0.333(0.070)** 0.687(0.032)** 0.684(0.033)** 0.657(0.047)** 0(0)** 0.740(0.022)
0.5 0(0)** 0.239(0.060)** 0.228(0.098)** 0.205(0.063)** 0(0)** 0.337(0.066)

DTLZ1
0.1 0(0)** 0.541(0.292)** 0.452(0.390)** 0.265(0.230)** 0(0)** 0.878(0.013)
0.5 0(0)** 0(0)** 0.014(0.047)** 0.009(0.019)** 0(0)** 0.513(0.134)

DTLZ2
0.1 0.451(0.058)** 0.745(0.015)** 0.749(0.011)** 0.736(0.013)** 0(0)** 0.787(0.004)
0.5 0.007(0.024) 0.002(0.004) 0.012(0.020) 0.026(0.024) 0(0)** 0.007(0.013)

DTLZ3
0.1 0(0)** 0(0)** 0(0)** 0(0)** 0(0)** 0.742(0.063)
0.5 0(0)** 0(0)** 0(0)** 0(0)** 0(0)** 0.011(0.041)

DTLZ4
0.1 0.578(0.094)** 0.789(0.129) 0.840(0.012)** 0.827(0.014)** 0(0)** 0.873(0.011)
0.5 0.120(0.093)** 0.285(0.099)** 0.323(0.091)** 0.326(0.079)** 0(0)** 0.491(0.100)

DTLZ7
0.1 0.658(0.036)** 0.798(0.013)** 0.787(0.018)** 0.782(0.026)** 0(0)** 0.828(0.008)
0.5 0.138(0.042)** 0.535(0.051)** 0.553(0.053)* 0.558(0.045)* 0(0)** 0.607(0.037)

Table 5. HVR Results under Log-normal Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.822(0.019)** 0.937(0.007)** 0.917(0.006)** 0.917(0.009)** 0.048(0.04)** 0.951(0.005)
0.5 0.323(0.103)** 0.791(0.036)** 0.667(0.052)** 0.683(0.057)** 0.0(0.0)** 0.857(0.013)

ZDT2
0.1 0.689(0.164) 0.882(0.011) 0.776(0.195) 0.428(0.394)** 0.0(0.0)** 0.753(0.321)
0.5 0.046(0.074)** 0.561(0.196)** 0.278(0.206) 0.043(0.134)** 0.0(0.0)** 0.311(0.353)

ZDT3
0.1 0.873(0.019)** 0.949(0.008) 0.934(0.007)** 0.931(0.008)**0.086(0.056)**0.954(0.016)
0.5 0.27(0.118)** 0.806(0.032)** 0.626(0.068)** 0.63(0.094)** 0.0(0.0)** 0.874(0.014)

ZDT4
0.1 0.739(0.145)** 0.905(0.069)* 0.898(0.067)* 0.86(0.096)** 0.0(0.0)** 0.940(0.016)
0.5 0.178(0.15)** 0.808(0.089) 0.673(0.199)* 0.596(0.194)** 0.0(0.0)** 0.816(0.130)

ZDT6
0.1 0.531(0.052)** 0.784(0.029)** 0.709(0.024)** 0.694(0.026)** 0.0(0.0)** 0.808(0.020)
0.5 0.062(0.034)** 0.471(0.059)** 0.301(0.075)** 0.315(0.062)** 0.0(0.0)** 0.589(0.032)

DTLZ1
0.1 0.036(0.158)** 0.561(0.334)** 0.426(0.373)** 0.556(0.265)** 0.0(0.0)** 0.906(0.013)
0.5 0.0(0.0)** 0.146(0.223)** 0.063(0.129)** 0.429(0.167)** 0.0(0.0)** 0.795(0.027)

DTLZ2
0.1 0.675(0.016)** 0.779(0.014)** 0.781(0.007)** 0.747(0.013)** 0.0(0.0)** 0.792(0.011)
0.5 0.004(0.012)** 0.589(0.045)** 0.27(0.101)** 0.313(0.112)** 0.0(0.0)** 0.676(0.024)

DTLZ3
0.1 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.763(0.035)
0.5 0.0(0.0)** 0.008(0.036)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.547(0.107)

DTLZ4
0.1 0.657(0.178)** 0.844(0.094) 0.802(0.161) 0.71(0.192) 0.0(0.0)** 0.816(0.156)
0.5 0.255(0.094)** 0.653(0.138) 0.516(0.089)** 0.509(0.109)** 0.0(0.0)** 0.703(0.206)

DTLZ7
0.1 0.763(0.014)** 0.840(0.012) 0.83(0.015) 0.799(0.024)**0.001(0.003)**0.840(0.030)
0.5 0.341(0.065)** 0.690(0.030)** 0.631(0.033)** 0.62(0.034)** 0.0(0.0)** 0.742(0.028)


