
Building an adaptive Web server with a

meta-architecture: AISF approach

Junichi Suzuki
y

Yoshikazu Yamamoto
y

yDepartment of Computer Science,

Faculty of Science and Technology,

Keio University, Yokohama, 223-8522, Japan.

fsuzuki, yamag@yy.cs.keio.ac.jp

Abstract

As the Web is becoming ubiquitous environment, Web servers are faced with a diversity of

requirements. This paper addresses how Web servers can meet a wide range of requirements,

and proposes an adaptive framework called AISF (Adaptive Internet Server Framework) which

employs a meta-architecture to make the Web server adaptable and con�gurable. We are in-

terested in applying the meta-architecture to Web servers, where it has had little acceptance

to date. AISF provides a set of �ne-grained metaobjects which capture and express various

aspects in Web servers. Web servers can dynamically adjust itself to meet any requirement by

implementing it within the AISF programmable meta model. This paper also demonstrates

that AISF can be used to meet every demand placed upon Web server consistently, and in-

cludes some proof-of-concept examples. Our approach aims to create adaptive Web servers

beyond a static and monolithic servers.

1 Introduction

Today, the Web (World Wide Web) is a very

popular mechanism for publishing or application

front-end, and has widely used than most expec-

tations. The explosive growth of the Web places

increasingly larger and challenging demands on

servers. For example, current Web servers are re-

quired to:

� connect with various software systems such

as groupware, database management systems,

mobile agent engine and TP monitors.

� integrate with the more generic distributed

environments such as CORBA (Common

Object Request Broker Architecture) and

DCOM (Distributed Component Model).

� extend their functionality, e.g., by introduc-

ing additional network protocols or content

media types.

� change its execution policies, e.g., in connec-

tion management or request handling, as a

single policy cannot be the best solution in

every situation.

� change the execution environment, as modern

Web servers are deployed on ATM networks

or embedded within the electronic devices like

routers, printers or copiers.

As such, a Web server is required to be ex-

ible and adaptable to meet a wide range of de-

mands. Unfortunately, most existing Web servers

are monolithic in that they provide a �xed and a

limited set of capabilities. The usual solution that

allows existing web servers to meet this diversity

|1|

of requirements, as described above, involves shut-
ting down the system, adding some components

that ful�ll the new requirement, integrating them

with existing components, and restarting the sys-

tem. This solution, however, is often di�cult or

expensive (i.e. time consuming), or does not al-

low the server to dynamically change to meet new

requirements (e.g. execution policies and con�g-

urations). This is why any requirements cannot

be anticipated at the Web server's development

phase. Therefore, the \scrap-and-build" solution,

whereby the system is rebuilt from scratch, is of-

ten taken. Coupled with the increasing role on

the Internet/Intranet, we need Web servers which

can reuse and select feasible requirements without

being locked in a single one.

Consequently, what most Web servers lack is

adaptability to enable system evolution. The gen-

eral issue on the system adaptability is that sys-

tem designers cannot know or predict all possible

uses of the system, because an service or con�gu-

ration that is appropriate at one point in time is

not always useful at another point, and the system

cannot evolve transparently.

In this paper, we address this problem and de-

scribe how our work aims to make Web servers

adaptable. For a highly adaptive Web server, we

propose an adaptive framework for Web servers

called AISF (Adaptive Internet Server Frame-

work), which employs a meta-architecture. We

consider the use of the meta-architecture as a

mechanism for specifying the structure and be-

havior of an open-ended and exible system that

can be dynamically adapted and extended. We

outline the design of AISF meta model and dis-

cuss how we can consistently exploit AISF for the

increasingly diverse requirements using some ap-

plications. Our work di�ers from other e�orts in

that our framework can express various aspects

of Web servers, and can support a wide range of

requirements.

