

1

Leveraging Metamodeling and Attribute-Oriented Programming
to Build a Model-driven Framework for Domain Specific Languages*

Hiroshi Wada
hiroshi_wada@otij.org

Object Technology Institute, Inc.
Akasaka, Minato-ku,

Tokyo, 107-0052, Japan

Shingo Takada
michigan@doi.ics.keio.ac.jp

Graduate School of Science and Technology
Keio University

Yokohama City, 223-8522, Japan

Junichi Suzuki
jxs@cs.umb.edu

Department of Computer Science
University of Massachusetts, Boston

Boston, MA 02125-3393, USA

Norihisa Doi
doi@ise.chuo-u.ac.jp

Faculty of Science and Engineering,
Chuo University

Tokyo, 112-8551, Japan

ABSTRACT
This paper proposes a new model-driven framework that
allows developers to model and program domain-specific
concepts (ideas and mechanisms specific to a particular
domain) and to transform them toward the final (compi-
lable) source code in a seamless manner. The proposed
framework provides an abstraction to represent domain-
specific concepts at both modeling and programming layers
by leveraging the notions of UML metamodeling and at-
tribute-oriented programming. This paper describes the
design and implementation of the proposed framework, and
discusses how the framework can improve the productivity
to implement domain-specific concepts and how it can in-
crease the longevity of models and programs representing
domain-specific concepts. In order to demonstrate how to
exploit the proposed framework, this paper also shows a
development process using an example DSL to specify ser-
vice-oriented distributed systems.

1. INTRODUCTION
Software modeling is becoming a critical process in soft-
ware development. Modeling technologies have matured to
the point where it can offer significant leverage in all as-
pects of software development [1]. For example, the Uni-
fied Modeling Language (UML) provides a rich set of mod-
eling notations and semantics, and allows developers to
understand, specify and communicate their application de-
signs at a higher level of abstraction [2]. The notion of
model-driven development aims to build application design
models and transform them into running applications [3].
Given modern modeling technologies, the focus of software
development has been shifting away from technology do-
mains toward the concepts and semantics of problem do-
mains. The more directly application models can represent
domain-specific concepts, the easier it becomes to specify
applications. One of the goals of modeling technologies is
to map modeling concepts directly to domain concepts [4].

Domain Specific Language (DSL) is a promising solution
to directly capture, represent and implement domain con-

cepts [5, 6]. DSLs are languages targeted to particular prob-
lem domains, rather than general-purpose languages that are
aimed at any software problems. Each DSL provides built-
in abstractions and notations to specify concepts and se-
mantics focused on, and usually restricted to, a particular
problem domain. Several experience reports have demon-
strated that DSLs can significantly improve the productivity
to implement and deliver domain-specific concepts as the
final software products [7, 8]. In academic, industrial and
government communities, various DSLs have been pro-
posed and used for describing, for example, 3D animations
[9], business rules [10], insurance business logic [11], soft-
ware testing [12] and military command and control [13].

This paper proposes a new model-driven framework that
allows developers to model and program domain-specific
concepts in DSLs and to transform them toward the final
(compilable) source code in a seamless and piecemeal man-
ner. Each DSL is defined as a UML metamodel extended
from the standard UML metamodel. The proposed frame-
work provides an abstraction to represent domain-specific
concepts at both modeling and programming layers simul-
taneously. In the modeling layer, domain-specific concepts
are represented as Domain Specific Model (DSM), which is
a set of UML diagrams compliant with a certain DSL (i.e. a
UML metamodel). In the programming layer, domain-
specific concepts are represented as Domain Specific Code
(DSC), which consists of program interfaces and attributes
associated with them. Attributes are declarative marks, as-
sociated with program elements (e.g. interfaces and classes),
to indicate that particular program elements maintain appli-
cation-specific or domain-specific semantics [14]. The pro-
posed framework transforms domain-specific concepts from
modeling layer to programming layer, and vise versa, by
providing a seamless mapping between DSMs and DSCs
without any semantics loss.

The proposed framework transforms a DSM and DSC into
a more detailed model and program by applying a given
transformation rule. The framework allows developers to

* Work by Junichi Suzuki is supported by OGIS International, Inc. and
Electric Power Development Co., Ltd.

2

define arbitrary transformation rules, each of which speci-
fies how to specialize a DSM and DSC to particular imple-
mentation and/or deployment technologies. For example, a
transformation rule may specialize them to a database sys-
tem, while another one may specialize them to a business
rule engine with a certain remoting support. Then, the pro-
posed framework combines the specialized DSM and DSC
and generates the final (compilable) source code.

This paper describes the design and implementation of the
proposed framework, and discusses how the framework can
improve the productivity to implement domain-specific
concepts and how it can increase the longevity of models
and programs representing domain-specific concepts. In
order to demonstrate how to use the proposed framework,
this paper also shows a development process using an ex-
ample DSL to specify service-oriented distributed systems.

The structure of this paper is organized as follows. Section
2 summarizes the contributions of this work. Section 3
overviews attribute-oriented programming. Section 4 de-
scribes the design and implementation of the proposed
framework, and Section 5 demonstrates how to use the pro-
posed framework using an example DSL. Sections 6 and 7
conclude with comparison with existing related work and
some discussion on future work.

2. CONTRIBUTIONS
This paper makes the following contributions to the design
of model-driven development frameworks.

• UML2.0 support for modeling domain-specific concepts.
The proposed framework accepts DSLs as metamodels ex-
tending the UML 2.0 standard metamodel, and uses UML
2.0 diagrams (class and composite structure diagrams) for
modeling domain-specific concepts as DSMs. This work is
the first attempt to leverage the UML2.0 model elements to
define and use DSLs.

