
Early Aspects for Non-functional Properties in
Service Oriented Business Processes

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393
{shu, jxs}@cs.umb.edu

Katsuya Oba
OGIS International, Inc.
San Mateo, CA 94404

oba@ogis-international.com

Abstract
In Service Oriented Architecture, each application is of-

ten designed with a set of reusable services and a business
process. In order to retain the reusability of services, it
is important to separate non-functional properties of ap-
plications (e.g., security and reliability) from their func-
tional properties. Currently, non-functional properties are
often defined on a per-service basis. In contrast, this paper
investigates a new per-process strategy, and proposes an
aspect oriented language to separate functional and non-
functional properties in business processes. Each aspect
formally specifies non-functional properties that crosscut
among multiple services. The proposed language frees ap-
plications developers from manually specifying and vali-
dating non-functional properties for services one by one,
thereby reducing the burdens/costs of application develop-
ment and maintenance. This paper describes the design of
the proposed language and demonstrates how each aspect
(i.e., a set of non-functional properties) is woven to a busi-
ness process and transformed to application code.

1. Introduction
Service Oriented Architecture (SOA) is an emerging

style of software architectures to build, integrate and main-
tain applications in a cost effective manner by improving
their reusability [1,2]. In SOA, each application is often de-
signed in an implementation independent manner with a set
of reusable services and a business process. Each service
encapsulates the function of an application component, and
each business process defines how services interact to ac-
complish a certain business goal. Services are intended to
be reusable (or sharable) for different applications to imple-
ment different business processes.

For retaining the reusability of services, it is impor-
tant to separate non-functional properties of applications
(e.g., security and reliability) from their functional proper-
ties because different applications use each service in dif-
ferent non-functional requirements (e.g., different security

policies) [3–5]. In most of the current practices of sep-
arating functional and non-functional properties in SOA,
non-functional properties are specified on a per-service ba-
sis [4–9]. However, with this per-service strategy, appli-
cation developers need to manually ensure that each non-
functional property is properly configured in a series of
services in an ad-hoc manner because each non-functional
property tends to cover multiple services simultaneously.
For example, a certain security property may be applied to
all services that participate in a business process. It is te-
dious, expensive and error-prone to consistently specify and
validate non-functional properties throughout services in a
large-scale business process.

In order to address this issue, it is necessary to spec-
ify non-functional properties for business processes rather
than services. A per-process strategy can free application
developers from manually specifying and validating non-
functional properties for services one by one, thereby re-
ducing the burdens/costs of application development and
maintenance. However, this strategy has not been sup-
ported yet in the current visual/textual definition languages
for business processes, such as Unified Modeling Language
(UML), Business Process Modeling Notation (BPMN) [10]
and Business Process Execution Language (BPEL) [11].

This paper proposes a language for a new per-process
strategy to separate functional and non-functional proper-
ties in SOA. The proposed language leverages the notion
of aspects (or early aspects1) in aspect oriented program-
ming/modeling [13,14]. Each aspect is used to specify non-
functional properties that crosscut (or scatter) over multiple
services in a business process.

Figure 1 shows a model-driven development (MDD)
framework that supports the proposed aspect oriented lan-
guage. The framework consists of (1) the proposed lan-
guage, (2) a UML profile to specify non-functional proper-

1Early aspects are crosscutting concerns that exist in early phases in
application development process, such as requirement analysis phase [12].

App.codeApp.code

UPUP--SNFPsSNFPs FeatureMetamodel(fmp)

FMFM--SNFPsSNFPs

Ecore (EMF)

UML Modelsw/ UP-SNFPs

FeatureConfigurations

meta-meta-model
meta-model

model

UML Metamodel

Ark.bpmnArk.bpmnApp.code
The proposed MDD framework

BPMNMetamodel(eBPMN)

BPMNModels

Ark.umlArk.uml

BPMN AspectLanguageMetamodel

Aspects

Figure 1: An MDD Framework supporting the Proposed
Aspect Oriented Language

ties in SOA, called, UP-SNFPs [4], (3) a feature model that
defines a set of constraints among non-functional properties
(e.g. dependency and mutual exclusion constraints), called
FM-SNFPs [5], (4) a model transformation tool, called
called Ark. All artifacts in this framework are maintained
with the metameta model (Ecore) of the Eclipse Modeling
Framework (EMF2). The proposed language’s syntax is de-
fined as a meta model on Ecore. UP-SNFPs is defined as
an extension to the UML metamodel. FM-SNFPs is defined
on the feature metamodel in fmp3. Currently, BPMN is used
as a language to define business processes. BPMN models
are defined on eBPMN4. Ark consists of two components:
Ark.bpmn and Ark.uml. Ark.bpmn interprets a given as-
pect (i.e., a set of non-functional properties), waive it to a
BPMN model, and transform the BPMN model to a UML
model decorated with UP-SNFPs. Ark.uml transforms the
generated UML model into application code (program code
and deployment descriptors).

