
SMSP-EMOA: Augmenting SMS-EMOA with the Prospect Indicator for
Multiobjective Optimization

Dung H. Phan
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

phdung@cs.umb.edu

Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125

jxs@cs.umb.edu

Pruet Boonma
Department of Computer Engineering

Chiang Mai University
Chiang Mai, 50200, Thailand

pruet@eng.cmu.ac.th

Abstract—This paper studies a new evolutionary multiob-
jective optimization algorithm (EMOA) that leverages quality
indicators in parent selection and environmental selection
operators. The proposed indicator-based EMOA, called SMSP-
EMOA, is designed as an extension to SMS-EMOA, which
is one of the most successfully and widely used indicator-
based EMOAs. SMSP-EMOA uses the prospect indicator in
its parent selection and the hypervolume indicator in its
environmental selection. The prospect indicator measures the
potential (or prospect) of each individual to reproduce offspring
that dominate itself and spread out in the objective space. It
allows the parent selection operator to (1) maintain sufficient
selection pressure, even in high dimensional MOPs, thereby
improving convergence velocity toward the Pareto-optimal
front, and (2) diversify individuals, even in high dimensional
MOPs, thereby spread- ing out individuals in the objective
space. Experimental results show that SMSP-EMOA’s parent
selection operator complement its environmental selection oper-
ator. SMSP-EMOA outperforms SMS-EMOA and well-known
traditional EMOAs in optimality and convergence velocity
without sacrificing the diversity of individuals.

Keywords-Evolutionary multiobjective optimization algo-
rithms (EMOAs), Quality indicators, Indicator-based EMOAs

I. INTRODUCTION

This paper proposes and evaluates a new indicator-based
evolutionary algorithm to solve multiobjective optimization
problems (MOPs). An MOP is described as follows:

minimize F (~x) = [f1(~x), f2(~x), · · · , fn(~x)]T ∈ O
subject to ~x = [x1, x2, · · · , xm]T ∈ S

}
(1)

S denotes the decision variable space. ~x ∈ S denotes a
solution candidate that consists of m decision variables. It
is called an individual in evolutionary multiobjective opti-
mization algorithms (EMOAs). F consists of n real-value
objective functions, which produce the objective values of ~x
in the objective space O. When m ≥ 3, an MOP is called
high-dimensional [1]. The goal of an EMOA is to find an
individual(s) that minimize(s) objective values.

In MOPs, there rarely exists a single solution that is
optimum with respect to all objectives because objective

functions conflict with each other. Thus, EMOAs seek the
optimal trade-off individuals, or Pareto-optimal individuals,
by considering the trade-offs among conflicting objectives.
The notion of dominance plays an important role to seek
Pareto optimality [2]. An individual ~x ∈ S is said to
dominate another individual ~y ∈ S (denoted by ~x � ~y)
iif the both of the following conditions are hold:

• fi(~x) ≤ fi(~y) ∀ i = 1, · · · , n
• fi(~x) < fi(~y) ∃ i = 1, · · · , n
EMOAs often rank individuals based on the dominance

relationships among them and exploit their ranks in selection
operators [2]. This process is called dominance ranking.

A research trend in the design space of EMOAs is to
adopt indicator-based selection operators based on qual-
ity indicators, which are designed to augment or replace
dominance ranking [3]. A quality indicator measures the
goodness of each individual. For example, the hypervolume
indicator [4], or the S metric, and its variants [5]–[9] have
been used in various EMOAs’ selection operators. Re-
cent research findings (e.g., [10]) show that indicator-based
EMOAs outperform traditional EMOAs that use dominance
ranking. SMS-EMOA (S Metric Selection EMOA) [11] is
one of the most successfully and widely used indicator-based
EMOAs [10], [12]–[17]. It uses the hypervolume indicator
in its environmental selection operator, which chooses a set
of individuals used in the next generation from the union of
the current population and its offspring.