• Higher abstraction for programming domain-specific
concepts. The proposed framework offers a new approach
to represent domain-specific concepts at the programming
layer, through employing the notion of attribute-oriented
programming. This approach provides a higher abstraction
to developers, and improves the productivity for them to
program domain-specific concepts. Programming domain-
specific concepts with attributes is much simpler and more
readable than programming with general-purpose languages.

• Seamless mapping of domain-specific concepts between
modeling and programming layers. The proposed frame-
work maps domain-specific concepts between modeling and
programming layers in a seamless and bi-directional man-
ner. This mapping allows modelers1 and programmers to
deal with the same set of domain-specific concepts in dif-
ferent representations (i.e. UML models and program inter-
faces with attributes), yet at the same level of abstraction.
This means that modelers do not have to involve the details

1 This paper assumes that modelers (or domain engineers) are familiar

with particular domains but may not be programming experts.

of attribute-oriented programming and other programming
responsibilities, and programmers do not have to possess
detailed domain knowledge and UML modeling expertise.
This separation of concerns can reduce the complexity in
application development, and increase the productivity to
model and program domain-specific concepts.

• Modeling layer support for program attributes. Through
the bi-directional mapping between UML models and pro-
gram attributes, the proposed framework provides a means
to visualize program attributes (i.e. domain-specific con-
cepts) as UML models. This paper presents the first attempt
to bridge the gap between UML modeling and attribute-
oriented programming.

3. BACKGROUND
Attribute-oriented programming is a program-level marking
technique. Programmers can mark program elements (e.g.
classes and methods) to indicate that they have application-
specific or domain-specific semantics [14]. For example,
some programmers may define a “logging” attribute and
associate it with a method to indicate the method should
implement a logging function, while other programmers
may define a “web service” attribute and associate it with a
class to indicate the class should be implemented as a web
service. Attributes separate application’s core logic from
application-specific or domain-specific semantics (e.g. log-
ging and web service functions). By hiding the implementa-
tion details of those semantics from program code, attrib-
utes increase the level of programming abstraction and re-
duce programming complexity, resulting in simpler and
more readable programs. The program elements associated
with attributes are transformed to more detailed programs
by a supporting tool (e.g. pre-processor). For example, a
pre-processor may insert a logging program into the meth-
ods associated with a “logging” attribute.

The notion of attribute-oriented programming is becoming
well accepted in several languages and tools, such as Java 2
standard edition (J2SE) 5.0 [15], C# [16] and XDoclet [17].
For example, J2SE 5.0 implements attributes as annotations,
and the Enterprise Java Bean (EJB) 3.0 extensively uses
annotations to make EJB programming easier [18]. Here is
an example annotation in EJB 3.0

@entity class Customer{
String name;

}

The @entity annotation is associated with the class
Customer. This annotation indicates that the class Cus-
tomer will be implemented as an entity bean in EJB. The
pre-processor EJB provides, called annotation processor,
takes an annotated code as an input and transforms it into
final (compilable) code as an output. In this example, the
annotation processor generates several interfaces and
classes required to implement an entity bean (i.e. a remote
interface, home interface and implementation class).

A transformation of annotated code is performed based on a
certain transformation rule. The EJB annotation processor

3

follows the transformation rules predefined in the EJB 3.0
specification2.

In addition to predefined annotations, J2SE 5.0 allows de-
velopers to define and use their own (i.e. user-defined) an-
notations. There are two types of user-defined annotations;
marker annotations and member annotations. Here is an
example marker annotation, named Logging.

public @interface Logging{ }

A marker annotation is defined with the keyword
@interface.

public class Customer{
@Logging public void setName(...){...}

}

In this example, the Logging annotation is associated with
the method setName(), indicating that the method logs
method invocations. Then, a developer who defines this
Logging annotation specifies a transformation rule for the
annotation, and creates a user-defined annotation processor
that implements the transformation rule. The annotation
processor may replace each annotated method with a
method implementing a logging function3.

A member annotation, the second type of user-defined an-
notations, is an annotation that has member variables.

public @interface Persistent{
String connection();
String tableName();

}

Here, the Persistent annotation has two member vari-
ables: connection and tableName.

@Persistent(
connection = “jdbc:http://localhost/”,
tableName = “customer”

)
public class Customer{}

The Persistent annotation is associated with the class
Customer, indicating that the instances of Customer
will be stored in a database with a particular database con-
nection and table name. Then, a developer who defines this
annotation specifies a transformation rule for the annotation,
and implements a user-defined annotation processor that
takes annotated code and generates additional classes im-
plementing a database access function3.

4. THE PROPOSED FRAMEWORK
This section describes the design and implementation of the
proposed framework.

4.1 ARCHITECTURAL DESIGN
The proposed framework consists of two architectural com-
ponents: DSC Generator and DSL Transformer (Figure 1).

2 The EJB 3.0 specification predefines a set of annotations and transfor-

mation rules for them.
3 J2SE 5.0 provides a set of classes to help developers build their own (i.e.

user-defined) annotation processors.