Using the proposed aspect oriented language, non-
functional properties can be specified for business processes
in an implementation independent manner. They can be
portable and reusable across different implementation tech-
nologies. Through a chain of model transformations, Ark
generates application code specific to certain implementa-
tion technologies such as Enterprise Service Buses (ESBs).

2. Preliminaries
This section overviews BPMN (Section 2.1) and de-

scribes UP-SNFPs and FM-SNFPs, which are used in ap-
plication development with (Sections 2.2 and 2.3).
2.1. BPMN

BPMN is a visual language to define business processes.
Figure 2 shows a purchasing process that involves three ser-
vices: Customer, Retailer and Supplier. When a retailer
receives an order, it examines whether it has ordered items
in stock. If not, it places an order to a supplier. The supplier
ships ordered items or notifies a shipping delay. A retailer
asks a customer to give feedback one week after a payment.

2http://www.eclipse.org/emf/
3http://gp.uwaterloo.ca/fmp/
4http://www.soyatec.com/ebpmn/

Suppl
ier

Custo
mer

Retail
er Sales

Wareh
ouse

ShipmentShipment

FeedbackFeedbackPaymentPaymentOrderOrder FeedbackRequestFeedbackRequest

OrderOrder

InvoiceInvoice ShipmentShipment

NoNo

Notify a Delay
Prepare Shipping

Takes long
to prepare

Order
Shipping Merchandise

Give FeedbackReceive an Invoice Make PaymentPlace an Order Receive Ordered Items

Ask FeedbackReceive an Order Place an Order Receive PaymentSend an Invoice
1 week

Receive Merchandise
Ship Ordered Item

Enough
Quantity?

Check Inventories

Figure 2: A Purchasing Process

A BPMN model consists of Pools, Tasks and Se-
quence/Message Flows. A Pool, represented as a rectan-
gle, denotes a participant in a business process; for exam-
ple, Retailer in Figure 2. A Pool can have Lanes to clas-
sify internal activities; for example, Sales and Warehouse in
Retailer. A Task, represented as a rounded-corner rectan-
gle, denotes a task performed by a participant; for example,
Receive an Order in Retailer. A Sequence Flow, repre-
sented as a solid line, denotes the order of Tasks performed
in a Pool. A Message Flow, represented as a dashed line,
denotes a flow of messages between two participants.

A Pool can contain Gateways and Events. A Gateway,
represented as a diamond, controls the divergence (forking)
and convergence (merging) of Sequence Flows. A Gateway
can have the default Sequence Flow, represented as a Se-
quence Flow with a slash mark, which denotes a Sequence
Flow that is chosen if others are not selected. In Figure 2,
a Retailer branches a flow depending on the number of in-
ventories. If it does not have enough inventories, it performs
Place an Order. If it does, it selects the default Sequence
Flow and performs Ship Ordered Item.

An Event, represented as a circle, triggers a subsequent
Sequence Flow. BPMN supports several types of events:
Message, Timer, Rule, Error, Cancel and Compensation.
A Message, represented as a circle with an envelope, de-
notes a reception of a message from another participant. In
Figure 2, a Supplier triggers its process when it receives
an Order message from Retailer. A Timer, represented
as a circle with a clock, denotes a specific time or interval.
In Figure 2, a Retailer performs Ask Feedback one week
after it performs Receive Payment. An Error, represented
as a circle with a lightning, denotes a specific error con-
dition. In Figure 2, a Supplier performs Notify a Delay
when Prepare Shipping takes a long time.

2.2. UP-SNFPs
UP-SNFPs is a UML profile to visually specify non-

functional properties in UML’s class and composite struc-
ture diagrams [4]. It is designed around two major con-

source sink《service》Retailer《connector》OrderConn
1

*

1

*

1

*

1

*

sourcesink

request《message》OrderMsg reply《message》InvoiceMsg

request《message》OrderMsg
reply《message》ShippingMsg

《messageExchange》InventoryExchange

《messageExchange》OrderExchangesecurityTokens = {X509v3, Kerberosv5ST}

《accessControlledService》Supplier
《service》Customer

timeout = 300000synchrony = AsyncdeliveryAssurance= ExactlyOnceencryptionAlgorithm= xmlenc#aes256-cbc

retransmission::number= INFretransmission::type= Ackretransmission::timeout= 120000
Figure 3: An Example Model with UP-SNFPs

cepts in SOA: services and connections between services.
Each connection defines how services are connected with
each other and how messages are exchanged through the
connection. UP-SNFPs covers the following four areas of
non-functional properties.

