
1

Dynamic Adaptation in the Web Server Design Space
using OpenWebServer

Junichi Suzuki
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

suzuki@yy.cs.keio.ac.jp

Yoshikazu Yamamoto
Department of Computer Science,

Graduate School of Science and Technology,
Keio University

Yokohama City, 223-8522, Japan
+81-45-563-3925

yama@cs.keio.ac.jp

Abstract
The explosive growth of the Web requires servers to be
extensible and configurable. This paper describes our
adaptive web server, OpenWebServer that employs a meta-
architecture. It supports dynamic adaptation of feasible
design decisions in the web server design space by
specifying and coordinating metaobjects that represent
various aspects within the web server. We present some
examples of system adaptation that change and tune
configuration of concurrency, caching, logging, load
balancing and fault tolerance. OpenWebServer can evolve
continually beyond static and monolithic servers.

Keywords
Adaptive web server, Meta-architecture, Reflection, System
adaptation, System evolution

1. Introduction
The explosive growth of the Web places larger and more
challenging demands on servers. Its computing power and
network bandwidth has increased dramatically. An effective
design for web servers is highly required.

Current web servers must:

• Connect with various systems such as groupware,
database management systems, mobile agent engines and
transaction processing monitors.

• Integrate generic communication environments
including CORBA (Common Object Request Broker
Architecture) and DCOM (Distributed Component Object
Model).

• Extend server functionality by introducing additional
network protocols or content data types.

• Change server execution policies, e.g., optimize
concurrency, connection management, request handling and
cache management.

• Adapt to the execution environment, e.g. ATM
networks, I/O subsystems such as RAID, and electronic
devices such as network routers, printers or copiers.

Every user may not require the same functionality in a web
server. Therefore, a web server should be flexible enough to
meet a wide range of requirements on demand. Most
current web servers, unfortunately, are monolithic. They
provide a fixed and limited set of capabilities. It is typical
to take the “scrap-and-build” approach for a given
requirement, where the software is rewritten from scratch
because it may be more economically feasible. A
dynamically adaptable web server architecture based on
reusable components is an attractive alternative for
extensive and intrusive changes.

In this context, most web servers lack the adaptability to
enable the system’s evolution. Designers cannot know or
predict all possible uses of the system. A service or
configuration that is appropriate at one point may not be
useful later, and the system may not evolve transparently.

Our research vehicle for exploring the adaptability of the
web server is OpenWebServer [1]. OpenWebServer is an
adaptive web server based on the Adaptive Internet Server
Framework (AISF) [2], an object-oriented framework that
employs a reflective meta-architecture [3-5]. We consider
the use of Reflection for specifying various aspects, e.g.
structure and/or behavior, of an open-ended system that can
be dynamically adapted. OpenWebServer contains
metalevel(s) that specifies a wide range of aspects of web
servers using fine-grained metaobjects. It is implemented
within the programmable metalevel and can dynamically
adjust itself so that it is executed in the best-tuned condition
for a given requirement.

Though modern web servers provide some extension
mechanisms like CGI (Common Gateway Interface) and
server-side APIs, their extensibility is restricted within the

2

application level. In contrast, OpenWebServer provides a
uniform platform where a variety of requirements can be
specified from low-level services like the connection
management, request handling and cache management into
application-level services without breaking the single
framework. In other words, the metalevel in
OpenWebServer plays the role of a generic “change
absorber” for the web server.

OpenWebServer is named after the Open-Closed Principle
(OCP) [6], which states that software entities should be
open for extension but closed for internal modification.
This means we should design systems so that they can be
changed by adding new code and not by changing working
code. Thus, OCP encourages objects to be extensible by
adding new objects via inheritance or composition not by
modifying the object’s internal code. OpenWebServer is
intended to apply this principle in that the system can
evolve by adding new metaobjects or coordinating them.

This paper addresses how OpenWebServer meets diverse
requirements in the web server design space, and describes
its adaptation capability to evolve continually beyond static
and monolithic servers.