DSC Generator converts a DSM into a DSC, and vise versa.
Each DSM consists of UML class diagrams and composite
structure diagrams, which are compliant with a particular
DSL. A DSL is a metamodel that extends the UML 2.0
standard metamodel with UML’s extension mechanism4.
The UML extension mechanism provides a set of model
elements such as stereotype and tagged-value in order to
add application-specific or domain-specific modeling se-
mantics to the standard UML metamodel [2]. Each DSL
defines a set of stereotypes and tagged-values to express
domain-specific concepts. Stereotypes are specified as
metaclasses extending UML’s standard metaclasses, and
tagged-values are specified as attributes of the extended
metaclass. Given a DSL, a DSM represents domain-specific
concepts using UML model elements associated with the
stereotypes and tagged-values defined in the DSL.

Each DSC consists of Java’s interfaces and/or classes deco-
rated with the J2SE 5.0 annotations. The annotated code
used in the proposed framework follows the J2SE 5.0 syn-
tax to define marker and member annotations. DSC Genera-
tor transforms domain-specific concepts between modeling
and programming layers by providing a direct one-to-one
mapping between DSMs and DSCs.

The mapping between DSMs and DSCs allows modelers
and programmers to deal with the same set of domain-
specific concepts in different representations (i.e. as UML
models and annotated code), yet at the same level of ab-
straction. This means that modelers do not have to involve
the details of attribute-oriented programming and other
programming responsibilities, and programmers do not
have to know domain knowledge and UML modeling in

4 A metamodel extending the standard UML metamodel is called a UML

profile or virtual metamodel [2]. In a sense, each DSL is defined as a
UML profile for the proposed framework.

DSM

Final (Compilable) Code

Transformation rules

DSC

DSL
TransformerUses

Visual Models Textual Code

DSC
Generator

Programmers

Abstraction level

Representation

Modelers

Describe models
Write
method code

Platform Engineers

Define rules

Application Developers

Higher
Abstraction
Level

Lower
Abstraction
Level

Figure 1: The architecture of the proposed framework

4

detail. This separation of concerns can reduce the complex-
ity in application development, and increase the productiv-
ity to model and program domain-specific concepts.

After DSC Generator generates a DSC, programmers write
method code in the DSC (i.e. annotated code) in order to
implement dynamic behaviors for domain-specific concepts
(Figure 1). Please note that the methods of annotated code
generated by DSC Generator are empty because both DSMs
and DSCs specify the static structure of domain-specific
concepts. Programming for annotated code is much simpler
and more readable than programming for traditional pro-
gram elements (e.g. interfaces and classes). Thus, the pro-
posed framework provides a higher abstraction to develop-
ers, and improves the productivity for them to program do-
main-specific concepts.

DSL Transformer transforms DSM and DSC to the final
(compilable) code by applying a given transformation rule
(Figure 1). The proposed framework allows developers
(platform engineers) to define arbitrary transformation rules,
each of which specifies how to specialize DSMs and DSCs
to particular implementation and/or deployment technolo-
gies (e.g. database and remoting technologies). Given a
transformation rule, DSL Transformer first transforms (or
unfolds) DSM model elements associated with stereotypes
or tagged-values into plain UML model elements that do
not have any stereotypes and tagged-values. In this trans-
formation, a DSM is specialized to particular implementa-
tion and/or deployment technologies. DSL Transformer
generates program code from the specialized DSM, and
extracts method code maintained in DSC. Then, it produces
the final compilable code by combining the generated pro-
gram code and the extracted method code.

DSC Generator and DSL Transformer are separated by de-
sign. The proposed framework clearly separates the task to
model and program domain-specific models (as DSMs and
DSCs) from the task to transform them into the final compi-
lable code. This design strategy improves separation of
concerns between modelers/programmers and platform en-
gineers. Modelers and programmers do not have to know
how domain-specific concepts are implemented and de-
ployed when modeling and programming them. Platform
engineers do not have to know the details of domain-
specific concepts. Also, modelers/programmers and plat-
form engineers can perform their tasks in parallel. As a re-
sult, the proposed framework makes development process
more streamlined and productive.

This design strategy also allows DSM/DSC and transforma-
tion rules to evolve independently, and contributes to in-
crease the longevity of DSMs and DSCs. Since DSMs and
DSCs do not depend on transformation rules, different
transformation rules can be applied to a single set of DSM
and DSC. This means that the proposed framework can
specialize a single set of DSM and DSC to different imple-
mentation and deployment technologies by using different
transformation rules. For example, a DSM and DSC may be
specialized to Java RMI [15] first, SOAP [19] next, and
then .NET remoting [20]. As such, the proposed framework
can maintain domain-specific concepts (i.e. DSMs and

DSCs) longer than the longevity of implementation and
deployment technologies, thereby maximizing the reusabil-
ity of domain-specific concepts.

4.2 MAPPING BETWEEN DSM AND DSC
The proposed framework maps DSM to DSC, vice versa,
based on the following rules.

• A UML class in DSM is mapped to a Java class in DSC.
• A UML interface in DSM is mapped to a Java interface

in DSC.
• A stereotype in DSM is mapped to a marker annotation in

DSC.
• A tagged-value in DSM is mapped to a member annota-

tion in DSC.

Figure 2 shows the class Customer stereotyped as <<en-
titybean>> with a tagged-value of jndi-
name=“ejb/Customer”. It is mapped to the following
Java class, marker annotation and member annotation.

(1) Java class Customer
@entitybean
@jndi-name(value = “ejb/Customer”)
public class Customer{

public String getName(){}
}

(2) Marker annotation entitybean
@interface entitybean{}

(3) Member annotation jndi-name
@interface jndi-name{

string value();
}

4.3 DESIGN AND IMPLEMENTATION OF KEY
COMPONENTS
This section describes the implementation of the proposed
framework. As described in Section 4.1, the framework
consists of two architectural components: DSC Generator
and DSL Transformer. DSL Transformer is implemented
with three components: DSM Transformer, Skeleton Code
Generator and DSC Transformer (Figure 3). Every compo-
nent in the proposed framework is implemented with Java.