• Service Deployment Semantics: service redundancy.

• Message Transmission Semantics: messaging syn-
chrony, message delivery assurance, message queuing,
multicast, manycast, anycast, message routing, mes-
sage prioritization, messaging timeout, message log-
ging, and message retention.

• Message Processing Semantics: message conversion,
message split, message aggregation, message valida-
tion, and message filtering.

• Security Semantics: transport-level encryption,
message-level encryption (entire/partial message en-
cryption), message signature, message access control,
service access control, and secure conversation.

Figure 3 shows an example UML model de-
fined with UP-SNFPs. It illustrates a purchas-
ing application, which corresponds to the BPMN
model in Figure 2. In this example, three services
(Customer, Retailer and Supplier) exchange mes-
sages. Each service is represented by a class stereotyped
with �service� or �accessControlledService�.
�accessControlledService� indicates a special type
of services that enforce an access control policy. The
tagged-value securityTokens is used to specify security
tokens (or certificates) for access authentication.

In Figure 3, services exchange three types of messages,
each of which is stereotyped with �message�. Each pair
of a request and reply messages is represented by a class
stereotyped with�messageExchange�. For example, a pair
of OrderMsg (request) and InvoiceMsg (reply) is represented
by OrderExchange in Figure 3.
�connector� represents a connection that transmits

messages between services. In Figure 3, messages are deliv-
ered through the connector OrderConn. Every message ex-
change is bound with a connector in order to specify which

connector is used to deliver messages. A connector has a
provided interface (a ball icon) and a required interface (a
socket icon). Services use the provided and required inter-
faces to send and receive messages, respectively. In Fig-
ure 3, a Customer sends an OrderMsg to a Retailer.

Each connector can have multiple tagged-values to spec-
ify a set of message transmission and processing semantics.
In Figure 3, the connector OrderConn specifies the time-
out of message transmissions (300,000 milliseconds), syn-
chrony of message transmissions (asynchronous), assurance
level of message delivery (exactly once), and encryption al-
gorithm for messages (Advanced Encryption Standard).

2.3. FM-SNFPs
There often exist a number of constraints (e.g., depen-

dency and mutual exclusion) among non-functional prop-
erties. In UP-SNFPs, a timeout period must be speci-
fied with the timeout tagged-value when the synchrony
of message transmissions is configured as asynchronous
(synchrony=Async; see Figure 3). A message retransmis-
sion policy requires to specify the maximum number of re-
transmissions and its type: ack-based or nack-based. If it is
configured as ack-based, a timeout period must be specified.

Following the notion of feature modeling [15], FM-
SNFPs provides a feature model that explicitly defines non-
functional constraints in SOA [5]. Feature modeling is a
simple yet powerful method to specify a set of constraints
among an application’s features (e.g., configuration poli-
cies). By modeling a non-functional property as a feature,
FM-SNFPs allows developers to consistently validate and
enforce non-functional constraints in their applications.

Figure 4 shows a subset of the feature model in FM-
SNFPs. FM-SNFPs has a hierarchy of non-functional prop-
erties. White and black circle icons indicate optional and
mandatory non-functional properties, respectively. In Fig-
ure 4, Timeout is optional. A fork icons with white and
black sectors denote exclusive-OR and OR relationships
among non-functional properties, respectively. In Figure 4,
only one of Sync, Async or Oneway must be selected for
Synchrony. A requires relationship indicates a depen-
dency among non-functional properties. For example, when
Async and Retransmission are selected, Type and Timeout
must be selected too. An encourages relationship has a sim-
ilar but weaker semantics than a requires relationship. For
example, when Access Control is selected, it is encour-
aged (but not mandatory) to select Message Encryption
too. Figure 5 shows an example feature configuration (an
instance of the FM-SNFPs feature model). It shows a set of
non-functional properties selected for a certain application.