The remainder of this paper is organized as fol-

lows. Section 2 introduces the meta-architecture

and reection, and Section 3 outlines comparisons

with related work. Section 4 describes the AISF

conceptual model and design principles. Section

5 presents some examples of the use of AISF. We

conclude with a note on the current status of the

project and some future work in Section 6 and 7.

���������

���������

	�
�
���
� 	������
�

����������������

����������

Figure1 Constructs found in a typical meta-

architecture.

2 Meta-architectures and Reection

Meta-architecture introduces the notion of \ob-

ject/metaobject separation". In general, a

metaobject (or metalevel object) is an object that

contains information about the internal structure

and/or behavior of one or more objects (baselevel

object or baseobject). So, metaobjects can track

and control certain aspects (i.e. structure and/or

behavior) of baseobjects. While a set of metaob-

jects is called the metaspace or metalevel, a set of

baseobjects is called the baselevel.

Reection is the ability of a program to manip-

ulate as data something that represents the state

of the program [1] [2] and adjust itself to changing

requirements. The goal of reection is to allow a

baseobject to reason about its own execution state

and eventually alter it to change its meaning, dur-

ing its own execution.

In contrast to reection, rei�cation [3] is the

process to make something accessible which is not

normally available in the baselevel (i.e. program-

ming environment) or is hidden from the program-

mer. To supervise the execution of a baseob-

ject, it has to be explicitly rei�ed into the cor-

responding metalevel. A set of interfaces with

which a baselevel object accesses its metalevel is

|2|

called Metaobject Protocols or MOPs. The rela-
tionship among the constructs described above is

illustrated in Figure 1.

Reection was originally introduced by 3-Lisp

[4] [5] and has been studied within various pro-

gramming languages such as 3KRS [2], CLOS [6],

ABCL/R [7], Smalltalk [8] [9], OpenC++ [10],

Iguana [11], and MetaJava [12]. The intention

of these reective languages is the introduction of

a general mechanism to extend the language it-

self. It has been shown that reection eases (1)

extensibility, e.g., a reective language can extend

its syntax and semantics for problem domains

which were not originally considered, (2) compat-

ibility, e.g., backward compatibility between the

new additional and existing de�nitions, and (3)

e�ciency, e.g., the implementation strategy can

be varied to optimize the behavior.

Recently, reection has been applied to more

generic system design, other than programming

languages, such as agent engines [13], object-

oriented databases [14], parallel computing [15],

operating systems [16] [17], class libraries [18], ob-

ject request brokers [19], distributed type systems

[20] and hypermedia systems [21].

3 Related Work

Few meta-architectures have been applied to

Web servers. A rare example is Zypher. Zypher

[21] [22] [23] is a framework for the open hyperme-

dia system, which intends to provide three kinds

of tailorability:

� Domain-level tailorability: is needed to de-

liver a hypermedia system for a speci�c ap-

plication domain.

� System-level tailorability: aims to deliver ser-

vices that a�ect the overall behavior of the

hypermedia system.

� Con�guration-level tailorability: aims to pro-

vide coordination among the system compo-

nents, which can be adapted without chang-

ing their internal organization.

To allow system level tailorability, Zypher

provides three metaobjects: Path, Session,

Hypertext. Path deals with navigation in the

hypermedia system, Session controls the presen-

tation, and Hypertext is responsible for stor-

age management. Zypher also incorporates a

meta-metaobject: HypermediaContext, to allow
con�guration-level tailorability.

Baselevel objects interact with these objects to

de�ne and/or modify the behavior of the sys-

tem. However, Zypher's metalevel is too coarse-

grained to adapt to unanticipated behavior, any-

thing other than prede�ned behavior. The au-

thor claims that it's possible to extend the met-

alevel by adding/removing metaobjects or instan-

tiating multiple instances of each metaobject [22].