This paper extends SMS-EMOA with a quality indicator,
called prospect indicator. The prospect indicator measures
the potential (or prospect) of each individual to reproduce
offspring that dominate itself and spread out in the objective
space. The proposed EMOA, SMSP-EMOA (S Metric Selec-
tion with the Prospect indicator), uses the prospect indicator
in its parent selection operator, which chooses parent indi-
viduals from the population to reproduce offspring, as well
as the hypervolume indicator in its environmental selection
operator. The prospect indicator allows the parent selection
operator to (1) maintain sufficient selection pressure, even
in high dimensional MOPs, thereby improving convergence



velocity toward the Pareto-optimal front, and (2) diversify
individuals, even in high dimensional MOPs, thereby spread-
ing out individuals in the objective space.

Experimental results show that SMSP-EMOA’s parent
selection operator complement its environmental selection
operator. SMSP-EMOA outperforms SMS-EMOA and well-
known traditional EMOAs (NSGA-II [18] and SPEA2 [19])
in optimality and convergence velocity without sacrificing
the diversity of individuals.

II. RELATED WORK

SMSP-EMOA extends SMS-EMOA’s parent selection op-
erator with the prospect indicator. While SMS-EMOA uses
the hypervolume indicator for its environmental selection,
it uses no indicators for its parent selection. Instead, it
randomly draws two parent individuals from the popula-
tion [11], [20]. SMSP-EMOA performs a binary tournament
with the prospect indicator for parent selection.

The hypervolume indicator and its variants [4]–[9] are
similar to the prospect indicator in that both are volume-
based indicators. The hypervolume indicator measures the
volume of a hypercube that each individual dominates in the
objective space. The hypercube is formed with the individual
and a reference point representing the highest (or worst)
possible objective values. In contrast, the prospect indicator
measures the volume of a hypercube in the opposite way.
It considers a hypercube that dominates an individual. The
hypercube is formed with the individual and the Utopian
point, which represents the lowest (or best) possible objec-
tive values. The Utopian point is the (0, 0) point in a two
dimensional objective space. While the hypervolume indica-
tor requires a carefully chosen reference point depending on
an MOP to solve [5], [21], it is always trivial to choose the
Utopian point for the prospect indicator regardless of MOPs.

SPAM is similar to SMSP-EMOA in that it uses multiple
indicators as SMSP-EMOA does [8]. It can use two or more
indicators in its environmental selection operator. Unlike
SPAM, SMSP-EMOA uses different indicators (i.e., the
prospect and hypervolume indicators) in different selection
operators (i.e., parent selection and environmental selection
operators). This paper is the first attempt to investigate how
two different volume-based indicators interact and comple-
ment with each other across different selection operators.

H-SMS-EMOA is similar to SMSP-EMOA in that both
algorithms extend SMS-EMOA. It combines SMS-EMOA
and local search algorithms in two ways: relay, which exe-
cutes local search after SMS-EMOA’s evolutionary process
is over, and hybridization, which embeds local search within
SMS-EMOA [12]. SMSP-EMOA extends SMS-EMOA by
introducing an extra indicator in parent selection rather than
introducing extra search algorithms.

There are several studies to reduce the computational cost
of SMS-EMOA. Klinkenberg et al. attempt it with adap-
tive mutation, kriging and steady-state parallelization [13].

Ishibuchi et al. use scalarizing functions to approximate
the hypervolume contribution of an individual [17]. SMSP-
EMOA does not focus on cost reduction for SMS-EMOA.

Naujoks et al. propose an online statistical technique
to determine the termination condition (i.e., the maxi-
mum number of objective function evaluations) for SMS-
EMOA [16]. SMSP-EMOA does not focus on dynamic
adjustment of the termination condition, but uses statically-
fixed termination conditions.

III. SMSP-EMOA

This section describes SMSP-EMOA’s algorithmic struc-
ture and its operators.

A. Algorithmic Structure

Algorithm 1 shows SMSP-EMOA’s algorithmic structure,
which extends SMS-EMOA’s.