DSC Generator: DSC Generator performs transformations
between DSMs and DSCs (Figure 3). When accepting a
DSM for a transformation, DSC Generator validates the
input DSM against a corresponding DSL (i.e. metamodel)5.
For example, it examines if the model elements in the input
DSM use appropriate stereotypes and tagged-values defined

5 Each DSL is defined as a metamodel extending the standard UML meta-

model.

Figure 2: Class Customer

<<entitybean>>
Customer

{jndi-name=”ejb/Customer”}

+ getName() : String

5

in a corresponding DSL. It also checks if they follow the
semantics defined in the standard UML metamodel.

Before accepting a DSM, the proposed framework needs to
import a corresponding DSL. When importing a DSL, the
framework validates the DSL. For example, it examines if
the DSL correctly extends the UML standard metamodel.

DSC generator is implemented atop the Eclipse Modeling
Framework (EMF)6 and Eclipse-UML27. The validation of
DSMs and DSLs is implemented by extending the class
UML2Switch provided by Eclipse-UML2. Once a DSM
is validated, DCS Generator generates a DSC based on the
mapping rules described in Section 4.2. The DSC genera-
tion is also implemented by extending the class
UML2Switch.

In order to import DSMs and DSLs, the proposed frame-
work accepts their representations in the XML Metadata
Interchange (XMI) 2.0 [21]. XMI is an XML-based format
to describe UML models. Developers can generate their
DSMs or DSLs as XMI descriptions using any UML mod-
eling tools that supports XMI 2.0. The following is the XMI
representation of the class Customer in Figure 2.

<UML:Class
xmi.id="id_class" owner="id_project"
name="Customer" appliedSteotype=
"profile.xmi#//*
[@xmi.id="id_profile"]">
<UML:Element.ownedElement>
<UML:Operation xmi.id="id_operation"
name="getName" owner="id_class">
<UML:Element.ownedElement>
<UML:Parameter
xmi.id="id_param"
type="id_operation"
name="Unnamed" direction="result"
owner="id_operation"/>

</UML:Element.ownedElement>
</UML:Operation>
<UML:TaggedValue
xmi.id="id_taggedvalue"

6 http://www.eclipse.org/emf/
7 http://www.eclipse.org/uml2/. Eclipse-UML2 implements the standard

UML metamodel as a set of Java objects on EMF.

name="jndi-name" owner="id_class">
<UML:TaggedValue.dataValue>
ejb/Customer
</UML:TaggedValue.dataValue>
</UML:TaggedValue>
</UML:Element.ownedElement>
</UML:Class>
<UML:DataType xmi.id="id_string"
owner="id_project" name="String"/>

The <UML:Class> tag defines a class, and its attribute
appliedStereotype refers, with XPath directives, a
stereotype defined in another XMI file (i.e. pro-
file.xmi). The <UML:TaggedValue> tag defines a
tagged-value associated with the class Customer.

DSM Transformer: DSM Transformer accepts a DSM and
transforms it into more detailed models that specialize in
particular implementation and/or deployment technologies
(Figure 3). DSM Transformer performs this transformation
in accordance with a transformation rule that a developer
(platform engineer) defines (Figure 2).

DSM Transformer is implemented using the Model Trans-
formation Framework (MTF)8, which is implemented on
EMF and Eclipse-UML2. MTF provides a language to de-
claratively define rules for transformations between EMF-
based models. Each transformation rule consists of condi-
tions and rules. DSM Transformer parses an input DSM to
identify the model elements that meet the conditions, and
applies the rules to them.

A transformation results in a set of plain UML models that
do not have any stereotypes and tagged-values. The plain
UML model specializes in particular implementation and/or
deployment technologies. For example, if a transformation
specializes an input DSM to Java RMI, the classes in the
DSM are converted to the classes that implement the
java.rmi.Remote interface.

Skeleton Code Generator: Skeleton Code Generator takes
a plain UML model generated by DSM Transformer, and
generates skeleton code in Java (Figure 3). The skeleton
code is a Java representation of the input UML model.
Since the proposed framework only supports structural
UML diagrams (class and composite structure diagrams),
the generated skeleton code does not have any code in
methods. Skeleton Code Generator uses EMF and Eclipse-
UML2 to accept and inspect input plain UML models.

DSC Transformer: DSC Transformer accepts the DSC
generated by DSC Generator and the skeleton code gener-
ated by Skeleton Code Generator, and combines them to
generate the final (compilable) code in Java. Using the Java
reflection API, DSC Transformer extracts method code
embedded in an input DSC9, and copies the method code to
an input skeleton code. DSC Transformer analyses a
transformation rule, which is used to transform a DSM to a
plain UML model, in order to determine where each
method code is copied in an input skeleton code.

8 http://www.alphaworks.ibm.com/tech/mtf/
9 Note that programmers embed method code in the DSC generated by

DSC Generator (Figure 1).

DSM

Final
(Compilable) Code

Transformation rules

DSC

Visual Models Textual Code

DSC
Generator

Abstraction level

Representation

Higher
Abstraction
Level

Lower
Abstraction
Level

Figure 3: Key components in the proposed framework

DSC
Transformer

Skeleton
Code

Generator

DSM
Transformer

Plain
UML Models

DSL Transformer

6

5. AN EXAMPLE DSL
This section describes an example DSL to describe domain-
specific concepts in Service Oriented Architecture (SOA),
and overviews a development process using the DSL with
the proposed framework.