Unfortunately, there is no description of how

to manage the metalevel components, e.g., how

to add/remove metaobjects and coordinate them

with existing objects, which may cause modi�-

cation of the meta-metaobject. In contrast, the

AISF metalevel is a set of �ne-grained metaob-

jects, which can scale well, even for unanticipated

behavior at all levels, as described in Section 4.

4 Applying a meta-architecture to

Web servers

4.1 AISF conceptual framework

AISF is a framework dedicated to Web servers,

which captures and expresses a wide rage of as-

pects of Web servers. The scope of AISF includes

the full range of metalevel and a part of the base-

level, by providing a set of �ne-grained metaob-

jects and supplemental utility objects to help writ-

ing both the base and metalevel. Since AISF is

based on a pure object model, which has no el-

ements that are not objects, both the base and

metalevel consists of a series of objects. Imple-

mented within the AISF programmable metalevel,

a Web server can dynamically adjust itself so that

it is executed in the best condition along with a

given requirement.

Though modern Web servers provide some ex-

tension mechanisms like CGI (Common Gateway

Interface), server-side APIs and server-side script-

ing, their extensibility is restricted within the

application-level. In contrast, AISF provides a

uniform and consistent platform where a variety

of requirements can be speci�ed from low-level

services like the connection management, request

handling and cache management into application-

level services, even unanticipated ones, without

breaking the framework. In other words, AISF

plays a role of a generic \change absorber" for

|3|

Web servers.
The advantages of the Web server based on a

meta-architecture can be summarized as follows:

� Separation of concern: In conventional

Web servers, the system's basic mechanisms

are mixed and complicated by policy algo-

rithms. This makes it di�cult to under-

stand, maintain and validate the program.

The separation of the reective facilities from

the basic mechanisms allows the reusability

of feasible policies [6] [24]. This separation

allows system designers and application pro-

grammers to focus on their problem domain,

which leads to more structured and more eas-

ily maintained systems.

� Adaptability and Con�gurability: The

metalevel keeps the baselevel open [6]. New

requirements can be implemented without

changing the baselevel application code. Not

only can the system designers pro�t from the

metalevel, but also the system users or admin-

istrators who create or replace metaobjects to

tailor the system for their speci�c demands.

This eliminates the \scrap-and-build" solu-

tion to system development.

� Transparency: Transparency between the

metalevel and baselevel reduces the con-

straints between both. Thus, changes in the

metalevel can be achieved with relatively mi-

nor modi�cations to baselevel objects within

the original system.

4.2 Design of the AISF model

To structure the AISF metalevel, we have iso-

lated the decomposed services and entities by

looking for the events which occur during the ex-

ecution of Web servers. Then, we have speci-

�ed each one as a metaobject. In this fashion,

the Web server can be described with a collection

of metaobjects. The AISF metalevel has a set

of fundamental metaobjects called base metaob-

jects, which specify the Web servers' aspects and

de�nes their default behavior. In our initial

implementation, AISF provides seven primitive

base metaobjects; SysController, Initializer

Acceptor, RequestHandler, Protocol, Logger,

and ExecManager (Figure ??). The basic respon-

sibilities of each are listed below:

����������� 	
�� �

 ��������

� �� ����� ������

�� � �����

����������� ������ ��

Figure2 A baseobject and its corresponding

metaobjects (base metaobjects). Every

baseobject has its own group of metaob-

jects (metalevel) and explicitly interact

with its metaobjects to de�ne and/or

modify its own capability.

� SysController

{ keeps track of the system status and main-

tains the con�guration within the overall sys-

tem. Once the AISF metalevel is created, this

object is instantiated at �rst. SysController

is an active object executed on a thread and

a root in the thread hierarchy.

� Initializer

{ initializes the network infrastructure along

with the current con�guration. The typical

task is to create a socket(s) to accept incom-

ing requests and Acceptor to wait for them.

� Acceptor

{ waits for and accepts incoming requests.

Once it obtains a request, it asks for a

RequestHandler to process the request along

with the kind of request or communication

protocol.