Algorithm 1 The Algorithmic Structure of SMSP-EMOA
1: t = 0
2: P0 = initializePopulation(µ)
3: while t < Tmax do
4: p1 = prospectBasedParentSelection(Pt)
5: p2 = prospectBasedParentSelection(Pt)
6: if random() ≤ Pc then
7: o = crossover(p1 , p2 )
8: end if
9: if random() ≤ Pm then

10: o = mutation(o)
11: end if
12: Pt = Pt ∪ o
13: Pt+1 = hypervolumeBasedEnvSelection(Pt)
14: t = t+ 1
15: end while

In the first iteration (t = 0), µ individuals are randomly
generated as the initial population P0 (Line 2). In each
iteration (t), a pair of individuals, called parents (p1 and p2),
are chosen from the current population Pt with the proposed
parent selection operator, which uses the prospect indicator
(prospectBasedParentSelection(), Lines 4 and 5).

With the crossover rate Pc, two parents reproduce one
offspring with the SBX (self-adaptive simulated binary
crossover) operator [22] (Lines 6 and 7). Polynomial mu-
tation [18] is performed on the offspring with the mutation
rate of Pm (Lines 9 to 10). The offspring is combined with
the population Pt to form a pool of candidate individuals
used in the next iteration (t = t+ 1).

Environmental selection follows reproduction. One
individual is eliminated from Pt to produce Pt+1

(hypervolumeBasedEnvSelection(), Line 13). Envi-
ronmental selection performs a (µ+1) steady state evolution.



B. Parent Selection with the Prospect Indicator

Algorithm 2 shows how the proposed parent selection
operator (prospectBasedParentSelection() in Algo-
rithm 1) works with the prospect indicator. It is designed as
a variant of binary tournament selection. It randomly draws
two individuals from the current population P , compares
them based on the dominance relationship between them and
chooses a superior one as a parent (Lines 5 to 8). Note that
p1 � p2 means p1 dominates p2 as described in Section I.

If two individuals (p1 and p2 ) do not dominate each other
and are placed in the same rank, the proposed selection
operator chooses one of them as a parent with the prospect
indicator. Lines 10 and 11 compute the prospect indicator
values of p1 and p2 (IP (p1) and IP (p2)), and Line 12
compares the two values. The proposed operator chooses
the one with a higher IP value (Lines 12 to 16).

The prospect indicator value of an individual i (IP (i)) is
computed as follows:

IP (i) = V (Rrank(i))− V (Rrank(i) \ {i}) (2)

rank(i) denotes the value of a rank that i is placed at.
Rrank(i) denotes a set of individuals that are placed at
the rank of rank(i). R1 contains the individuals of the
best (or highest) rank (i.e., the non-dominated individuals
in P). R2 contains the individuals of the second highest
rank (i.e., individuals that are non-dominated in Pt \ R1).
V (R) denotes the volume of a hypercube that dominates the
individuals in R in the objective space. It is calculated with
the Lebesgue measure as follows.

V (R) = Λ

(⋃
x∈R
{x′|xu � x′ � x}

)
(3)

xu denotes the Utopian point, and Λ denotes the Lebesgue
measure.

The prospect indicator valuates the potential (or prospect)
of an individual to reproduce offspring that dominate itself.
Figure 1 shows an example measurement of the prospect
indicator in a two dimensional objective space. This ex-
ample considers three non-dominated individuals: a, b and
c (Rrank(a) = Rrank(b) = Rrank(c) = {a, b, c}). The
Utopian point is (0, 0). IP (b) is a shaded area in Figure 1
(i.e., V (Rrank(b))− V (Rrank(b) \ {b})).

Algorithm 3 shows how to compute IP (p). P denotes a
set of individuals that are placed at the same rank as an
individual p. For each objective (o), the distance between p
and s is measured to compute IP (p), where s denotes an
individual that yields the closest yet superior objective value.