The remainder of this paper is organized as follows: Section
2 describes the metalevel design of OpenWebServer.
Section 3 presents some examples of system adaptation
using OpenWebServer. In Section 4 and 5, we conclude
with a note on the current status of the project and present
future work. Note that it is not possible to describe basics,
history and benefits of reflection due to space limitation.
They are mentioned in [1, 2] at large.

2. Metalevel design of OpenWebServer
This section describes the metalevel design of
OpenWebServer. We present its Java version using
software patterns. A pattern represents a recurring solution
to a software development problem within a particular
context [5, 7]. Patterns identify the static and dynamic
collaborations and interactions between software

components. In general, applying patterns to complex
object-oriented concurrent applications can significantly
improve software quality, increase software maintainability
and support broad reuse of components and architectural
designs [5].

OpenWebServer consists of three packages as depicted in
Figure 1. The jp.ac.keio.ows.kernel package
contains the foundation objects to construct and maintain
the metalevel. The jp.ac.keio.ows.meta package
contains a series of metaobjects, and is controlled by the
kernel package. The jp.ac.keio.ows.utility
package contains utility objects to support the writing of
both the baselevel and metalevel. It is used by kernel and
meta packages.

The jp.ac.keio.ows.kernel package is organized
as shown in Figure 2, and contains the following objects:

• SysController

Starts the system by creating appropriate metaspaces
and metaobjects with a configuration file. This object is
also responsible for stopping and resuming the system.
It is an active object executed on a root thread in the
thread hierarchy.

• MetaSpace

Represents a metalevel, or metaspace. Multiple
metalevels can exist within the system though it usually
has a single metalevel. It references every metaobject
and coordinates the interaction between them to meet a
given requirement.

• MetaObject

Figure 2: Classes in the jp.ac.keio.ows.kernel
package.

Figure 1: Dependencies between foundation packages in
OpenWebServer

jp.ac.keio.ows.
kernel

jp.ac.keio.ows.
meta

jp.ac.keio.ows.utility

MetaObjectIm pl

id()
m etaspace()

0..*

1

Bas eObject

reify()
m etalevel()

*MetaObject

id()
m etaspace()

<<inferface>>

1

MetaSpace

reify()
addIm pl()
addIm pl()
addIm pl()
rem oveIm pl()
im pl()
findMetaObj()
findIm pl()
currentImplOf()
changeIm pl()

0..*

1
has

*
1

SysController

Ins tance()
SysController()
configure()
createMetaSpace()
createDefaultMetaSpace()
m etaSpaces ()
s tatus ()
run() uses

3

Specifies the interfaces for all metaobjects. This is a
base interface class for them. MetaObjectImpl and
its subclasses provide the implementations of this
object. The relationship between MetaObject and
MetaObjectImpl is discussed in Section 4.2.

• MetaObjectImpl

Provides an implementation for a MetaObject.
Multiple implementations can be defined for a single
MetaObject.

• BaseObject

Specifies the interfaces needed to all baseobjects. This is
a base class for them.

SysController is a Singleton object [7], since it has
exactly one instance in the system. The Singleton pattern
ensures a class has just one instance and provides controlled
access to it [7]. The static Instance() method is used to
instantiate or return the unique instance. The constructor is
protected and called by Instance(). SysController
creates one or more instances of MetaSpace on different
threads using the method
createDefaultMetaSpace() or
createMetaSpace(). It holds a set of references to
MetaSpaces.

MetaSpace represents each metalevel in
OpenWebServer. It is an entry point from the baselevel to
metalevel. Baseobjects can access MetaSpace when
communicating with their metalevels. Every baseobject is
derived from BaseObject, and every metaobject is
derived from MetaObject (Figure 3).

Baseobjects do not have to be attached to a metalevel, but
can be dynamically attached on demand. Attachment on
demand is known as lazy reification. Each baseobject can
be reified with its method reify(), and access its
metalevel with the method metalevel().Once a
baseobject is reified, it becomes aware of its metalevel, and
the corresponding metaobjects are then instantiated by the
class MetaSpace. The number and type of created
metaobjects depends on what the users wish to do.