� RequestHandler

{ deals with requests passed by Acceptor. It

is created when an Accepter accepts a re-

quest (i.e. on the per-request basis), or re-

sides permanently.

|4|

� Protocol

{ de�nes the protocol speci�c information. It

exists on a per-protocol basis and is used by

a RequestHandler.

� Logger

{ records the log of access to the Web server.

� ExecManager

{ is used to execute any external entities like

CGI scripts.

These base metaobjects express the typical as-

pects of Web servers. There can be more and less

base metaobjects depending on requirements. As

introduced later in this paper, AISF provides the

dynamic mechanism to organize the metalevels.

Figure 2 depicts the relationship between a

baseobject and its metalevel, which has its own

group of metaobjects. Each group is represented

with a metaobject MetaSpace, which is an en-

try point from the baselevel to metalevel. Any

baseobjects access the MetaSpace when commu-

nicating with their metalevel(s). The MetaSpace

is somewhat similar to the metaobject Reector

in Apertos operating system [16]. All the objects

de�ned in AISF has the method metalevel() by

default and can use it to refer to its metalevel

(represented by an instance of MetaSpace), as fol-

lows:

aMetaSpace = aBaseobject.metalevel()

aMetaSpace...

AISF eliminates the explicit level-shifting from

baselevel to metalevel and the reective functions

found in other reective systems [4] [5]. This is

similar to the approach that CodA [25] intro-

duced. Metaobjects are the same as any other

objects in the system, and the AISF metalevel is

just another application. Reective computation

is executed by direct interaction with the desired

metaobjects.

In AISF, every baseobject does not have to be

attached to a metalevel or to metaobjects, but is

dynamically attached at run-time; lazy rei�cation.

Every baseobject can be rei�ed with either of the

methods reify() and fullyReify(), which all

baseobjects have:

aBaseobject.fullyReify()

aMetaSpace = aBaseobject.metalevel()

�����������	
���

��������

��������������

��������

������������������

������

������������������

����

Figure3 The relationship between a base metaob-

ject and concrete metaobjects, based on

object composition.

aMetaSpace...

Once a baseobject is rei�ed, it gets to be

aware of its metalevel and the corresponding

metaobjects are then instantiated. While the

method fullyReify() creates all the default base

metaobjects, the method reify() can specify the

rei�ed base metaobject as a parameter:

aBaseobject.reify("Acceptor")

aBaseobject.reify("RequestHandler")

aMetaSpace = aBaseobject.metalevel()

aMetaSpace...

As such, the number and type of instantiated

metaobjects depends on what the users wish to

do. Reective computation, which incurs a per-

formance overhead, occurs only when or where a

baseobject needs to know (i.e. reify) its aspects

which the corresponding metaobjects express.

As shown in Figure 3, a base metaobject has re-

lationships with concrete metaobjects to provide

the concrete behavior of the metaobjects. For

example, RequestHandler has associations with

HTTPRequestHandler and IIOPRequestHandler,

which de�ne the way to handle HTTP and IIOP

requests, respectively. Also, Protocol is asso-

ciated with HTTP09, HTTP10, HTTP11 and IIOP,

which de�ne the protocol speci�c information of

HTTP version 0.9, 1.0, 1.1 and IIOP, respectively.

The relationship between a base metaobject and a

|5|

concrete metaobject is designed using object com-
position rather than inheritance, which is typi-

cally used to modify an object's behavior incre-

mentally, because inheritance imposes so-called

\early and permanent binding" between an ob-

ject and its method's semantics. Early binding

means that the system designer has to choose the

method's semantics in instantiating the object or

its derived objects. Permanent binding means

that the system users cannot alter the method's

semantics at run-time, once the object is created.

This kind of discussion is well known as the \class

inheritance versus object composition" argument

in the object technology community. It is recog-

nized that object composition should be favored

over class inheritance, since object composition

decouples the hardwired behavior and provides

more run-time exibility [26].