C. Environmental Selection with the Hypervolume Indicator

Algorithm 4 shows how environmental selection
(hypervolumeBasedEnvSelection() in Algorithm 1)
works with the hypervolume indicator. In environmental

Algorithm 2 prospectBasedParentSelection()

Require: P|P 6= ∅
1: p1 = randomSelection(P)
2: p2 = randomSelection(P)
3: if p1 = p2 then
4: return p1
5: else if p1 � p2 then
6: return p1
7: else if p2 � p1 then
8: return p2
9: else

10: IP (p1) = prospectIndicator(p1, Rrank(p1))
11: IP (p2) = prospectIndicator(p2, Rrank(p2))
12: if IP (p1) > IP (p2) then
13: return p1
14: else
15: return p2
16: end if
17: end if

Algorithm 3 prospectIndicator()

Require: p,P|P 6= ∅
1: v = 1
2: for each o ∈ O do
3: s = ∅
4: for each n ∈ P do
5: if fo(n) < fo(p) then
6: if s = ∅ then
7: s = n
8: else if fo(s) < fo(n) then
9: s = n

10: end if
11: end if
12: end for
13: v = v × |fo(p)− fo(s)|
14: end for
15: return v

selection, µ individuals are selected from µ+ 1 individuals
as the population used in the next iteration.
dominanceRanking() performs dominance ranking on

the current population P (Line 1). R1 and Rv contain the
best-ranked and worst-ranked individuals, respectively. In
Lines 2 and 3, an individual p is discarded from Rv . p
is an individual that yields the minimum value of exclusive
hypervolume contribution IH . IH of an individual i ∈ Rv

is computed as follows:

IH(i) = H(Rv)−H(Rv \ {i}) (4)

H(Rv) denotes the volume of a hypercube that the
worst-ranked individuals dominate. It is calculated with the
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Figure 1: An Example Measurement of Prospect Indicator

Lebesgue measure as follows.

H(Rv) = Λ

( ⋃
x∈Rv

{x′|x � x′ � xr}

)
(5)

xr denotes a reference point in the objective space.
Figure 2 shows an example measurement of IH in a two
dimensional objective space. This example considers three
individuals in Rv: a, b and c. xr = (r1, r2). IH(b) is a
shaded area in Figure 2 (i.e., H(Rv)−H(Rv \ {b})).

Algorithm 4 hypervolumeBasedEnvSelection()

Require: P|P 6= ∅
1: {R1,R2,...,Rv} = domianceRanking(P)
2: p =argmins∈Rv

[IH(s)]
3: P = P \ p
4: return P
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c

Figure 2: An Example Measurement of Exclusive Hypervol-
ume Contribution

IV. EXPERIMENTAL RESULTS

This section evaluates SMSP-EMOA with five ZDT fam-
ily problems [23] and four DTLZ family problems [24].
This section also compares SMSP-EMOA with SMS-EMOA
and two classical EMOAs that use dominance ranking for
selection: NSGA-II [18] and SPEA2 [19].

A. Experimental Configurations

SMSP-EMOA was configured as shown in Table I. SMS-
EMOA, NSGA-II and SPEA2 were configured as described
in [11], [18] and [19], respectively. All experiments were
conducted with jMetal [20]. Each experimental result is the
average of 20 independent results.

Table I: Experimental Configurations

Parameter Value Parameter Value
µ (Algo. 1) 100 m (ZDT4, Eq. 1) 10

Tmax (ZDT1, Algo. 1) 15,000 m (ZDT6, Eq. 1) 10
Tmax (ZDT2, Algo. 1) 15,000 m (DTLZ1, Eq. 1) 7
Tmax (ZDT3, Algo. 1) 15,000 m (DTLZ2, Eq. 1) 12
Tmax (ZDT4, Algo. 1) 15,000 m (DTLZ3, Eq. 1) 12
Tmax (ZDT6, Algo. 1) 15,000 m (DTLZ4, Eq. 1) 12
Tmax (DTLZ1, Algo. 1) 20,000 Crossover operator SBX
Tmax (DTLZ2, Algo. 1) 20,000 Pc (Algo. 1) 0.9
Tmax (DTLZ3, Algo. 1) 50,000 Mutation operator Polynomial
Tmax (DTLZ4, Algo. 1) 50,000 Pm (Algo. 1) 1/m

m (ZDT1, Eq. 1) 30
m (ZDT2, Eq. 1) 30
m (ZDT3, Eq. 1) 30

B. Evaluation Metrics

This paper uses three evaluation metrics: hypervolume
ratio (HVR), generational distance (GD) and inverted gen-
erational distance (IGD).

