
Managing the software design documents with XML
Junichi Suzuki

Department of Computer Science,
Graduate School of Science and Technology,

Keio University
Yokohama, 223-8522, Japan

+81-45-563-3925

suzuki@yy.cs.keio.ac.jp

Yoshikazu Yamamoto
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama, 223-8522, Japan
+81-45-563-3925

yama@cs.keio.ac.jp

ABSTRACT
It is hard to manage the software design documents within a
distributed development team. The issues include the format,
distribution and evolution of data. This paper mainly focuses on
the issues of the format and distribution, and addresses how we
can manage the software design documents for the distributed
software development in the standard based way.

In the software engineering community, Unified Modeling
Language (UML) has been widely accepted as an object-oriented
software analysis/design methodology, since it provides most of
the concepts and notations that are essential for documenting
object oriented models. UML, however, does not have an explicit
format for interchanging its models intentionally. This paper
addresses this lack and proposes UXF (UML eXchange Format),
which is an exchange format for UML models, based on XML
(Extensible Markup Language). It is a format powerful enough to
express, publish, access and exchange UML models and a natural
extension from the existing Internet environment. It serves as a
communication vehicle for developers, and as a well-structured
data format for development tools.

We demonstrate some proof-of-concept applications that show the
merits of UXF. We are especially interested in a distributed model
management system that manages the software design documents
over the Internet with UXF. This system leverages the team
development, reuse of design documents and tool interoperability
by publishing a set of CORBA interfaces. Our work shows an
important step in sharing and exchanging software design
documents, and indicates the future direction of the interoperable
software development tools.

Keywords
Software model interchange, CASE data interchange, UML, XML

1. Introduction
It is hard to share and manage the software design models and
their documents within a distributed development team. The
issues to manage them include:

� Describing and interchanging software model information,
which involves the exchange format.

� Evolution of software model information, which involves the
data consistency and storage facility.

� Defining a set of published interfaces for the network
communications, which involves the remote manipulation of the
model information.

In most cases, software models are dynamically changed during
the analysis/design, revision and maintenance phases, and also the
software tools used by a development team employ their own
proprietary formats to describe the software model information.
Thus, it is required to interchange the model information between
development tools throughout the lifecycle of software
development.

In addition, the Internet is an emerging infrastructure to distribute
and share the software model information, because it is an
effective and economical for making information available to the
widely separated group of individuals. Within the Internet/Intranet
environment, especially the Web environment, we can represent,
encode and ultimately communicate the software modeling
insights and understandings with each other.

Coupled with the above problems and requirements, a framework
is needed which allows the software design documents described
with an application neutral (standard based) format to be
distributed and shared over the Internet.

In the software engineering community, the Unified Modeling
Language (UML) [2-9] has been widely accepted as an object
oriented software analysis/design methodology, since it provides
most of the concepts and notations that are essential for
documenting object oriented models. Thus, we use UML as a tool
to specify the software structure and dynamics in this paper.
UML, however, does not offer an explicit format to describe and
exchange analysis/design models.

This paper describes how our work aims to make UML models
interchangeable over the Internet and/or between development
tools. To provide a standard-based means, we propose a stream-
based exchange format called UXF (UML eXchange Format),
which is based on XML (eXtensible Markup Language) [14]. We

consider the use of XML as a mechanism for encoding and
exchanging the structured data defined with UML. We outline the
rationale and fundamentals of UXF, and then discuss how we can
use it to express, publish, share and exchange UML models.

The remainder of this paper is organized as follows. Section 2
overviews UML and introduces the current limitations in
encoding and exchanging the complex structured information with
HTML (HyperText Markup Language), which is a traditional
markup language in the Internet. Then, the motivation and merits
of UXF is presented. Section 3 outlines the comparison with
related work. Section 4 defines the scope and syntax of UXF.
Section 5 provides a solution to interchange UML models on the
Internet and between various development tools. We conclude
with a note on the future work, in Section 6 and 7.

2. UML, XML and UXF
2.1 Unified Modeling Language (UML)
UML is the union of the previous leading object modeling
methodologies; Booch [10], OMT [11] and OOSE [12]. When
UML was published in late 1996, it quickly gained momentum
and became the de-facto standard for object-oriented modeling.
UML has been also submitted to the Object Management Group
(OMG) to become a public standard, and included additional
constructs that ancestors did not address, such as the extension for
business modeling [7], Object Constraint Language (OCL) [8]
and Object Analysis & Design CORBAfacility Interface
Definition [9]. It is the state of the art convergence of practices in
the academic and industrial community and expected that the
most developers will eventually choose UML for their modeling
work.