For example, RequestHandler delegates the

method invocation of handleRequest(), which is

called to process incoming requests, to the con-

crete metaobject that de�nes the behavior for the

speci�c protocol (e.g. HTTP10RequestHandler or

HTTP11RequestHandler). Also, RequestHandler

can switch the delegate object at run-time. This

allows the Web server to dynamically change the

underlying protocol without a system shutdown.

Since AISF o�ers customizable functionality as

a collection of metaobjects, users only have to as-

semble the appropriate metaobjects together to

ful�ll a new requirement. Thus, a scheme that

organizes and coordinates the metalevel is re-

quired to compose metaobjects e�ectively. To

achieve this concept, AISF employs the notion

of metaobject/meta-metaobject separation in ad-

dition to the object/metaobject separation. A

meta-metaobject is the metaobject for a base

metaobject and exists on a per-metaobject basis.

It knows the structure of a base metaobject and

controls its behavior.

Figure 4 shows a typical interaction be-

tween a baseobject, a base metaobject and

meta-metaobjects. Meta-metaobjects are named

with the pre�x mm; mmRequestHandler is a

meta-metaobject of RequestHandler. Meta-

metaobjects know the current con�guration or

status of a corresponding base metaobject. For

example, RequestHandler can ask which concrete

metaobject is currently selected for handling re-

����������� 	
�� �

� �� ��� ���� ��� ���

� � � ��� ���� ��� ���

handleRequest()

� ��� ���� ��� ��� � � ��� ��� ���� ��� ���

� � ������� � ���� �

������ �� �� � ���� �

� � �� � ���� �

�� � ���� �

 ���!� ��������

 ��������

���������

change()

remove()

add()

Figure4 Interactions among baselevel, metalevel

and meta-metalevel. A base metaobject

interacts with the corresponding meta-

metaobject for refering to its current sta-

tus and changing its con�guration.

quests by calling the method current() of its

meta-metaobject; mmRequestHandler:

aMetaMetaRh = aRequestHandler.metalevel()

aMetaMetaRh.current()

With a meta-metaobject, RequestHandler can

dynamically change the concrete metaobject to

which the task handleRequest() should be

delegated by calling the method change() of

mmRequestHandler. To add or remove con-

crete metaobjects, a base metaobject invokes

the method add() or remove() of its meta-

metaobject. As such, meta-metaobjects allow the

incremental modi�cation in the metalevel. A con-

crete use of meta-metaobjects is demonstrated in

Section 5.1.

5 Applications

AISF has been applied to the following four re-

quirements. In this section, we explain the �rst

example at length and others more briey.

5.1 Changing Request Handling Policy

Most Web servers are currently built based on

the \forking" model for a multi-process server.

Such a server creates a new process for every

client-server connection. This approach is simple

to implement and manage, but does not scale very

|6|

well in high-load situations. Creating a new pro-
cess is so expensive on any operating systems that

it is actually noticeable to end users. For exam-

ple, when you browse a HTML page with 10 inline

images, you establish 11 connections and create

11 processes on the remote Web server. Thus,

a lot of clients accessing the Web server and/or

media-rich contents mean a lot of processes and

the longer latency. Also, each process requires

the allocation of a certain amount of memory

space. Even though most operating systems incor-

porate techniques that make this much less costly

than it could be, the result is still very waste-

ful. The server that is simultaneously accessed

by 100 clients requires hundreds of megabytes of

real memory in order to respond smoothly. Some

Web servers like Apache provide a solution that

partly overcome these drawbacks, the \process

pool", which pre-creates a �xed number of pro-

cesses. Incoming requests are attached to each

process in turn. Although this alleviates the per-

formance problem due to process creation, up to

the pre-determined number of processes, it does

not scale well.