HVR is calculated as the ratio of the hypervolume (HV )
of non-dominated individuals (D) to the hypervolume of
Pareto-optimal solutions (P ∗) [25].

HV R(D) =
HV (D)

HV (P ∗)
(6)

HV measures the union of the volumes that a given
set of individuals dominate [4]. Thus, HVR quantifies the
optimality and diversity of non-dominated individuals (D).
A higher HVR indicates that non-dominated individuals are
closer to the Pareto-optimal front and more diverse in the
objective space.

GD is computed as follows where d(di, P ∗) denotes the
minimum distance from a non-dominated individual di to the
closest Pareto-optimal solution in the objective space [26].

GD(D) =

|D|∑
i=1

d(di, P
∗)

|D|
(7)

GD measures the optimality of non-dominated individu-
als (D). A lower GD indicates that non-dominated individ-
uals are closer to the Pareto-optimal front.

IGD is computed as follows where d(zi, D) denotes the
minimum distance from a Pareto-optimal solution zi to the
closest non-dominated individual in the objective space [26].

IGD(D) =

|P∗|∑
i=1

d(zi, D)

|P ∗|
(8)



IGD measures the optimality and diversity (more specif-
ically, extent) of non-dominated individuals (D). A lower
IGD indicates that non-dominated individuals are closer to
the Pareto-optimal front and their extent is wider.

In order to measure HVR, GD and IGD, P ∗ are taken
uniformly from the Pareto-optimal front. |P ∗| = 1,001,
1,001, 269, 1,001, 1,001, 10,000, 10,000, 4,000 and 4,000
in ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2,
DTLZ3 and DTLZ4. This is the default setting in jMetal.

C. Optimality and Diversity Analysis

This section evaluates the optimality and diversity of
individuals with HVR, GD and IGD. Table II shows the
average HVR, GD and IGD values that SMSP-EMOA and
other three algorithms yield at the last function evaluation
(Tmax. See Table I and Algorithm 1.) in ZDT problems. A
value in parentheses indicates a standard deviation. A bold
number indicates the best result among four algorithms. A
double star (**) or a single star (*) is placed for an average
result when the result is significantly different from SMSP-
EMOA’s result based on a single-tail t-test. A double star is
placed with the confidence level of 99% while a single star
is placed with the confidence level of 95%.

SMSP-EMOA yields the best average HVR among four
algorithms in all ZDT problems. In ZDT1, ZDT2 and
ZDT6, SMSP-EMOA significantly outperforms the other
three algorithms in HVR with the confidence level of 99%.
SMSP-EMOA significantly outperforms SMS-EMOA in all
ZDT problems except ZDT3. It significantly outperforms
SPEA2 in all ZDT problems.

SMSP-EMOA yields the best average GD among four
algorithms in ZDT4 and ZDT6. In ZDT6, it significantly
outperforms the other three algorithms in GD with the confi-
dence level of 99%. SMSP-EMOA significantly outperforms
SMS-EMOA in ZDT3, ZDT4 and ZDT6.

In IGD, SMSP-EMOA yields the best average results in
ZDT1 and ZDT6. In ZDT6, it significantly outperforms the
other three algorithms in IGD with the confidence level of
99%. SMSP-EMOA outperforms SMS-EMOA in all ZDT
problems.

Table III shows the average HVR, GD and IGD values that
SMSP-EMOA and other three algorithms yield at the last
function evaluation (Tmax. See Table I and Algorithm 1.)
in DTLZ problems, each of which has three dimensional
objective space. SMSP-EMOA yields the best average HVR
among four algorithms in all ZDT problems except DTLZ2
in which SMSP-EMOA is the second best. It significantly
outperforms SPEA2 in all ZDT problems.

SMSP-EMOA is not as good as SMS-EMOA in GD;
however, its IDG is better than SMS-EMOA’s in all DTLZ
problems except DTLZ2 in which its IGD is equal to SMS-
EMOA’s.