5.1 SOA DSL
SOA is a distributed systems architecture that connects
network services in a platform independent manner [22]. In
SOA, a service is a software component that has an inter-
face accessible via network. A service’s interface represents
functions that the service provides. SOA hides details of
underlying platform, e.g. service’s implementation and re-
moting infrastructure (or middleware), and abstracts sys-
tems using two concepts, i.e. service’s interface and
connection between services. When developers create a
distributed system using SOA, they (1) identify what kind
of functions the system requires, (2) choose services that
provide those required functions, and (3) connect those
services to create a system. Connections between services
require several methods to coordinate invocations (i.e. mes-
sage exchanges) between services such as synchronizing
several invocations, multicasting and conversing message
formats. To provide such methods, mechanisms that ab-
stract connections are required.

The proposed SOA DSL focuses on connectivity between
services. It is defined as a UML profile, which provides
model elements (stereotypes and tagged values) to define
connections between services. The proposed DSL defines
four types of elements, Connector, Filter, Message
and Service. They are defined as stereotypes (Figure 4).

A Service represents a network service, and a Message
represents a message exchanged between Services. A
Connector represents a connection between Services.
Developers can indicate invocation semantics such as syn-
chronous invocation and asynchronous invocation using it
(Figure 5). Also, Connector provides some functions, e.g.
message encryption (Figure 5). A Connector can include
arbitrary number of Filters to define its behavior. A
Filter represents a function such as message interceptor
or multicast (Figure 6). A Message represents a data
scheme that is exchanged between services via a Connec-
tor.

Connector is defined as a stereotype of Class meta-
class in the InternalStructures package. The meta-
class, an element defined in UML 2.0 composite structure
diagram, can have internal structures such as class or inter-
faces. It allows developers to define nested structures in a
visual manner, e.g. a class composed of several internal
classes. The rest of defined stereotypes, i.e. Service,
Message and Filter, are defined as a stereotype of
Class metaclass in the Kernel package. It is a class in UML
2.0 class diagram.

Connector has two semantics, i.e. invocation semantics
and connection semantics (Figure 5). Invocation semantics
has three options, i.e. synchronous invocation, asynchro-

nous invocation and oneway invocation. Connection seman-
tics has four options, i.e. reliability, encryption, stream and
queuing. Reliability option assures messages arrive to their
destinations (i.e. services). Encryption option encrypts mes-
sages. Stream option enables streaming messaging. Queuing
option deploys message queue in a connection. These op-
tions don’t have any attributes such as resend interval, en-
cryption algorithm and queue size. These configurations are
defined in transformation rules from stereotypes to specific
implementations.

Filter has four sub stereotypes, i.e. MessageCon-
verter, MessageAggregator, Multicast and In-
terceptor (Figure 6). MessageConverter converts
message scheme. MessageAggregator synchronizes
multiple invocations and aggregates their messages. Mul-
ticast emits a message to several filters or services in a
parallel manner. Interceptor hooks an invocation and
examines its message. It allows developers to implement
any kind of filters other than built-in ones.

Figure 5: Connector stereotypes

《stereotype》
Connector

《enumeration》
InvocationSemantics

Sync
Async
Oneway

《enumeration》
ConnectionSemantics

Reliability
Encryption
Stream
Queuing

11

InvocationSematics

1

0..*

ConnectionSemantics

《stereotype》
Filter 0..*

1

1
0..*

1..* 1..*

UML 2.0
metamodel

InternalStructues::
StructuredClassifier

input

output
1

1 1..*

1

Ports::
EncapsulatedClassifier

Ports::Port
0..1 *

InternalStructures::
Property

Kernel::Class

part

1..*1..*

source

sink

InternalStructures::
Class

0..1 *

Figure 4: The proposed SOA DSL

《stereotype》
Connector

《stereotype》
Service

《stereotype》
Message

7

5.2 DEVELOPMENT PROCESS USING THE
PROPOSED FRAMEWORK AND SOA DSL
There are six key phases in an application development
process using the proposed framework and SOA DSL.

(1) Define DSM. Modelers describe a DSM. A DSM is
described in UML 2.0 class diagram or composite structure
diagram, and UML profile. Figure 7 is an example model
using SOA DSL. They represent concepts that are peculiar
to targeted problem domain (i.e. a connector between ser-
vices). In this model, there are three services, i.e. Cus-
tomer, Supervisor and Supplier. Customer sends
a message OrderMessage, Supervisor sends a mes-
sage Confirmation, and Supplier receives a mes-
sage OrderMessage. A connector Connection con-
nects these services and delivers messages. Connection’s
invocation semantic is Synchronize and its connection
semantic is Encryption. Connection has two filters,
i.e. Logger and Aggregator. Logger is a class of
Interceptor, and logs messages passes through this
filter. Aggregator is a class of MessageAggregator.
It aggregates two messages OrderMessage and Con-
firmation, and delivers OrderMessage to Sup-
plier.

(2) Transform DSM into DSM. The SOA DSL requires
transforming DSM to DSM in order to specify which Ser-
vices receive Messages. For example, the combination
of Supplier and OrderMessage, i.e. Supplier re-
ceives OrderMessage, is transformed into the following
DSL (Figure 8).

(3) Generate DSC. DSC Generator takes a DSM as an in-
put and generates a DCS. The following DSC for Sup-
plier is generated from the DSM (Figure 8).
@Service
public class Supplier{
public onMessage(OrderMessage message){} }

(4) Write Method Code. Programmers write method code
on DSC in Java. For example, programmers write method
code on Supplier class’s onMessage method.