3. The Proposed Aspect Oriented Language
In general, aspect oriented languages are designed to

separate crosscutting concerns from other concerns and
modularize crosscutting ones as an aspect [13, 14]. Then,

Synchrony

requires

SyncAsyncOnewayRetransmissionNumber : IntegerTimeout : IntegerType AckNack

requires

Delivery AssuranceAt Most OnceAt Least Once

requires
requiresrequires

and and
Message Priority : Integer

Timeout : Integer

SOA Non-functional Properties
Message Integrity

requires(Number = INF) Queue

In Order TransmissionLogging Message TransmissionMessage RoutingMessage RevisionMessage EncryptionAlgorithm : StringAccess ControlSecurity Tokens : String [1..*]encourages
Message SignatureAlgorithm : String

Figure 4: The Definition of FM-SNFPs
OrderingNFPsSynchronySyncAsyncOnewayRetransmissionNumber: 2Timeout: 300000Type AckNack

Delivery AssuranceAt Most OnceAt Least Once
Timeout : 600000 Access ControlAlgorithm

In Order TransmissionLogging Message TransmissionMessage RoutingMessage RevisionMessage EncryptionAlgorithm: xmlenc#ase256-cbc
Message SignatureAlgorithm: xmldsig#dsa-sha1

Message Priority

Queue

Message Integrity

Figure 5: An Example Feature Configuration

supporting tools (often called aspect weavers) weave as-
pects into the other parts of an application to complete it.

As described in Section 1, non-functional properties are
crosscutting concerns. Thus, the proposed aspect oriented
language is designed to identify a set of non-functional
properties used in a business process, modularize them as
an aspect and instruct how they are woven to the business
process. Ark.bpmn serves as an aspect weaver for the pro-
posed language (see also Figure 1). This clear separation
between functional and non-functional properties allows the
two types of properties to evolve in parallel, thereby im-
proving the maintainability of applications.

An aspect consists of advices and pointcuts. An ad-
vice is a definition (or implementation) of a concern that
appears many places (e.g., logging code) and a pointcut
specifies places where advices appear (e.g., at the begin-
ning of methods). Supporting tools insert (or weave) ad-
vices into main application code according to pointcuts.
The proposed aspect oriented language treats a feature con-
figuration that specifies a set of non-functional properties
as an advice. Also, the proposed aspect oriented language
provides crosscutting expressions that allow for develop-
ers to define pointcuts against BPMN models. Ark weaves
non-functional properties into BPMN models according to

pointcuts.
Listing 1 is a definition of an aspect, which begins

with the keyword aspect followed by the name of an as-
pect, in the proposed aspect oriented language. The aspect
OrderNFPAspect defines arbitrary number of pointcuts with
the keyword pointcut followed by the name of a pointcut.
The pointcut order specifies paths between two model el-
ements (Task or Message Flow) in a BPMN model by us-
ing the within join point5 (Line 3 and 4). The within join
point takes two names of model elements in regular expres-
sion as parameters. A set of model elements matched to
the first parameter and the second parameter are considered
as starting points and ending points of paths respectively.
Ark finds paths between every combinations of starting and
ending points by following Sequence or Message Flows in
a given BPMN model. Since a pair of two points may be
connected with multiple paths, a supporting tool follows all
Sequence and Message Flows from a starting point to find
ending points as Listing 2 shows.

Listing 1: An Example Aspect

1 aspect OrderNFPAspect{
2 // pointcut
3 pointcut order:
4 within("Customer::Place .*", "Customer::.*Items");
5
6 // advice
7 order: OrderingNFPs; }

Listing 2: Path Search Algorithm

1 // corresponds to a join point "within(startName , endName)"
2 findPaths(startName , endName){
3 // finds Tasks or Message Flows by names
4 startPoints = findElementsByName(startName)
5 endPoints = findElementsByName(endName)
6
7 foreach(s in startPoints){
8 // find paths from ’s’ to ’endPoints ’
9 paths += _findPaths(s, endPoints , [])

10 }
11 return paths;
12 }
13
14 _paths = []
15 _findPaths(startPoint , endPoints , pathSoFar){
16 pathSoFar.add(startPoint)
17 if startPoint is included in endPoints
18 _paths.add(pathSoFar)
19 else
20 // check all points next to startPoint
21 // by following all outgoing Sequence/Message Flows
22 foreach(nextPoint in startPoint.outgoings){
23 _paths.add(
24 _findPaths(nextPoint , endPoints , pathSoFar))
25 }
26 return _paths
27 }

The pointcut order (Line 3 in Listing 1) specifies
paths, consisting of Tasks and Message Flows, be-
tween two model elements: Customer::Place .* and
Customer::.*Items (Line 4). As Figure 2 shows,
these two elements (parameters) match the tasks Place

5A join point is a place where advices can be woven. A pointcut is a
set of join points.