The jp.ac.keio.ows.meta package consists of a
collection of metaobjects. To specify metaobjects, we
identified services and entities by looking for typical events
or constructs found during the execution of web servers.
Abstracting these events and constructs, OpenWebServer
provides the following metaobjects by default:

• Initializer

Initializes the network facility along with the current
configuration. A typical task is to create one or more
sockets according to the current communication
protocol and concurrency policy and then instantiate an
Acceptor.

• Acceptor

Waits for and accepts incoming requests. It encapsulates
the different concurrency policies for simultaneous
access. Once it obtains a request, it asks a
RequestHandler to process the request given the
current configuration, i.e., protocol and concurrency
policy.

• RequestHandler

Deals with requests from an Acceptor. It encapsulates
the different policies for interpreting a request, based on
the kind of request and target content. It is created on a
per-request basis when an Acceptor accepts a request.
It is executed on a separated thread or same thread that
an Acceptor runs on.

• Protocol

Defines protocol specific information on a per-protocol
basis. It is referenced by a RequestHandler.

• ContentFinder

Finds and obtains a target resource (e.g. HTML/XML
files or data within a back-end repository) passed by a
RequestHandler.

• Cache

Caches target resources that have been accessed and
retrieves them quickly. A ContentFinder uses it.

• Logger

Records accesses to the web server. A
RequestHandler calls it.

• Redirector

Figure 3: Classes in the jp.ac.keio.ows.meta
package.

Acceptor

accept(s : Socket) : void

<<inferface>>

MetaObjectIm pl

id() : String
metaspace() : String

ThreadPerReques tAcceptor

accept(s : Socket) : void

ThreadPerSess ionAcceptor

accept(s : Socket) : void

im plem ents

*

MetaObject

id() : String
m etaspace() : MetaSpace

<<inferface>>

im plements

1

MetaSpace

reify()
addIm pl()
addIm pl()
addIm pl()
rem oveIm pl()
im pl()
findMetaObj()
findImpl()
currentIm plOf()
changeIm pl()

*
1

4

Redirects an incoming request to another server, e.g.
replicated server. RequestHandler uses it.

• ExecManager

Executes external entities like CGI scripts.

These metaobjects represent typical aspects of web servers
and define their interface and semantics. They are objects
that affect the behavior of other objects, and has the
following basic responsibilities [5]:

• Encapsulates system internals that may change.

• Provides an interface to facilitate modifications to the
metalevel.

• Controls baselevel behavior.

As shown in Figure 3, all metaobjects are interface classes
derived from MetaObject in the kernel package.
Implementations of metaobjects are provided by
implementation classes derived from MetaObjectImpl.
Implementation classes are contained in the meta package,
and provide different execution policies.

The relationship between metaobject and its
implementations is based on Bridge design pattern [7]. The
pattern explicitly decouples an interface and its
implementation using object composition. OpenWebServer
uses a variant of Bridge, which includes the interface-
implementation relationship, provided by Java, between
interface and its implementation. In our variant of Bridge,
MetaSpace aggregates implementation objects so that it
can change the metaobject’s implementation dynamically. It
can inspect the current implementation with the method
currentImpl() and change it using changeImpl()
(see Figure 3 and 4). Bridge avoids the permanent binding
between metaobjects and their implementations, and allows
changing the implementation at run-time, depending on the
desired execution policy in the web server. It allows

dynamic adaptation without system shutdown. Also, both
the interface and the implementations should be
independently extensible; changes in an implementation
should have no impact on clients of the interface.