UML defines the following diagrams for the object modeling,
according to various perspectives to a target problem domain:

� Structural diagrams:
� Class diagram
� Object diagram

� Behavioral diagrams:
� Object diagram
� Use case diagram
� Sequence diagram
� Collaboration diagram
� State transition diagram
� Activity diagram

� Implementation diagrams:
� Activity diagram
� Component diagram

� Deployment diagram
Using these diagrams with the fine level of abstraction, complex
systems can be modeled through a small set of nearly independent
diagrams. UML provides two aspects for constructs in the above
diagrams:

� Semantics
The UML metamodel defines the abstract syntax and
semantics of object modeling concepts.

� Notations
UML defines graphical notations for the visual
representation of its model elements.

While UML defines the above coherent constructs and its
interchangeable semantics, it does not intentionally provide the
explicit format to exchange the model information. The ability to
exchange models is quite important, because the network
environment such as the Internet grows exponentially and it is
likely that a development team resides in separate places. In
addition, such an ability facilitates the application
interconnectivity so that the model information can be exchanged
between various tools such as CASE (Computer Aided Software
Engineering) tools, diagram editors, reverse engineering tools and
design metrics tools. As such, the application-neutral format
expands the ability to encode, exchange and reuse the model
information.

2.2 Limitation of HTML
Since the World Wide Web is becoming the ubiquitous
environment for viewing information, HTML is now a major
document format. It is also used for software documentation.
Examples of such tools include javadoc included in Java
Development Kit (JDK) [13], which is a translator from the
comments in source code of Java into the specification documents
written in HTML. While such a tool is valuable and helpful for
everyday development work, some important information within
software models is unfortunately thrown away in the process of
producing HTML documents, due to its fixed tag set. Contents in
such HTML documents are meaningful only for human usage, and
its semantics cannot be unambiguously recognized by software
tools. In other words, HTML documents generated by
documentation tools cannot be reused in other applications other
than HTML browsers. In this situation, if a more semantics-rich
markup language is used, and development tools support it, we
can interchange UML model information without losing its
semantics.

Also, as described above, it is likely that the members in a
software development team, including requirement analysts,
system architects, designers and programmers, are working in

 Figure 1: UXF allows the seamless exchange of UML models between development tools.

Programming Languages

Reverse engineering tools

Visual profiling tools

CASE tools

Printed materials

Hyperlinked online help

UML Exchange Format

Design metrics

Tools
Repository

separated places and relying on electronic communication.
Currently, the predominant means to distribute UML diagrams on
the Web is the image-based method, in which GIF or JPEG
images representing UML diagrams are included within a HTML
text stream. However, it is difficult and expensive (i.e. time
consuming) to author, read and maintain these images. It is also
inadequate since model information is hidden within images and
can not be available for other development tools (e.g. for
searching and drawing). Another problem with encoding the
model information as images is that it requires more network
bandwidth. With markup-based encoding, more of the rendering
process can be moved to the client machine. Markup language
representation of model information is typically smaller and more
compressible than an image of the model.

Coupled with the above problems, the most important factor in
exchanging the UML models between software programs is that
the semantics within the models should be explicitly described,
keeping its semantics. For this purpose, Extensible Markup
Language (XML) is a reasonable and practical candidate for a
vehicle to interchange UML models.

2.3 XML (eXtensible Markup Language)
XML is a data description language standardized by the World
Wide Web Consortium (W3C) [14]. While HTML is defined by
SGML (Standard Generalized Markup Language: ISO 8879),
XML is a sophisticated subset of SGML, and designed to describe
document data using arbitrary tags. One of the goals of XML is to
be suitable for use on the Web; thus to provide a general
mechanism for extending HTML. As its name implies,
extensibility is a key feature of XML; users or applications are
free to declare and use their own tags and attributes. Therefore,
XML ensures that both the logical structure and content of
semantics-rich information is retained. XML is widely accepted in
the Web community now, and the current applications of XML
includes MathML (Mathematical Markup Language) [15] to
describe mathematical notation, CDF (Channel Data Format) for
push technologies, OFX (Open Financial Exchange) [16] to
describe financial transactions and OSD (Open Software
Distribution) for the software distribution on the Web.

XML emphasizes description of information structure and content
as distinct from its presentation. The data structure and its syntax
are defined in a DTD (Document Type Definition) specification,
which is a derivative from SGML and defines a series of tags and
their constraints. In contrast to information structure, the
presentation issues are addressed by XSL (XML Style Language)
[17], which is also a W3C’s emerging standard for expressing
how XML-based data should be rendered. XSL is based on
DSSSL (Document Style Semantics and Specification Language
ISO/IEC 10179) and interoperable with CSS (Cascading Style
Sheet), which was originally a style definition language specific to
HTML. In addition to XML and XSL, Xpointer [18] and Xlink
[19] are also in the process of standardization, which is a
specification to define anchors and links within XML documents.
As such, XML has great potential as an exchange format for many
kinds of structured data, and increases the productivity to author,
maintain and view this data, together with the style sheet and
linking mechanisms. XML improves on the features that HTML
has provided.