an Order and Receive Ordered Items in Customer

respectively, and there are four paths between them.
The first path starts with Customer::Receive Ordered
Items, passes through Customer::Receive an Invoice

and reaches Customer::Receive Ordered Items. The
second path starts with Customer::Receive Ordered

Items, passes through Order, Retailer::Receive

an Order, Retailer::Send an Invoice, Invoice

and Customer::Receive an Invoice, and reaches
Customer::Receive Ordered Items. The third path
starts with Customer::Receive Ordered Items, passes
Retailer::Receive an Order, Retailer::Check

Inventories and Customer::Ship Ordered Item, and
reaches Customer::Receive Ordered Items. (Message
Flows between Tasks are also included.) The last path
passes through Retailer::Place an Order and Tasks
in Supplier after Retailer::Check Inventories, and
reaches Customer::Receive Ordered Items. As illus-
trated in this example, Ark automatically finds a set of
model elements that involved in a (sub) business process
according to pointcuts.

Then, Ark weaves a set of non-functional properties into
model elements according to an advice (Line 7). The name
of a pointcut (order in Line 3 and 7) refers to a set of model
elements included in paths, and the name of an feature con-
figuration (OrderingNFPs in Line 7) refers to a set of non-
functional properties defined in a feature configuration (Fig-
ure 5). According to the advice, Ark weaves a set of non-
functional properties (OrderingNFPs) into a set of model el-
ements (order) in a consistent manner.

In addition to within, the proposed aspect oriented
language supports several join points (Table 1): target,
source, flow, trigger, depth and default.

Table 1: Join Points
Join Point Description
within Returns all paths between two model elements

(Tasks or Message Flows).
target Returns all paths arrive at certain services.
source Returns all paths depart from certain services.
flow Specifies certain Message Flows.
trigger Returns all paths start from a certain type of

event
depth Limits the number of services in paths.
default Follows only default Sequence Flows at Gate-

ways

Listing 3: An Example Aspect

1 aspect NFPAspect{
2 // pointcuts
3 pointcut wholeProcess:
4 within("Customer::Place .*", ".*");
5
6 pointcut toRetailer: target("Retailer");
7

8 pointcut payment: flow("Payment");
9

10 pointcut error: trigger(ERROR);
11
12 pointcut orderWithRetailer:
13 within("Customer::Place.*", "Customer::.*Items") &&
14 depth(1);
15
16 pointcut retailerProcess:
17 within("Retailer::Receive an Order", ".*") &&
18 default();
19
20 pointcut feedback:
21 trigger(TIMER) &&
22 within(".*", "Customer::Give Feedback");
23
24 // advices
25 wholeProcess: DefaultSecurity , NoDeliveryAssurance;
26 orderWithRetailer: OrderingNFPs;
27 toRetailer: MessgeEncryption;
28 payment: HighlevelSecurity;
29 error: DeliveryAssurance; }

target and source are another representations of
within(".*", "ServiceName::.*") and within(

"ServiceName::.*", ".*"). (ServiceName is a parameter
of target and source.) They return all paths that arrive
at or depart from certain services respectively. Listing 3
defines the pointcut toRetailer (Line 6) that selects paths
arrive at Retailer. target and source allow for defining
aspects that certain services requires. For example, when
the Retailer requires all incoming/outgoing Message
Flows to be singed and encrypted, developers can enforce
the rule by using target and source.
flow is another representation of within("FlowName",

"FlowName"). (FlowName is a parameter of flow.) It di-
rectly specifies certain Message Flows, and returns paths
that contain only Message Flows. Listing 3 defines the
pointcut payment (Line 8) that selects the Message Flow
Payment in Figure 2. flow allow for defining aspects that
certain Message Flow requires. For example, when the
Payment Message Flow requires a high security level and
an access control but others do not, developers use flow to
specify non-functional properties of Payment directly.
trigger returns all paths that start from a certain type of

event, i.e., Message, Timer, Rule, Error, Cancel or Compen-
sation. Listing 3 defines the pointcut error (Line 10) that
selects paths start from Error events. It allows for specify-
ing non-functional properties for error handling processes
(e.g., ensuring delivery assurance). trigger is transformed
into within as well as target, source and flow. First, it
finds all events of a certain type and uses them as the first
parameter of within as within(events, ".*").
depth, which is used with other join points, spec-

ifies the number of services to be included in paths.
For example, paths can contain three services when a
pointcut has depth(2). Listing 3 defines the pointcut
orderWithRetailer using depth (Line 12 to 14). Although
the within part is the same as that of order in Listing 1,
the pointcut orderWithRetailer returns paths that involve
only Customer and Retailer because of depth. depth can

limit the range of interactions among services. For exam-
ple, orderWithRetailer finds interactions that occur only
among Customer and other services.
default, which is used with other join points as well as

depth, selects paths containing default Sequence Flows at
Gateways. Listing 3 defines the pointcut retailerProcess
(Line 16 to 18) that selects a default Sequence Flow at a
Gateway.