An alternative solution is the \multi-threaded

server", which avoids the problems involved in a

\forking server" by using threads. With threads,

multiple concurrent execution is achieved within a

single process and thread creation/deletion is rela-

tively cost e�ective. However, the multi-threaded

server is hard to maintain and port into di�erent

environments. A \Thread pool" is used to pre-

create a �xed number of threads and attach each

one in turn to an incoming request. This is an

analogous approach to the process pool for fork-

ing servers.

In addition, a single-threaded server with I/O

multiplexing capability has been proposed. It

multiplexes I/O channels to incoming requests

within a single thread (process). Running as a

single process, there is no per-client process (or

even thread) creation/destruction overhead and

no context switching overhead. As well as these

advantages, memory requirements are also low-

ered. The drawback in this kind of server is that

the number of connections, which the server can

establish simultaneously, is limited to the maxi-

mum number of �le descriptors per single process

(this number depends on the underlying operat-

ing system.), and that even a small error can cause
the system down. The advantages and disadvan-

tages of the above request handling policies are

summarized below:

� Single-threaded with I/O multiplexing

{ Resource saving.

{ Less overhead.

{ Highly portable.

{ Less connections.

{ Fault sensitive.

� Process per request

{ Simple model.

{ Portable.

{ Much overhead.

{ Resource intensive.

� Process pool

{ Alleviates the overhead.

{ Requires mutual exclusion.

� Thread per request

{ Much faster than forking server.

{ Not portable.

� Thread pool

{ Alleviates the overhead.

{ Requires mutual exclusion.

In our initial implementation, AISF supports

three policies; a process per request, a thread per

request and a single thread with I/O multiplex-

ing, and the threaded server is default. AISF al-

lowsWeb servers to change the policy at run-time,

using the metaobjects SysController, Acceptor

and the utility object Queue. For example, a Web

server can start as the single-threaded server with

I/O multiplexing and then change itself into the

threaded server, in case the work load (i.e. the

access rate) of the server goes over the prede�ned

threshold. The code in Appendix A shows the be-

havior of a baseobject, which con�gures the ini-

tial policy and then changes it. When the method

change() of the meta-metaobject is executed like:

aMetaMetaAcceptor.change(ThreadedAcceptor)

SysController instantiates a new concrete

metaobject ThreadedAcceptor and utility ob-

ject Queue to store the requests temporally.

Next, SingleThreadedAcceptor forwards the in-

coming requests to the Queue without process-

ing them and processes only the existing re-

|7|

quests that have arrived before the change in
policy. When all the existing requests are

processed, the SingleThreadedAcceptor sig-

nals this fact to the SysController. Then,

SysController dispatches the socket object to

the ThreadedAcceptor and starts the acceptor's

internal loop. Through the above process, the

Web server becomes a threaded server and all the

requests are processed on a thread. These syn-

chronization issues are opaque for baseobjects so

that the baselevel program is kept simple.

5.2 Changing Protocols

While most Web servers are based on HTTP,

some modern servers like Apache, Netscape En-

terprise Server and Microsoft Internet Informa-

tion Server have now introduced additional proto-

cols. Also, W3C (World Wide Web Consortium),

which is the standardization body for Web tech-

nologies, is working on the next generation proto-

col. In near future, Web servers will be required

to add emerging protocols. Currently, AISF de-

�nes three kind of protocols; HTTP version 0.9,

1.0 and 1.1. A baselevel application can alter the

protocol with the metaobjects SysController,

RequestHandler and Protocol. AISF can adopt

any additional protocols that Web servers are un-

derlying on, using the AISF consistent interfaces.

5.3 Adding an application level compo-

nents

In addition to the above applications, which

are examples of modi�cation in the system's

low level services, AISF can also capture the

higher application-level requirements. We have

described the CGI and Server-side scripting ca-

pability within AISF. A Web server can dynam-

ically add and remove such components using

the metaobjects Syscontroller, Acceptor and

ExecManager.