2.4 UXF (UML eXchange Format)
Faced with the problems described in Section 2.2 and taking
advantage of the emerging data description language called XML,
we propose an exchange format of UML models called UXF
(UML eXchange Format). UXF is an application of XML and is
designed to be flexible enough to encode and exchange any UML
constructs. UXF facilitates:

� Intercommunications between software developers:
UXF is a powerful transfer vehicle for UML models between
software developers. It simplifies the circulation in UML
models with each other, using a human-readable and intuitive
format.

� Interconnectivity between development tools:
UXF is a well-structured and portable (i.e. application
neutral) format between various development tools. Once
encoded with UXF, the information of UML models can be
reusable for a wide range of usage with different strengths of
different tools (Figure 1).

� Natural extension from existing Web environments:
UXF is a natural and transparent extension from the existing
Web environment. Thus, it allows to edit, publish, access and
exchange the UXF data as easily as is currently possible with
HTML. In addition, most of the existing applications around
the Web can be used for handling UXF encoded information
with relatively minor modifications.

In order to author and view UML models encoded with UXF,
existing markup languages could be converted to UXF, and most
development tools such as CASE tools, documentation tools,
visual profiling tools and document repositories, can be modified
so that they recognize UXF. In the current situation where many
XML-aware applications exist, it is relatively easy to extend
existing tools. Also, UML-related technical materials formatted in
UXF can be handled by every Web application which manipulates
HTML as well as Web browsers and Web servers, in the near
future. As a result, UXF allows the borderless uses of UML
models among development tools (Figure 1), and provides the
tight integration with Web environments. This feature increases
our productivity of UML modeling.

The potential use cases of UXF covers a broad spectrum.
Developers including analysts, designers and engineers can
communicate their insights, understanding or intention on their
UML models, by interchanging UXF formatted files. Also, the
ability to maintain technical information during software lifecycle
is vital to development teams for archival purpose, because every
team typically has large volumes of materials. Engineers use these
materials in their work to refer and revise the current information,
record results of experiments or historical logs. For such uses,
well-structured UXF provides a standard way of sharing
information, in which we can easily read, process and generate
UML models using commonly available tools (see Section 4.2).

In addition, UXF ensures a variety of possibilities of its output
representations; how UXF data should be rendered or viewed.
Since UXF can apply arbitrary XSL style sheets, it can be
converted into materials in a wide range of media like RTF (Rich
Text Format), HTML, LaTeX, PDF (Portable Document Format)
(see Section 5.3). Moreover, UXF data can embed hypermedia
links with the linking mechanisms of XPointer and XLink. This
allows us to link UML constructs each other. As such, developers

can involve in technical materials at all level from electronic
versions, printed documents to interactive versions.

3. Related work
The well-known and mature format for exchanging the software
modeling information is CDIF (CASE Data Interchange Format)
[20]. CDIF is a generic mechanism and format to interchange the
software models between CASE tools, and a family of standards
defined by the Electronic Industries Association (EIA) and
International Standard Organization (ISO). CDIF defines a meta-
metamodel, a tool interchange format, and a series of subject
areas:

� CDIF Framework for Modeling and Extensibility
� CDIF Integrated Metamodel

� Foundation Subject Area
� Common Subject Area
� Data Modeling Subject Area
� Data Flow Model Subject Area
� Data Definition Subject Area
� State/Event Model Subject Area

� Presentation Location and Connectivity Subject Area
� CDIF Transfer Format

� General Rules for Syntaxes and Encodings
� SYNTAX.1
� ENCODING.1

CDIF separates the semantics and syntax from the encoding, and
thus provides flexibility in the representation and transfer
mechanism. SYNTAX.1 and ENCODING.1 defines the means
that allows for a tool-independent exchange of models. CDIF has
provided the mapping to UML [21], by using the Foundation
Subject Area and CDIF Transfer Format, and by defining the
UML subject area that provides the definitions of metamodel
entities and their relationships in UML. The UML Subject Area is
dependent on the CDIF Foundation Subject Area.