These join points can be used together. For exam-
ple, Listing 3 defines the pointcut feedback (Line 20
to 22) that selects paths starting from Timer events and
ending with the Customer::Give Feedback Task. The
pointcut returns a path contains Retailer::Ask Feedback,
Feedback Request and Customer::Give Feedback, but it
does not contain the Feedback Message Flow because
of within(".*", "Customer::Give Feedback"). When
a pointcut uses multiple join points, Ark returns an in-
tersection of paths found by each join point. For ex-
ample, the pointcut feedback returns a set of paths
contained in both trigger(TIMER) and within(".*",
"Customer::Give Feedback").

According to advices, non-functional properties defined
in feature configurations are woven into a BPMN model.
For example, Listing 3 weaves non-functional properties
in DefaultSecurity and NoDeliveryAssurance into the
pointcut wholeProcess (Line 24). Since it is the first
advice appears in an aspect, Ark weaves the two sets
of non-functional properties into a BPMN model first.
Then, non-functional properties in MessageEncryption is
woven into toRetailer. When non-functional properties
in DefaultSecurity and MessageEncryption are contra-
dict with each other (e.g., they specify different security
level), MessageEncryption overwrites DefaultSecurity
since MessageEncryption appears after DefaultSecurity.

This way, the proposed aspect oriented language sepa-
rates BPMN models and its non-functional properties well
and improves the reusability of feature configurations. For
example, a feature configuration can be applied to all model
elements in a certain business process as a default setting,
or can be applied to only specific elements (e.g., elements in
paths between certain services) by only changing pointcuts.
It makes easy to configure applications in typical situations
(e.g., services hosted in-house, or accessed via the Internet)
by reusing existing feature configurations.

4. Application Development with Ark
Figure 6 shows the application development process with

the proposed aspect oriented language. Ark.bpmn takes a
BPMN model and an aspect(s), and transforms the BPMN
model to a UML model defined with UP-SNFPs. (See also
Figure 1.) Ark.uml transforms the generated UML model
into a skeleton of application code.

Ark.bpmn performs a model transformation in two steps:

uses
Transformedby Ark.bpmnBPMN model

UML modelwith UP-SNFPs
<<connector>>

App. code

App. developers
define

Transformedby Ark.uml
Aspects

App. developers

Add methodsto services

Priority: 10
Timeout: 600
SynchronydefaultConf

Feature Configurations
refers

define
Figure 6: Development Process with Ark

(1) transforming a BPMN model into a plain UML model
that defines no non-functional properties, and (2) configur-
ing non-functional properties on the generated UML model
based on the definition of an aspect(s).

The first step simply transforms a BPMN model into a
UML model. The generated UML model does not have any
non-functional properties, but it has several stereotypes de-
fined in UP-SNFPs (e.g., �service� and �connector�).

Figure 7 is a fragment of a UML model transformed
from the BPMN model in Figure 2. (The UML model
contains model elements corresponding to the Customer
and Retailer Pools, and the Order and Invoice Message
Flows in Figure 2.) Ark.bpmn transforms a Pool in a
BPMN model into a class stereotyped with �service�.
(e.g., the Customer Pool is mapped into the Customer
class.) Each Task in a Pool is transformed into a method
in a class. (e.g., the Place an Order Task is mapped
into the placeAnOrder method.) Also, a Message Flow
among Pools is mapped into three classes: classes with
�connector�, �messageExchange� and �message�.
They represent a connector between services, a pair of a
request and reply messages, and a request message6 respec-
tively. This transformation is implemented by leveraging
UP-SNFPs’ and eBPMN’s meta-models.

The next step is to configure non-functional properties in
a generated UML model according to aspects.

For defining aspects, Ark.bpmn provides an editor run-
ning on Eclipse. As Figure 8 shows, the editor shows built-
in keywords in boldface, automatically performs a syntax
check, and reports syntax errors while developers define as-
pects. The editor is implemented by leveraging oAW. oAW
allows developers to define the syntax of user-defined lan-
guages in EMF (BPMN Aspect Language Metamodel in
Figure 1), and it generates editors for the languages (Fig-
ure 8).