It is noticeable that standard deviations are high in ZDT4,
DTLZ3 and DTLZ4. Therefore, Figure 3 shows the boxplots

for those problems to examine the degree of dispersion
and skewness in HVR, GD and IGD of all the individuals
obtained through 20 independent experiments (20,000 indi-
viduals in total). A box in each boxplot contains the middle
50% of individuals. The upper edge of the box indicates the
75th percentile of individuals, and the lower edge indicates
the 25th percentile. The middle horizontal line in the box
indicates the 50th percentile (i.e., the median). The ends
of a vertical line indicate the maximum and minimum
individuals.

Figure 3(a) to (c) depict the box plots for HVR, GD
and IGD in ZDT4. In ZDT4, SMSP-EMOA yields the best
or second best median values in all three metrics. SMSP-
EMOA also maintains the smallest box in each of Figure 3(a)
to (c). This means that SMSP-EMOA achieves the lowest
dispersion and skewness in HVR, GD and IGD of indi-
viduals. SMSP-EMOA yields more stable performance than
the other three algorithms. Qualitatively similar observations
can be made in DTLZ3 (Figure 3(d) to (f)) and DTLZ4
(Figure 3(g) to (i)).

Table II: HVR, GD and IGD in ZDT problems
Problem Algorithm HVR GD IGD

ZDT1

NSGAII 0.98269(0.00128)** 5.1E-4(9.0E-5)** 2.4E-4(1.0E-5)**
SPEA2 0.97726(0.00313)** 8.4E-4(1.7E-4)** 2.9E-4(4.0E-5)**

SMS-EMOA 0.99048(6.5E-4)** 2.0E-4(7.0E-5)** 1.49E-4(0.0)**
SMSP-EMOA 0.99123(6.7E-4) 0.00212(6.7E-4) 1.46E-4(0.0)

ZDT2

NSGAII 0.95847(0.00446)** 6.4E-4(1.1E-4) 2.8E-4(3.0E-5)
SPEA2 0.81407(0.16344)** 0.00118(2.4E-4)** 0.00349(0.00396)**

SMS-EMOA 0.91286(0.09076)** 2.3E-4(9.0E-5)** 0.00206(0.00239)**
SMSP-EMOA 0.9771(0.0158) 5.3E-4(4.4E-4) 3.7E-4(6.0E-4)

ZDT3

NSGAII 0.98785(0.00206)** 3.4E-4(6.0E-5)** 3.1E-4(2.0E-5)*
SPEA2 0.97941(0.00271)** 4.9E-4(8.0E-5)** 6.4E-4(0.00105)

SMS-EMOA 0.98882(0.01754) 3.8E-4(7.8E-4)** 0.00141(0.00214)
SMSP-EMOA 0.99465(0.00268) 0.00145(6.5E-4) 0.00118(0.00201)

ZDT4

NSGAII 0.8773(0.09757) 0.00512(0.00555) 0.00309(0.00258)
SPEA2 0.57155(0.24622)** 0.0388(0.06792)* 0.01132(0.00626)**

SMS-EMOA 0.71216(0.23092)** 0.02232(0.04321)* 0.00946(0.00561)**
SMSP-EMOA 0.90369(0.10046) 0.0042(0.00365) 0.00386(0.0035)

ZDT6

NSGAII 0.79989(0.03726)** 0.00617(0.0013)** 0.00262(6.4E-4)**
SPEA2 0.666(0.05061)** 0.01097(0.00182)** 0.00466(8.0E-4)**

SMS-EMOA 0.85502(0.02427)** 0.00435(7.6E-4)** 0.00181(3.3E-4)**
SMSP-EMOA 0.9407(0.00876) 0.00177(2.5E-4) 7.1E-4(1.2E-4)

Table III: HVR, GD and IGD in DTLZ problems
Problem Algorithm HVR GD IGD

DTLZ1

NSGAII 0.4912(0.35931)** 0.25726(0.36029) 0.00409(0.00439)**
SPEA2 0.79465(0.24123)** 0.42121(0.55926)* 0.00144(0.0017)**