5.4 Con�guring the minimum set of

functionalities

Changing the system's execution environment,

rather than changing the functionality, is also im-

portant for system adaptability. For example, as

touched on above, Web servers are now embedded

into electronic devices such as routers, printers

and copiers to show statistics and con�guration

information.
We have tested to con�gure the minimum set

of functionalities for the execution environments

like the above embedded Web servers. In such

an environment, the Web server should be small

and lightweight due to the limited resources (e.g.

memory and disk space). AISF allows a Web

server to con�gure itself for the minimum set

of functionalities, which includes only processing

HTTP requests without logging, keeping the sys-

tem status or running CGI program.

5.5 Further proposals for applications

We are investigating to introduce the additional

protocols or con�guration settings, and working

on the further applications for the following envi-

ronments: a multimedia environment where the

AISF metalevel represents the continuous me-

dia handling and streaming, a Web-CORBA inte-

grated environment where a Web server is built on

top of an object request broker, and a CSCW envi-

ronment where the software design documents are

shared within the distributed development team.

6 Current Project Status and Future

Work

AISF has initially been implemented using

Python programming language on a Pentium

120MHz PC with 48MB RAM running Windows

NT. The initial AISF implementation includes

seven base metaobjects, seven meta-metaobjects,

twelve concrete metaobjects and seven supple-

mental objects. We are investigating the imple-

mentation of AISF with other reective languages

to illustrate that the design of AISF itself does not

depend on the programming language. We are

now evaluating some other reective languages.

As for the AISF metalevel, we are experiment-

ing with an additional mechanism to coordinate

metaobjects. Currently, AISF incorporates the

notion of metaobject/meta-metaobject separation

to carry out this function, as described in Sec-

tion 4.2. However, composing and coordinating

metaobjects so as to introduce a new system be-

havior requires precise knowledge of the interfaces

and implementations of all the metaobjects in

the metalevel. Few methodologies have been pro-

posed for metaobject composition. Currently, the

|8|

major experiment with AISF aims to develop a
framework that enables the relationship between

the baselevel and metalevel or among metaobjects

to be more con�gurable, and to hide the detail

of such coordination process away from baselevel.

We are also measuring the costs of reective com-

putation in AISF.

As for AISF applications, the examples given

above show unique and reasonable ways of im-

plementing behaviors, which are not di�cult to

do without AISF, though they are quite simple.

We are working on the additional applications

touched in Section 5.5, to demonstrate the power

of AISF and improve the model.

Further information on the project status can

be obtained from

http://www.yy.cs.keio.ac.jp/ suzuki/project/aisf/.

7 Conclusion

This paper addresses howWeb servers can meet

diversing requirements, proposes a solution which

make them adaptable and con�gurable by employ-

ing a meta-architecture, and illustrates that our

framework is suitable to deploy an adaptable Web

server beyond a static and monolithic server of to-

day. Adding a meta-architecture to a Web servers

opens its execution environment to a variety of re-

quirements and allows it to continually evolve.

A Sample code

aServer.reify("SysController")

aServer.reify("Acceptor")

aMetaSpace = aServer.metalevel()

anAcceptor

= aMetaSpace.getObject("Acceptor")

aMetaMetaAcceptor

= anAcceptor.metalevel()

aMetaMetaAcceptor.

change(SingleThreadedAcceptor)

.....

aSysController

= aMetaSpace.getObject("SysController")

If the server's load is

beyond the threshold

If(aSysController.loadStatus() > threshold):

a concrete metaobject is changed

if(aMetaMetaAcceptor.current().

isInstanceOf(SingleThreadedAcceptor)):

aMetaMetaAcceptor.

change(ThreadedAcceptor)

References

[1] D. Bobrow R. Gabriel J. White. CLOS in Context

-The Shape of the Design Space. In A. Paepcke, editor,

Object-Oriented Programming- The CLOS Perspective,
page Chapter 2. MIT Press, 1993.