Ark.bpmn parses definitions of aspects and finds which

6Since a Message Flow in BPMN represents an oneway message, only
a request message is generated in a UML model.

source
《connector》OrderConn

1 * request《messageExchange》OrderExchange
《message》Order《service》Customer 《service》Retailersink1*placeAnOrder()… receiveAnOrder()…source
《connector》InvoiceConn

1
* request《messageExchange》InvoiceExchange

《message》Invoicesink 1
*

Figure 7: A Fragment of a generated UML model

Figure 8: An Editor in Ark.bpmn

feature configurations are applied to which model ele-
ments in a given BPMN model as described in Sec-
tion 3. If a feature configuration is applied to cer-
tain Tasks and/or Message Flows in a BPMN model,
the feature configuration is applied to services (classes
with �service�) that have methods corresponding to the
Tasks and/or connectors (classes with �connector�) cor-
responding to the Message Flows. For example, the fea-
ture configuration OrderingNFPs is applied to the pointcut
orderWithRetailer in Listing 3 (Line 25). Since the point-
cut orderWithRetailer returns paths that contain several
Tasks in Customer and Retailer in a BPMN model (Fig-
ure 2), the feature configuration OrderingNFPs is applied to
Customer and Retailer services in a generated UML model
(Figure 7). Also, since the paths contains several Message
Flows between Customer and Retailer, the feature config-
uration OrderingNFPs is applied to corresponding connec-
tors in a generated UML model as well. Then, Ark.bpmn
configures tagged-values defined in UP-SNFPs according
to feature configurations.

Figure 9 is a UML model that Ark.bpmn generates by
weaving the feature configuration in Figure 5 into the UML
model in Figure 7.

source
《connector》OrderConn

1 *

request《messageExchange》OrderExchange
《message》Order

《service》Customer 《service》Retailer
sink
1*

placeAnOrder()
…

receiveAnOrder()
…

source

《connector》InvoiceConn

1

*

request《messageExchange》InvoiceExchange
《message》Invoicesink 1

*

timeout = 300000synchrony = AsyncdeliveryAssurance = ExactlyOnceinOrder = trueencryptionAlgorithm = xmlenc#aes256-cbcretransmission = …

msgTransmissionLogRetained = true
signatureMethod = xmldsig#dsa-sha1routingHistoryRetained = true

Figure 9: A UML model with Non-Functional Properties

Once Ark.bpmn completes its model transformation,
Ark.uml validates an input UML model defined with UP-
SNFPs against the UML metamodel and UP-SNFPs, and
transforms it to a skeleton of application code (program
code and deployment descriptors). (See Figures 1 and 6).
Currently, Ark.uml implements a transformation mapping
for two major ESBs, Mule ESB7 and ServiceMix ESB8, and
GridFTP9. See [4] for full discussion on Ark.uml.

5. Related Work
This work is an extension to the authors’ previous

work [4, 5]. This work considers non-functional properties
in business process models and proposes an aspect oriented
language, while previous work considered them in UML
models on a per-service basis.

AspectViewpoint is an aspect oriented language to de-
fine aspects for BPMN models [17]. It uses aspects to de-
fine business processes, and extends an existing business
process by weaving the new ones to it. For example, a new
process (e.g., cancellation process) may be defined as an
aspect and woven into a purchasing process so that the pur-
chasing process can consider the new one. [18] proposes
an aspect oriented language to define aspects for BPEL.
It uses aspects to define BPEL primitives (e.g., a branch
of flows) and customize an existing business process by
weaving the primitives to it. Although the above both lan-
guages consider aspects for business processes, they focus
on functional properties of business processes (i.e., interac-
tions among services) rather than non-functional properties.

7http://mule.codehaus.org/
8http://servicemix.apache.org/
9An extension to FTP for transmitting files of large size [16].

Unlike these languages, the proposed language focuses on
non-functional properties in business processes.

AO4BPEL [19] is an aspect oriented language to extend
BPEL business processes as [18] does. Unlike [18], it sup-
ports several non-functional properties such as reliable mes-
saging, message encryption and transactions. Aspects can
specify non-functional properties that are woven to services
and their activities/tasks; however, the variety of pointcuts is
limited in AO4BPEL. In contrast, the proposed aspect ori-
ented language considers the pointcuts in control/message
flows as well. This significantly increases its expressive-
ness. Also, it supports much more non-functional properties
than AO4BPEL does. (See Section 2.)