UXF is a UML-specific exchange format and an alternative
vehicle to transfer UML models. Since it is a straightforward
extension from and transparent to the Web-based distributed
environment, it can be easy-to-understand and use for the huge
amount of people that is familiar with HTML or SGML. We
believe UXF is a practical approach for encoding and exchanging

 UML Package UML Model Element UXF Representation

 Core Association <Association>
 AssociationEnd <AssocRole>, <PeerAssocRole>
 Attribute <Attribute>
 Class <Class>
 Dependency <Dependency>
 Generalization <Generalization>
 Interface <Interface>
 Operation <Operation>
 Parameter <Parameter>
 Auxiliary Elements Refinement <Refinement>
 Extension Mechanisms TaggedValue <TaggedValue>
 Common Behavior Exception <Exception>
 Action <Action>
 ActionSequence <ActionSequence>
 Instance <Instance>
 Model Management Model <Model>
 Package <Package>
 Collaborations Collaboration <collaboration>
 Interaction <Interaction>
 Message <Message>
 StateMachines CompositeState <CompositeState>
 Event <Event>
 Guard <Guard>
 State <State>
 Transition <Transition>
 PseudoState <PseudoState>

Table 1: Comparision of UML model elements and UXF elements

UML models over the Internet.

4. UXF design principles
In terms of exchanging model information between development
tools, there can be two types of information that should be
exchanged [21]:

� Model-related information
� View-related information
While model-related information is a series of building blocks that
are used to represent a given problem domain, e.g. classes,
attributes and associations, view-related information is composed
of the way in which the model is rendered, e.g. the shapes and
position of graphical objects. This paper concentrates on
exchanging the model-related information. The interchange of the
view-related information is future work, but it would be easy to
describe the view-related information with XSL (see also Section
5.3).

4.1 UXF DTDs
As described above, the UXF specification actually consists of a
series of XML DTDs. It provides the mapping of UML model
information into document tags in the DTDs. UXF captures the
constructs (i.e. model elements) in a UML metamodel, and
defines each construct as a tag (i.e. a document element)
straightforwardly. The attributes of each UML construct are
mapped into attributes of the corresponding UXF tag.

We have specified UXF DTDs for the following three UML
diagrams. These diagrams are fundamental for the analysis and
design of problem domains.

� Class diagram
A class diagram shows the static structure of classes and
relationships between them. This diagram also defines the
foundation for other diagrams that specify different aspects
of the problem domain.

� Collaboration diagram
A collaboration diagram shows an interaction organized
around the objects in the interaction and their links to each
other.

� Statechart diagrams
A statechart diagram shows the sequences of states that an
object goes through during its life in response to received
stimuli, together with its responses and actions.

Table 1 depicts the comparison of UML model elements and UXF
tags, and Appendices shows the complete UXF DTDs for the
above diagrams, which include all tags, entities and attributes of
XML. Current UXF largely extends its format described in [1]
and supports most elements in the UML’s Core package,
Collaboration package, State Machines package and some
elements in other packages (see Table 1).

Using UXF, most concepts and constructs in UML can be mapped
to the stream-based exchange format seamlessly. Sample markup
(encoding) examples can be found at [22]. Note that constructs
described with UXF are not shared between different diagrams for
the simplicity. Sharing the model information between different
diagrams consistently is considered as the responsibility of UXF-
aware applications.

4.2 Processing UXF documents
This section outlines how a UXF documents might be created,
processed and displayed. In every phase, we can reuse various
existing XML or SGML tools.

4.2.1 Authoring
UXF data can be created with any text editor because it is a text-
based format and human-readable format. In practice, however, it
is not primarily intended for manual use by developers. It is likely
that the manual generation of UXF is verbose and error-prone.
Instead, it is anticipated that they use CASE tools, conversion
tools, UXF editors and other specialized software to recognize
and generate UXF. It is practical in order to increase productivity
that we use any editing tool that helps user’s input or conversion
tools, described below. In our work, a SGML/XML major mode
for Emacs called psgml has been used when UXF data is manually
written from scratch (left of Figure 2).

4.2.2 Conversion
As described above, the authoring process sometimes involves
data conversion. It makes the authoring work simple and
productive. In the context of UXF, it can be categorized into two
schemes; converting legacy documents, program source code or
data representation in a development tool (e.g. CASE tool) to
UXF, and converting UXF to other formats for printed materials
or development tools. UXF allows such conversion programs to
be written easily. In our work, we have prepared a conversion tool
from source code written in Java into UXF, and a translator that
generates the proprietary data representation in a CASE tool from
UXF (see Section 5.1 and 5.2).