[2] P. Maes. Concepts and experiments in computa-

tional reection. In Proceedings of OOPSLA '87, pages

147{155, 1987.

[3] D. P. Friedman and M. Wand. Rei�cation: Reec-

tion without metaphysics. In Symposium on LISP and
Functional Programming, 1984.

[4] J. des Rivieres and B. C. Smith. The implementa-

tion of procedurally reective languages. In Conference
Record of the 1984 ACM Symposium on Lisp and Func-
tional Programming, 1984.

[5] B. C. Smith. Reection and semantics in lisp. In

Proceedings of ACM POPL '84, pages 23{35, 1984.
[6] G. Kiczales. The Art of the Metaobject Protocol.
MIT Press, 1991.

[7] H. Masuhara S. Matsuoka T. Watanabe and

A. Yonezawa. Object-oriented concurrent reective lan-

guages can be implemented e�ciently. In Proceedings
OOPSLA '92, ACM SIGPLAN Notices, pages 127{147,

1992.

[8] B. Foote. Reective Facilities in Smalltalk-80. In

OOPSLA'89, 1989.
[9] F. Rivard. Smalltalk: a Reective Language. In

Reection'96, 1996.
[10] S. Chiba. A metaobject protocol for C++. In OOP-
SLA95 Proceedings, 1995.

[11] B. Growing and V. Cahill. Meta-Object Protocols

for C++: The Iguana Approach. In Proceedings of Re-
ection '96, pages 137{152, San Francisco, USA, 1996.

[12] J. Kleinoder and M. Golm. Metajava: An E�cient

Run-Time Meta Architecture for Java. In International

Workshop on Object-Orientation in Operating Systems
(IWOOOS'96), 1996.

[13] T. Nishigaya. Design of Multi-Agent Pro-

gramming Libraries for Java, 1997. available at

http://www.fujitsu.co.jp/hypertext/free/kafka/paper/.

[14] Object Design Inc. ObjectStore User's Guide r3.0,
1994.

[15] L. H. Rodriguez Jr. Coarse-Grained Parallelism Us-

ing Metaobject Protocols. Master Thesis, MIT, 1991.

[16] Y. Yokote. The Apertos reective operating system:

The concept and its implementation. In Proceedings
OOPSLA '92, 1992.

[17] C. Zimmermann and V. Cahill. It's your choice - on

the design and implementation of a exible metalevel

architecture. In Proceedings of the 3rd International
Conference on Con�gurable Distributed Systems, IEEE,
1996.

[18] IBM. SOMobjects Developer Toolkit ver. 2.0, 1993.
[19] Java Reective Broker. http://andromeda.cselt.it/users/g/grasso/f

[20] S. Crawley S. Davis J. Indulska S. McBride and

K. Raymond. Meta-meta is better-better! In Interna-

|9|

tional Working Conference on Distributed Applications
and Interoperable Systems (DAIS'97), 1997.

[21] S. Demeyer P. Steyaert and K. D. Hondt. Zypher:

the Role of Meta-Object Protocols in Open Hyperme-

dia Systems. In Hypertext'97, 1997.
[22] S. Demeyer. Zypher: Tailorability as a Link from

Object-Oriented Software Engineering to Open Hyper-

meria. Ph.D Thesis, Vrije University, 1996.

[23] S. Demeyer. The Zypher Meta Object Protocol.

In the 2nd Workshop on Open Hypermedia Systems -
Hypertext'96, 1996.

[24] W. L. Hursch and C. V. Lopes. Separation of Con-

cerns. Technical report, NU-CCS-95-03, Northeastern

University, 1995.

[25] J. McA�er. Engineering the Meta Level. In Pro-
ceedings of Reection `96, 1996.

[26] E. Gamma R. Helm R. Johnson and J. Vlissides.

Design Patterns. Addison-Wesley, 1995.

|10|