As described above, the abstraction levels of the two arti-
facts, i.e. DSM and DSC, are same. They employ different
representations. DSM is written in UML and UML profiles.
DSC is written in Java with annotations. UML profiles in
DSM are converted into annotations in DSC. Application
developers, i.e. modelers and programmers, can work at the
same and high abstraction level. It makes the readability
and maintainability of artifacts high, thereby high produc-
tivity can be archived.

(5) Define Transformation Rules. Platform engineers de-
fine transformation rules that are sets of model-to-model
conversion rules. Each conversion rule converts UML
model elements that have stereotypes or tagged-values into
plain UML model. The plain UML model has details of
underlying platform such as remoting middleware. For ex-
ample, a transformation rule converts a UML class with
stereotype <<service>> into several UML interfaces
and classes that are necessary to use Java RMI (Figure 9) or
SOAP when the corresponding connection supports syn-
chronous invocation. Otherwise, it’s transformed into sev-
eral interfaces and classes that are necessary to use Java
Message Service (JMS) [23] when the corresponding con-
nection supports asynchronous invocation (Figure 9).

(6) Generate Final Code. DSL Transformer takes a DSM
and a DSC as inputs, and generates final (compilable) code
as following steps.

I. Model-to-Model transformation. According to trans-
formation rules, DSL transformer converts a DSM into a
plain UML model.

II. Code Generation. DSL Transformer generates skeleton
code in Java from the plain UML models.

III. Copy Method Code. DSL Transformer extracts method
code from DSC. According to transformation rules, it cop-

《stereotype》
Filter

Figure 6: Filter stereotypes

《stereotype》
Multicast

《stereotype》
MessageAggregator

《stereotype》
MessageConverter

《stereotype》
Interceptor

《Service》
Customer

《Service》
Supplier

《Service》
Supervisor

 《Interceptor》
: Logger

《Message》
Authorization

《Message》
OrderMessage

《MessageAggregator》
: Aggregator

《Connector》Connection

input

source

output

InvocationSemantics = Sync
ConnectionSemantics = Encryption

source sink

input

Figure 7: An example DSM using the proposed SOA DSL

Figure 8: Transformed DSM

《Message》
OrderMessage

《Service》Supplier

+onMessage(OrderMessage)

sink

8

ies the method code to skeleton code generated at the pre-
vious step.

6. RELATED WORK
The proposed framework reuses the J2SE 5.0 syntax to
write annotated code (i.e. marker and member annotations).
However, the proposed framework and J2SE 5.0 follow
different approaches to define transformation rules between
annotated code and compilable code. In J2SE 5.0, trans-
formation rules are defined in a procedural manner (i.e. as
programs) [15]10. It allows developers to define arbitrary
transformation rules in user-defined annotation processors
that extend the default annotation processor (see Section 2).
A user-defined annotation processor examines annotated
code using Java’s reflection API, and generates compliable
code based on a corresponding transformation rule. Al-
though this transformation mechanism is generic and exten-
sible, it tends to be complicated and error-prone to write
user-defined annotation processors. Also, transformation
rules are not maintainable enough in annotation processors.
When updating a transformation rule, a corresponding an-
notation processor needs to be modified and recompiled.

In contrast, the proposed framework allows developers to
define transformation rules in a declarative manner (see
Section 3.3). Declarative transformation rules are more
readable and easier to write and maintain than procedural
ones. It is not required to recompile the proposed frame-
work when updating a transformation rule. Also, transfor-
mation rules are defined at the modeling layer, not the pro-
gramming layer. This raises the level of abstraction for
handling transformation rules, resulting in higher productiv-
ity for users to manage them.

XDoclet accepts declarative rules for transforming anno-
tated code to compilable code [17]. In XDoclet, annotations
are represented as comments in Java programs (Javadoc
comments). Each transformation rule is defined as a tem-
plate, which parameterizes an output program with vari-
ables representing the names of annotated program’s ele-
ments (e.g. class names and method names). During a trans-

10 Transformation rules in .NET are also defined as in a procedural man-

ner [18].

formation, XDoclet invokes annotation handlers, which
developers are required to write in Java for corresponding
annotations. Each annotation handler examines annotated
code using Java’s reflection API, and generates output code
by replacing template variables with the names of program
elements gathered from annotated code. Declarative trans-
formation rules are readable and easy to maintain in tem-
plates. However, similar to user-defined annotation proces-
sors in J2SE 5.0, it tends to be complicated to write and
maintain annotation handlers. Developers need to keep
maintaining the consistency between annotation handlers
and templates (i.e. transformation rules). When updating a
template, a corresponding annotation handler needs to be
modified and recompiled.

Unlike XDoclet, the proposed framework requires develop-
ers to write nothing except declarative transformation rules.
They are described at the modeling layer, not the program-
ming layer. There is no need to recompile it when updating
transformation rules. As such, it offers more productivity
and less responsibility for developers to maintain transfor-
mation rules. Also, the proposed framework allows trans-
formation rules to define output code compatible with a
variety of programming languages (not only with Java),
while XDoclet is limited to generate output code in Java.