4.2.3 Parsing
Parsing is the process to analyze and validate the syntax of UXF
documents. XML allows for two kinds of data; valid and well-
formed. Validity requires that a document contains a proper DTD
and obeys its constraints. Well-formness is a less strict criteria and
requires that a document just obeys the syntax of XML. UXF
requires a validating parser that confirms to be valid in creating
UXF documents, and a non-validating parser that confirms just to
be well-formed in browsing or delivering the document. We are
using a validating parser called nsgmls in creating UXF
document, and non-validating parser called Lark in distributing
the document.

4.2.4 Distributing
UXF has been designed to distribute UML models precisely over
the network environment. It can be used in existing SGML
systems that retrieve UXF components and assemble them for the
output on the fly. Also, it can be used within the existing Web
environment so that a Web browser downloads UXF components
and displays them using a stylesheet or Java applets. In our work,
UXF has been transferred within a CORBA based distributed
environment and a HTTP based Web environment (see Section
5.3).

4.2.5 Rendering and Browsing
Rendering and browsing involves the delivery of stylesheets or
any specialized software for display such as Java applets. In our
work, UXF is intended to use stylesheets based on XSL or Java
classes associated with each UXF element. Also, UML model
information can be browsed with existing XML browsers like

Jumbo (right side of Figure 2). Section 5.3 touches on the use of
XSL styleshhets for UXF documents.

5. Applications
This section presents some efforts to distribute and manage design
UXF documents. Some UXF-aware tools have been developed as
the following sections describes. At present, we are especially
interested in the distributed software development with UXF over
the Internet.

5.1 Source code documentation tools
In general, source code documentation tools is a tool that imports
the source code of a programming language and generates
documents on the program itself, along with any specialized
format.

We have prepared such a documentation tool that parses source
code written in Java and generates UXF formatted documents.
This tool is developed by creating a class named
UxfDocumentationGenerator extending the class
DocumentationGenerator included in JDK. It translates the
constructs in Java to the corresponding representation of UXF
described in Table 1. Note that this tool cannot generate the UXF
representation of associations because there is not explicit
differences between attributes and associations in Java.

Using such a documentation tool, the model information can be
obtained directly from source code, and reusable for other
applications including CASE tools and repositories.

Figure 2: Editing UXF formatted data with an existing XML editor (left), and browsing the hierarchical structure of
UXF elements with an existing XML browser (right).

Figure 3: Example of mapping of a UXF description (left) into an importable file of Rational Rose (right).

<Model>

 <ClassDiagram>

 <Class NAME = "ReservationAgent">

 <Operation NAME = "reserve"

 RETURN = "boolean">

 <Parameter NAME = "info"

 TYPE = "Reservation"/>

 </Operation>

 </Class>

 </ClassDiagram>

</Model>

(object Petal version 41

 charSet 128)

(object Design "Logical View"

root_category(object Class_Category "Logical View"

 logical_models(list unit_reference_list

 (object Class "ReservationAgent"

 operations(list Operations

 (object Operation "reserve"

 parameters(list Parameters

 (object Parameter "info"

 type "Reservation"))

 result "boolean")))

)

5.2 Translator between UXF and CASE tools
It is also important that UXF descriptions can be translated into
any other (even proprietary) formats used by development tools.
Translators from UXF descriptions to the importable formats of
CASE tools would be highly required, because CASE tools are
quite helpful in the object-oriented development.

We have developed a translator that generates the importable files
of Rational RoseTM. Currently, this translator generates files only
for class diagrams. Figure 3 depicts a simple example of the
translation from UXF description into an importable file (*.mdl
file) of Rational Rose.

5.3 Distributed model management system
The last application is a system that manages the UML design
information within a distributed environment based on the
Internet. The Internet-oriented centralized management of design
information leverage:

� Team development
allows designers and programmers to continue their work
concurrently at the physically separated places.

� Reuse of design documents
allows developers to change (i.e. revise) them at single
point, and increases productivity of the above team
development.

� Interoperability between development tools
combines various development tools with a single
infrastructure, and allows developers to easily change their
tools throughout the development lifecycle.

We have developed such a system on top of the existing Web
environment and an Java-based ORB (Object Request Broker)
that is compliant with CORBA (Common Object Request Broker
Architecture). It is based on the three-tier deployment architecture
(Figure 4), and provides two kinds of accesses to UXF
documents; via HTTP and IIOP (Internet Inter-ORB Protocol),
which is a TCP/IP based standard protocol of CORBA. The
communications via IIOP is achieved through the CORBA
standard IDL (Interface Definition Language) interfaces (see the
right of Figure 4).

The HTTP access aims to allow client applications including Web
browsers to refer the UXF documents that are stored in Web
servers or any backend databases. The left of Figure 5 is a sample
screenshot of a Web browser that displays a UXF document
together with a corresponding XSL stylesheet. If other stylesheets
are prepared, different outputs suited to the specific purpose can
be displayed.