SMS-EMOA 0.93192(0.06896) 0.06058(0.1779)* 5.4E-4(3.5E-4)
SMSP-EMOA 0.94748(0.00946) 0.14178(0.123) 4.6E-4(4.0E-5)

DTLZ2

NSGAII 0.80359(0.01517)** 0.0014(1.9E-4) ** 7.6E-4(3.0E-5)**
SPEA2 0.86276(0.00486)** 0.0013(1.3E-4)** 5.9E-4(1.0E-5)**

SMS-EMOA 0.91111(5.6E-4)** 7.4E-4(5.0E-5)* 8.4E-4(1.0E-5)
SMSP-EMOA 0.90912(8.5E-4) 7.9E-4(9.0E-5) 8.4E-4(2.0E-5)

DTLZ3

NSGAII 0.67004(0.16498)** 0.01218(0.02251)** 0.00224(0.00336)**
SPEA2 0.66784(0.249)** 0.37799(0.68953)** 0.00289(0.0042)**

SMS-EMOA 0.88058(0.05345) 0.00527(0.01074)** 0.00137(2.5E-4)
SMSP-EMOA 0.89234(0.01355) 0.0766(0.05116) 0.00133(3.0E-5)

DTLZ4

NSGAII 0.89177(0.01171) 0.00509(2.2E-4)* 0.00119(9.0E-5)**
SPEA2 0.76659(0.23025)* 0.00457(7.1E-4)* 0.00397(0.00294)

SMS-EMOA 0.8122(0.24977) 0.004889(0.00144)* 0.00279(0.002589)
SMSP-EMOA 0.91789(0.18862) 0.005626(0.00114) 0.001977(0.0024904)
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Figure 3: Boxplots for ZDT4, DTLZ3 and DTLZ4

D. Convergence Velocity Analysis

This section evaluates the convergence velocity of SMSP-
EMPA and other three algorithms with HVR. Figure 4
shows how four algorithms improve their HVR values as
the number of function evaluations grows. SMSP-EMOA
improves its HVR faster than the other three algorithms in all
problems except ZDT2 and DTLZ4. Particularly, in ZDT4,
ZDT6 and DLTZ3, SMSP-EMOA’s convergence velocity is
significantly faster than the others’. For example, in ZDT6,
SMSP-EMOA yields the HVR value of 0.45 in the 7,500th

function evaluation while the other three algorithms’ HVR
values are still zero at that time.

In ZDT2 and DTLZ4, SMSP-EMOA’s convergence veloc-
ity is not the best and slower than NSGAII at the beginning
of experiments. However, in ZDT2, its HVR is higher than
NSGAII’s at the last function evaluation. In DTLZ4, its HVR
is comparable to NSGAII’s at the last function evaluation.

In DTLZ2, NSGAII and SPEA2 encounter premature
convergence. SMS-EMOA and SPEA2 have the same prob-
lem in DTLZ4. In contrast, SMSP-EMOA never encounters



premature convergence. In terms of convergence velocity,
SMSP-EMOA is more consistent and robust than the other
three algorithms among different problems.

V. CONCLUSIONS

SMSP-EMOA is a new indicator-based EMOA that lever-
ages different quality indicators in different selection oper-
ators. It uses the prospect indicator in its parent selection
and the hypervolume indicator in its environmental selec-
tion. Experimental results show that SMSP-EMOA’s parent
selection operator complement its environmental selection
operator. SMSP-EMOA outperforms SMS-EMOA and well-
known traditional EMOAs in optimality and convergence
velocity without sacrificing the diversity of individuals.

Several future extensions are planned as future work.
First, an extended set of experiments will be carried out to
evaluate SMSP-EMOA and compare it with other algorithms
in higher dimensional DTLZ problems that have more than
three objectives. Another set of experiments is planned to
examine SMSP-EMOA in more realistic problems such as
the Traveling Salesperson Problem and the Vehicle Routing
Problem. Secondly, SMSP-EMOA will be equipped with
an online/offline convergence detection algorithm that deter-
mines the termination condition (i.e., the maximum number
of objective function evaluations) in each experiment.
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