The proposed framework has some functional commonality
with existing model-driven development tools such as Op-
timalJ11, Rose XDE12, Together13 and UMLX [24]. They are
usually composed of two components: Model Transformer
and Code Generator (Figure 10). Model Transformer con-
verts (or unfolds) an UML model that modelers describe
into plain UML model accordance with transformation rules.
This phase lowers the abstraction level of an UML model.
By doing this conversion process in an automatic and a
traceable manner, model-driven development tools hide
low-level details of targeted domains. However, program-
mers have to deal with generated code. Code Generator
converts the plain UML models into code written in gen-
eral-purpose programming languages such as Java. Since
general-purpose languages can’t represent domain concepts,
each of them is described as one element in domain specific
models, it needs to represent them using a set of elements
(i.e. interfaces or classes) in generated (or unfolded) UML
models and code. It complicates the generated UML models
and code, and lowers their abstraction level. Programmers
have to understand and deal with the low-level details of
targeted domains even though model-driven development
tools hide them. In contrast, the proposed framework pro-
vides DSC (i.e. annotated code) to represent targeted sys-
tems at higher abstraction in the programming layer (Figure
1). Programmers can work at the same high abstraction
level of modelers. DSC can hide low-level details of tar-
geted domain from not only modelers but also programmers.
It makes the productivity high, especially for programmers.

11 http://www.compuware.com/products/optimalj/
12 http://www.ibm.com/software/awdtools/developer/rosexde/
13 http://www.borland.com/together/architect/

Supplier

+ onMessage(
javax.jms.Message)

+ onMessage(
OrderMesage)

javax.jms.MessageListener

Figure 9: Service implementations with JavaRMI and JMS

《Service》Supplier

+onMessage(OrderMessage)

Supplier

+ onMessage(
OrderMessage)

javax.rmi.Remote

JavaRMI model JMS model

9

Furthermore, the proposed framework better handles trace-
ability issue between models and code. Traceability be-
tween models and code is one of the key issues in model
driven development [25]. Ensuring the traceability, it needs
to handle gaps between folded model and unfolded model,
and unfolded model to code (Figure 10). Many existing
model-driven development tools such as OptimalJ don’t
provide a reverse engineering function from code to model.
If developers revise generated code, e.g. revising classes’
structures, it can’t ensure the consistency and the traceabil-
ity between model and code. Some model-driven develop-
ment tools such as Together can generate UML model from
code. However it’s a one-to-one mapping, therefore the
abstraction level of generated UML model is same as com-
pilable code. It’s complicated and difficult to understand.

In contrast, the changes in code immediately feedback to
folded model because the proposed framework assures a
direct (i.e. one-to-one) mapping between DSM (i.e. UML
model with profiles) and DSC (i.e. annotated code). The
proposed framework can ensure the consistency and trace-
ability between model and code (i.e. from model to code,
and code to model).

Model Transformation Framework (MTF) is a tool that
helps developers make comparisons, check consistency, and
implement transformations between Eclipse Modeling
Framework (EMF) models. It focuses on model transforma-
tion, doesn’t generate code. Kent Modeling Framework
provides a language for model transformation, Yet Another
Transformation Language (YATL) [26]. It supports UML’s
Object Constraint Language (OCL) [27] to define transfor-
mation rules. It’s able to define transformation rules to
transform UML models to specific programming languages
such as Java. However, similar to other model-driven de-
velopment tools, generated source code is unfolded and
complicated. In contrast, the proposed framework generates
high abstract code using annotations.

Several model-driven development tools such as Bridge-
Point14, iUML and iCCG [28], and SMART [29] support
executable UML models. These tools can run and debug a
UML model, and generate compilable code. Defining an
executable model, developers write actions (e.g. data proc-
essing, method invocations) using an action language. Each
tool has its own action language, e.g. Object Action Lan-
guage for BridgePoint, Action Specification Language for
iUML, and SMART Action Language for SMART, because
there is no standard of the syntax of action language. UML
standardizes the semantics of action language, i.e. action
semantics specification [2], but it doesn’t have concrete
syntax. Therefore, developers are required to learn these
proprietary languages. It makes the productivity low. In
contrast, developers can use any programming languages
when using the proposed framework. It doesn’t require de-
velopers to learn new language, and lowers the learning
curve.

7. CONCLUDING REMARKS
This paper proposes a new framework that allows develop-
ers to model and program domain-specific concepts with
DSLs and to transform them toward the final (compilable)
source code in a model-driven manner. The proposed
framework provides an abstraction to represent domain-
specific concepts at both modeling and programming layers
by leveraging the notions of UML metamodeling and at-
tribute-oriented programming. This paper presents the de-
velopment process using the proposed framework as well as
several key designs in the framework, and describes how
the framework can improve the productivity to implement
domain-specific concepts and increase the longevity of
models and code representing domain-specific concepts. As
an example to show how the proposed framework handles
DSLs, this paper also presents a DSL used to define ser-
vice-oriented distributed system architectures.

Several extensions to the proposed framework are planned
as future work. The proposed framework currently supports
only one DSL for each transformation from DSM to compi-
lable code. A future work will address generating compi-
lable code through combining DSMs and DSCs written in
multiple DSLs. For example, one of the authors has been
building a DSL to express insurance claims processing. A
future experiment will have the proposed framework accept
the insurance DSL as well as the SOA DSL described in
this paper, in order to evaluate the impact of using multiple
DSLs simultaneously on the framework design.

The framework is also being extended to support the .NET
remoting [21] in addition to JMS and RMI so that it can
generate the source code compatible with broader range of
implementation technologies. Another extension is to sup-
port a standardized language for transformation rules, such
as the MOF Query/Views/Transformations (MOF QVT)
specification [30], which is currently standardized in the
Object Management Group.