The IIOP access aims to allow developers at separated places to
consistently register, refer, process and change UXF documents.
A server application parses the UXF documents at the system’s
start-up time or on the fly, and creates an in-memory structure of

Figure 4: Deployment architecture of our prototype system that allows to share UML models over the Internet (left), and
Layered architecture for IIOP based system (right).

Figure 5: Sample screenshots of a Web browser that displays a UXF document together with a XSL stylesheet
and a GUI profiling tool that communicates with CORBA servers.

these documents; tree structures of parsed UXF elements. Client
applications include simple command-line tools, GUI profiling
tools and development environments (see also Figure 1). The right
side of Figure 5 is a sample screenshot of a client-side GUI
profiling tool that is similar to the system browser in Smalltalk. In
this tools, the left-side pane shows the list of UML packages, the
central pane lists classes in the package, the right one is the list of
operations (i.e. methods) of the class selected in the central pane,
and the bottom pane shows the comments (Note and TaggedValue
in the UML term) for each package, class or method. This tool
accesses a CORBA server to obtain the necessary data to display,
according to the user’s mouse manipulation.

Extending this mechanism, we can maintain large document
collections stored in a server-side repository, which ensures the
consistency of information and provides the capabilities like
searching, indexing or sorting. This system shows UXF is
valuable as a well-structured data format.

The selected IDL interfaces of a CORBA server are shown in
Figure 6. In general, APIs that handle XML documents via
middleware are categorized into three group [23]:

� Source document APIs
manage the XML document instances directly.

� Element APIs
manage the parsed elements in the document instances. The
navigation of the XML document and selection, control and
update of the element are achieved through this API.

� Custom APIs
depend on certain applications with related DTDs, and
provides application specific interfaces.

Our current interfaces listed in Figure 6 are custom APIs, which is
specific to UXF class diagram documents. We are now extending
them and defining the element APIs.

The applications given in Section 5 show straightforward and
reasonable ways to share and exchange the UML design
documents between various tools or over the distributed
environment, though they are simple. We are working on the
refinement of these applications and the additional ones, to
demonstrate the value of UXF and improve it.

6. Future work
As for UXF format itself, we are refining the existing DTDs and
developing ones for all the UML diagrams.

As for UXF-aware tools, a UXF translator from/to Python
programming language is currently developed. With multiple

source code generation tools, the model information implemented
in various programming languages can be fully shared with
multiple development tools, through a single exchange format. In
addition, a UXF-aware diagram editing/drawing tool is planned.

As for the Internet based model management system described in
Section 5.3, we are enhancing it with various features. For
example, we are introducing a mechanism of the revision control
with two tags of XML; <![INCLUDE[…]]> and
<![IGNORE[…]]>, and their corresponding stylesheets. Also,
the current transient CORBA server is being extended to be
persistent one, which can maintain in-memory structures of parsed
UXF element trees after the shutdown of the server. In addition,
the current IDL interfaces of CORBA server are re-designed so
that they are compliant with the DOM (Document Object Model)
standard interfaces [24], which is an emerging standard by W3C.
It would be quite important step that UXF documents are
distributed within the CORBA system that implements DOM
interfaces.

7. Conclusion
This paper addresses how the software design documents based
on UML can be shared and managed in the distributed
environment. We proposed a key enabler for interchanging UML
model information called UXF, and showed its applications. With
UXF, UML models can be distributed universally. We believe our
work shows an important step in exchanging and sharing
analysis/design models on the open environment. Information on
UXF project can be obtained at [22].

At last, we would like to thank Yuu Tanaka for his help to design
UXF DTDs, and Kenji Shirane for his initial input for UXF
applications.

8. References
[1] Suzuki, J. and Yamamoto, Y. (1998). Making UML models

exchangeable over the Internet with XML. In Proceedings of
UML '98.

[2] Rational Software et.al. UML Proposal Summary, OMG
document number: ad/97-08-02.

[3] Rational Software et.al. UML Summary, OMG document
number: ad/97-08-03.

[4] Rational Software et.al. UML Semantics, OMG document
number: ad/97-08-04.

[5] Rational Software et.al. UML Notation Guide, OMG
document number: ad/97-08-05.

typedef sequence<string> StrSequence;

interface UxfHandler {

 StrSequence getPackageList();

 StrSequence getClassList(in string pkgName);

 StrSequence getOperationList(in string pkgName, in string className);

 string getPackageDescription();

 string getClassDescription(in string pkgName);

 string getOperationDescription(in string pkgName, in string className);

 boolean findConstruct(in string name);

}

Figure 6: Selected IDL interfaces of a CORBA server for accessing UXF documents

[6] Rational Software et.al. UML Extension for Objectory
Process for Software Engineering, OMG document number:
ad/97-08-06.