[20] proposes a method to model and analyze non-
functional requirements in business processes (e.g., desir-
able response time and throughput). It examines whether
each service has conflicting non-functional requirements by
inspecting which services involve in which business pro-
cesses. However, [20] does not provide a formal language to
weave non-functional requirements to business processes.
The synthesis of functional and non-functional properties is
manually performed. Code generation is not supported ei-
ther. In contrast, the proposed aspect oriented language can
formally define how to combine non-functional properties
into business processes. Ark implements code generation
for the proposed aspect oriented language.

[21] proposes a method to define a set of non-functional
requirements as an aspect and weave it to a UML class
model. However, it does not provide specific non-functional
properties and does not perform code generation. In con-
trast, the proposed aspect oriented language defines aspects
on a per-process basis, not on a per-service basis.

6. Conclusion
This paper proposes an aspect-oriented language for a

new per-process strategy to separate functional and non-
functional properties in SOA. Each aspect specifies non-
functional properties that crosscut among multiple services
in a business process. The proposed language frees appli-
cations developers from manually specifying and validating
non-functional properties for services one by one, thereby
reducing the burdens/costs of application development and
maintenance. A supporting MDD tool interprets a given
aspect (i.e., a set of non-functional properties), waive it to
a BPMN model, transform the BPMN model to a UML
model, and generate corresponding application code (pro-
gram code and deployment descriptors).

References

[1] M. Bichler and K. Lin. Service-Oriented Computing. IEEE
Computer, 39(6), June 2006.

[2] M. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In IEEE Int’l Conf. on Web
Information Systems Engineering, December 2003.

[3] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and
R. Shah. Service-Oriented Architecture (SOA) Compass :
Business Value, Planning, and Enterprise Roadmap. IBM
Press, October 2005.

[4] H. Wada, J. Suzuki, and K. Oba. A Model-Driven Devel-
opment Framework for Non-Functional Aspects in Service
Oriented Architecture. Journal of Web Services Research,
September 2008. to appear.

[5] H. Wada, J. Suzuki, and K. Oba. A Feature Modeling Sup-
port for Non-Functional Constraints in Service Oriented Ar-
chitecture. In IEEE Int’l Conf. on Services Computing, July
2007.

[6] R. Amir and A. Zeid. A UML Profile for Service Oriented
Architectures. In ACM OOPSLA Poster session, October
2004.

[7] G. Ortiz and J. Hernändez. Toward UML Profiles for Web
Services and their Extra-Functional Properties. In IEEE Int’l
Conf. on Web Services, September 2006.

[8] OASIS. Web Services Security, November 2006.
[9] OASIS. Web Service Reliable Messaging, 1.1, September

2004.
[10] Business Process Modeling Initiative. Business Process

Modeling Notation (BPMN) 1.0, May 2004.
[11] OASIS. Web Services Business Process Execution Lan-

guage, April 2003.
[12] AOSD-Europ Network of Excellence. Extensive Survey

of Aspect-Oriented Requirements Engineering, Architecture
and Design Approaches, May 2005.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In European Conf. on Object-Oriented Pro-
gramming, June 1997.

[14] T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented Mod-
eling - Bridging the Gap Between Design and Implementa-
tion. In ACM Int’l Conf. on Generative Programming and
Component Engineering, October 2002.

[15] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools and Applications. Addison-Wesley, 2000.

[16] W. Allcock, J. Bresnahan, R. Kettimuthu, C. Dumitrescu
M. Link, I. Raicu, and I. Foster. The Globus Striped
GridFTP Framework and Server. In Super Computing,
November 2005.

[17] D. Correal and R. Casallas. Using Domain Specific Lan-
guages for Software Process Modeling. In ACM OOPSLA
Workshop on Domain-Specific Modeling, October 2007.

[18] C. Courbis and A. Finkelstein. Weaving Aspects into Web
Service Orchestrations. In IEEE Int’l Conf. on Web Services,
October 2005.

[19] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini.
Reliable, Secure, and Transacted Web Service Compositions
with AO4BPEL. In IEEE European Conference on Web Ser-
vices, December 2006.

[20] F. Aburub, M. Odeh, and I. Beeson. Modelling non-
functional requirements of business processes. Informa-
tion and Software Technology, 49(11):1162–1171, Novem-
ber 2007.

[21] L. Xu, H. Ziv, D. Richardson, and Z. Liu. Towards Modeling
Non-Functional Requirements in Software Architecture. In
ACM Int’l Conf. on Aspect-Oriented Software Development
Early Aspects Workshop, March 2005.