14http://www.acceleratedtechnology.com/embedded/nuc_modeling.html

Final
(Compilable) Code

Transformation rules

Visual Models Textual Code

Abstraction level

Representation

Higher
Abstraction
Level

Lower
Abstraction
Level

Figure 10: Development process using traditional
model-driven development tools

Code
Generator

Model
Transformer

Folded Model
(Platform Independent)

Unfolded Model
(Platform specific)

Programmers

Modelers

Describe
models

Write
method code

Platform Engineers
Define
rules

10

ACKNOWLEDGEMENT
The authors would like to thank Adam Malinowski for his
valuable comments that improved the quality of this paper.

8. REFERENCE
[1] B. Selic, “The Pragmatics of Model-Driven Development” In

IEEE Software, vol. 20, no. 5, September/October, 2003.
[2] Object Management Group, UML 2.0 Superstructure Specifi-

cation, http://www.omg.org/, 2004.
[3] S. Sendall and W. Kozaczynski, “Model Transformation:

The Heart and Soul of Model-Driven Software Develop-
ment,” In IEEE Software, vol. 20, no. 5, Sept./Oct. 2003.

[4] G. Booch, A Brown, S Iyengar, J. Rumbaugh, and B. Selic,
“An MDA Manifesto,” In D. Frankel and J. Parodi (ed.),
The MDA Journal: Model Driven Architecture Straight from
the Masters, Chapter 11, Meghan-Kiffer Press, Dec. 2004.

[5] S. Cook, “Domain-Specific Modeling and Model-driven
Architecture,” In D. Frankel and J. Parodi (ed.), The MDA
Journal: Model Driven Architecture Straight from the Mas-
ters, Chapter 3, Meghan-Kiffer Press, Dec. 2004.

[6] A. van Deursen, P. Klint and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography,” In ACM SIGPLAN
Notices, vol. 35, no. 6: 26-36, 2000.

[7] S. Kelly and J. Tolvanen, “Visual Domain-specific Model-
ing: Benefits and Experiences of using metaCASE Tools,” In
Proc. of International workshop on Model Engineering,
ECOOP 2000.

[8] R. Kieburtz et al., “A Software Engineering Experiment in
Software Component Generation,” In Proc. of 18th IEEE In-
ternational Conference on Software Engineering, 1996.

[9] C. Elliott, “Modeling Interactive 3D and Multimedia Anima-
tion with an Embedded Language,” In Proc. of First USENIX
Conference on Domain-Specific Languages, Oct. 1997.

[10] G. Wagner, S. Tabet, and H. Boley, “MOF-RuleML: The
Abstract Syntax of RuleML as a MOF Model”, In Proc. of
Integrate 2003, Oct. 2003.

[11] H. Wegener, “Balancing Simplicity and Expressiveness:
Designing Domain-Specific Models for the Reinsurance In-
dustry", In Proc. of the 4th OOPSLA Wrokshop on Domain-
Specific Modeling, Vancouver, BC, Canada, Oct. 2004.

[12] Object Management Group, UML Testing Profile, 2004.
http://www.omg.org/

[13] D. Wile, “Lessons Learned from Real DSL Experiments,” In
Proc. of the 36th Hawaii International Conference on System
Sciences, 2003.

[14] D. Schwarz, "Peeking Inside the Box: Attribute-Oriented
Programming with Java 1.5", In ON Java.com, O'Reilly Me-
dia, Inc., June 2004.

[15] Sun Microsystems, Java 2 Platform, Standard Edition 5.0,
2004. http://java.sun.com/

[16] ISO/IEC, C# Language Specification, Chapter 24: Attributes,
ISO/IEC 23270, 2003.

[17] C. Walls and N. Richards, XDoclet in Action, Manning Pub-
lications, December 2003.

[18] Sun Microsystems, Enterprise Java Beans 3.0 Early Draft
Review, 2004. http://java.sun.com/

[19] W3C, SOAP Version 1.2, 2003. http://www.w3.org/
[20] R. Wiener, “Remoting in C# and .NET,” In Journal of Ob-

ject Technology, vol. 3, no. 1, January-February 2004.
[21] Object Management Group, MOF 2.0 XML Metadata Inter-

change, http://www.omg.org/, 2004.
[22] L. Baresi, R. Heckel, S. Thöne and D. Varró, “Modeling and

Validation of Service-Oriented Architectures: Application vs.
Style,” In Proc. of the European Software Engineering Con-
ference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering, September 2003.

[23] Sun Microsystems, Java Messaging Service Specification
Version 1.1. http://java.sun.com/

[24] E. Willink, “UMLX: A Graphical Transformation Language
for MDA”, In Proc. of OOPSLA ’02, November 2002.

[25] J. Champeau and E. Rochefort, “Model Engineering and
Traceability,” In Proc. of <<UML>> 2003, October 2003.

[26] O. Patrascoiu, “Mapping EDOC to Web Services using
YATL,” In Proc. of the 8th IEEE International Enterprise
Distributed Object Computing Conference, September 2004.

[27] Object Management Group, UML 2.0 Object Constraint
Language, 2004. http://www.omg.org/

[28] C. Raistrick, P. Francis and J. Wright, Model Driven Archi-
tecture with Executable UML, Cambridge University Press,
March 2004.

[29] S. Hayashi, P. Yibing, M. Sato, K. Mori, S. Sejeon and S.
Haruna, “Test Driven Development of UML Models with
SMART Modeling System,” In Proc. of <<UML>> 2004,
October 2004.

[30] Object Management Group, MOF 2.0 Query / Views / Trans-
formations, 2004. http://www.omg.org/