[7] Rational Software et.al. UML Extension for Business
Modeling, OMG document number: ad/97-08-07.

[8] Rational Software et.al. Object Constraint Language
Specification, OMG document number: ad/97-08-08.

[9] Rational Software et.al. OA&D CORBAfacility, OMG
document number: ad/97-08-09.

[10] Grady Booch. Object-Oriented Analysis and Design 2nd

Edition, The Benjamin/Cummings Publishing, 1994.

[11] Rumbaugh, J et.al. (1991). Object-Oriented Modeling and
Design, Prentice Hall.

[12] Jacobson, I. (1995). Object-Oriented Software Engineering:
A Use Case Driven Approach, Addison-Wesley.

[13] JavaSoft. (1997). JDK 1.1.6 Documentation.

[14] Bray, T et.al (ed.). Extensible Markup Language (XML) 1.0,
W3C.

[15] Ion P et.al (ed.). Mathematical Markup Language, W3C.

[16] CheckFree Corp et.al. Open Financial Exchange
Specification 1.0.2, Open Financial Exchange.

[17] Adler, S et.al. (1998) A Proposal for XSL, W3C.

[18] Eve Maler et.al. (ed.), XML Pointer Language (XPointer),
W3C Working Draft 3,.

[19] Maler, E et.al. (ed.), XML Linking Language (XLink), W3C
Working Draft 3.

[20] A series of CDIF specifications are available at
http://www.cdif.org/

[21] .Rational Software. UML-Compliant Interchange Format,
OMG document number: ad/97-01-13.

[22] http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/

[23] Ohno, K. and Bayer, M. (1998) Development of
SGML/XML Middleware Component. in Proceedings of
SGML/XML’98 Europe.

[24] Apparao, V et al. (1998) Document Object Model
Specification, W3C Working Draft 16.

Appendix A:

<!ELEMENT Model (TaggedValue?, Package*)>
<!ELEMENT TaggedValue (Tag*)>
<!ELEMENT Tag (#PCDATA, Value*)>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT Note (#PCDATA)>
<!ELEMENT Package (TaggedValue?,
 Note*,
 Dependency*,
 ClassDiagram?,
 CollaborationDiagram?
 StatechartDiagram?)>
<!ATTLIST Package
 NAME CDATA #REQUIRED>
<!ENTITY % ObjectElements "(TaggedValue?,
 (Attribute
 |Operation

 |Generalization
 |Association
 |Dependency
 |Note)*)">
<!ENTITY % ClassDiagram
 SYSTEM "class_diagram.dtd">
%ClassDiagram;
<!ENTITY % CollaborationDiagram
 SYSTEM "collaboration_diagram.dtd">
%CollaborationDiagram;
<!ENTITY % StatechartDiagram
 SYSTEM "statechartdiagram_diagram.dtd">
%StatechartDiagram;

Appendix B: UXF DTD for class diagram

<!ELEMENT ClassDiagram (TaggedValue?,(Class
 |Interface
 |Note)*)>
<!ELEMENT Class %ObjectElements;>
<!ELEMENT Interface %ObjectElements;>
<!ATTLIST Class
 NAME CDATA #REQUIRED
 ABSTRACT (true|false) "false"
 VISIBILITY (public|private) #REQUIRED
 ACTIVE (true|false) #IMPLIED>
<!ELEMENT Attribute (Note*)>
<!ATTLIST Attribute
 VISIBILITY (public|protected|private) #REQUIRED
 TYPE CDATA #REQUIRED
 NAME CDATA #REQUIRED
 INITVAL CDATA #IMPLIED
 CONSTRAINT CDATA #IMPLIED
 DERIVATION (true|false) "false"
 CLASSSCOPE (true|false) "false">
<!ELEMENT Operation

((Parameter|Exception|Note)*)>
<!ATTLIST Operation
 VISIBILITY (public|protected|private) #REQUIRED
 NAME CDATA #REQUIRED
 RETURN CDATA #REQUIRED
 CLASSSCOPE (true|false) "false"

CONCURRENCY (sequential|guarded|concurrent)
 "sequential"

 EXCEPTION CDATA #IMPLIED>
<!ELEMENT Parameter EMPTY>
<!ATTLIST Parameter
 TYPE CDATA #IMPLIED
 NAME CDATA #REQUIRED
 DEFAULTVAL CDATA #IMPLIED
 DIRECTION (in|out|inout) #IMPLIED>
<!ELEMENT Exception EMPTY>
<!ATTLIST Exception
 NAME CDATA #REQUIRED
 BODY CDATA #IMPLIED>
<!ELEMENT Generalization EMPTY>
<!ATTLIST Generalization
 FROM CDATA #REQUIRED
 TYPE (public|private|protected)
"public">
<!ELEMENT Association ((AssocRole,
PeerAssocRole)| Note*)>
<!ATTLIST Association
 PEER CDATA #REQUIRED

 NAME CDATA #IMPLIED>
<!ELEMENT AssocRole EMPTY>
<!ATTLIST AssocRole
 MULTIPLICITY CDATA #IMPLIED
 ORDERING (ordered|unordered) #IMPLIED
 QUALIFIER CDATA #IMPLIED
 ROLENAME CDATA #IMPLIED
 NAVIGABILITY (true|false) "false"
 CHANGEABILITY (true|frozen|addOnly) "true"
 ASSOCCLASS CDATA #IMPLIED
 AGGREGATION (none|aggregate|composite) "none"
 AGGRKIND (unShared|shared) "unShared">
<!ELEMENT PeerAssocRole EMPTY>
<!ATTLIST PeerAssocRole
 MULTIPLICITY CDATA #IMPLIED
 ORDERING (ordered|unordered) #IMPLIED
 ROLENAME CDATA #IMPLIED>
<!ELEMENT Dependency (Note*)>
<!ATTLIST Dependency
 PEER CDATA #REQUIRED
 NAME CDATA #IMPLIED
 DESCRIPTION CDATA #IMPLIED
 DEPKIND (refine|bind) #IMPLIED>

Appendix C: UXF DTD for collaboration
diagrams

<!ELEMENT CollaborationDiagram (TaggedValue?,

 (Collaboration

 |Note)*)>

<!ELEMENT Collaboration (TaggedValue?,

 (Instance

 |Interaction

 |Message

 |Note)*)>

<!ATTLIST Collaboration

 NAME CDATA #REQUIRED

 CLASSIFIER CDATA #IMPLIED

 OPERATION CDATA #IMPLIED>

<!ELEMENT Instance (Note*)>

<!ATTLIST Instance

 NAME CDATA #IMPLIED

 CLASS CDATA #REQUIRED

 CONSTRAINT CDATA #IMPLIED>

<!ELEMENT Interaction (Message)*>

<!ATTLIST Interaction

 NAME CDATA #REQUIRED

 CONTEXT CDATA #IMPLIED>

<!ELEMENT Message (Label)>

<!ATTLIST Message

 NAME CDATA #IMPLIED

 TYPE (simple|sync|async|others) "sync"

 SENDER CDATA #REQUIRED

 RECEIVER CDATA #REQUIRED

 ACTIVATOR CDATA #IMPLIED

 ACTION CDATA #IMPLIED>

<!ELEMENT Label EMPTY>

<!ATTLIST Label

 PREDECESSOR CDATA #IMPLIED

 GUARD_CONDITION CDATA #IMPLIED

 SEQUENCE_EX CDATA #IMPLIED

 RETURN CDATA #IMPLIED

 MESSAGE_NAME CDATA #IMPLIED

 ARGUMENTS CDATA #IMPLIED>

Appendix D: UXF DTD for statechart
diagrams

<!ELEMENT StatechartDiagram (TaggedValue?,

 (State

 |CompositeState

 |PseudoState

 |Note)*)>

<!ATTLIST StatechartDiagram

 name CDATA #REQUIRED>

<!ELEMENT State (ActionSequence

 |Transition

 |Note)*>

<!ATTLIST State

 name CDATA #REQUIRED>

<!ELEMENT CompositeState (ActionSequence

 |State

 |CompositeState

 |PseudoState

 |Transition

 |Note)*>

<!ATTLIST CompositeState

 name CDATA #REQUIRED

 isConcurrent (true|false) "false"

 isRegion (true|false) "false">

<!ELEMENT PseudoState (ActionSequence

 |Transition

 |Note)*>

<!ATTLIST PseudoState

 kind (initial|deepHistory|shallowHistory

 |join|fork|branch|final) #REQUIRED>

<!ELEMENT ActionSequence (Event*,Action*)>

<!ELEMENT Event (Parameter|Note)*>

<!ATTLIST Event

 name CDATA #REQUIRED>

<!ELEMENT Action (#PCDATA)>

<!ELEMENT Transition (TransitionLabel |Note)*>

<!ATTLIST Transition

 source CDATA #IMPLIED

 target CDATA #REQUIRED>

<!ELEMENT TransitionLabel (Event?, Guard?,

 ActionSequence?,SendClause?)>

<!ELEMENT Guard (#PCDATA)>

<!ELEMENT SendClause (#PCDATA)