MetaSpace is a Mediator object [7], which encapsulates
the interaction of a set of metaobjects and facilitates loose
coupling among them by keeping the reference to every
metaobject. It acts as an intermediary among the
metaobjects, and coordinates interactions among a set of
metaobjects. Each metaobject knows only MetaSpace,
not any other metaobject, thereby reducing the number of
interconnections. Figure 4 shows MetaSpace is an
intermediary among Acceptor and Logger. Each
metaobject has an attribute metaspace to refer to the
metaspace it belongs to, and can call the method
curentImplOf() of MetaSpace to get the current
implementation of a desired metaobject. MetaSpace
stores every metaobject and its implementations in the
instance variable components, typed Hashtable. This
variable has the mapping of a string entry (key) and
Vector type variable. The former is used to assign the
string name of metaobject, and the latter is for the sequence
of implementation objects. The current implementation is
assigned to the first element of the vector. The method
currentImplOf() returns the first element, and
changeImpl() changes the order of elements of the
vector. To add an implementation object, the method
addImpl() is used, which is prepared for every type of
metaobject.

3. Adaptation of OpenWebServer
This section presents some examples of system adaptation
using OpenWebServer.

Typical web servers spend most of the time for network and
file I/O operations. Including file open operations, the time
for them ranges between 80% to 90% [8]. By removing I/O,

Figure 4: A class structure of MetaSpace, metaobjects and their implementations based on Mediator. MetaSpace is an
intermediary among metaobjects and encapsulates their interactions, instead metaobjects are connected each other directly.

Acceptor
<<inferface>>

MetaObjectIm pl

id : String
m etaspace : MetaSpace

ThreadPerReques tAcceptor

*

MetaObject

id : String
m etaspace : MetaSpace

<<inferface>>

1

MetaSpace

com ponents : Hashtable
controller : SysController

reify() : MetaSpace
addImpl(im pl : String) : void
addImpl(im pl : Initializer) : void
addImpl(im pl : Acceptor) : void
rem oveIm pl(m obj : String, im pl : String) : void
im pl(m obj : String, im pl : String) : MetaObject
findMetaObj(m obj : String) : boolean
findIm pl(im pl : String) : boolean
currentIm plOf(m obj : String) : MetaSpace
changeIm pl(oldObj : String, newObj : String) : void

*

1

Logger
<<inferface>>

FileLogger

5

about 50% of the remaining sources of overhead is for
operations to dispatch a HTTP request to a process or
thread [8]. This result suggests we have to choose the right
concurrency policy and avoid file accesses, if the server
should be high-performance. For the system performance,
OpenWebServer provides a wide range of policies for
concurrency, caching and logging. These models are
described in Section 3.1, 3.2 and 3.3, respectively.

The web server should also be robust and scale well for the
high-workload condition. The typical approach is to make
the server redundant. OpenWebServer provides the
deployment options for fault tolerance and load balancing,
described in Section 3.4.

3.1 Concurrency Models
OpenWebServer supports dynamic adaptation of
concurrency policy. Currently, it defines a series of
implementations for the Acceptor metaobject, and can
tune the policy at runtime. It allows the following
selections:

• Thread-per-request

Is much faster than the forking policy. However, it is not
portable for different platforms.

• Thread-per-session

Is less resource intensive than the thread-per-request
policy. It is significantly efficient in some particular
conditions. However, it requires the server detects the
client location for every request. It can be also
performed using HTTP 1.1.

• Thread pool

Reduces the overhead of the threading policy by pre-
spawning a set of threads for the use in the future. It
requires mutual exclusion.

• Single-threaded reactive I/O multiplexing

Is conservative of resources and highly portable. It also
has less overhead than the above policies by avoiding
context switching and synchronization. However, it is
fault-sensitive, and the number of simultaneous
connections is limited.

The thread-per-request policy is implemented in
ThreadPerRequestAcceptor, an implementation
class of the Acceptor metaobject. This object creates an
instance of RequestHandler and then executes it on a
thread.

The thread-per-session policy maintains the established
connections as long as possible and reuses them for the
future data transfer. It can reduce the overhead to establish
connections [9, 10]. This policy is effective in transferring
media-rich documents. For example, when a document with
10 inline images is accessed, 11 connections are established
and 11 threads (RequestHandler) are created on the

server. The thread-per-session policy can potentially
transfer this document with only one thread
(RequestHandler). This policy is implemented in
ThreadPerSessionAcceptor, an implementation
class of the Acceptor metaobject. This object allows
RequestHandlers to keep alive for the specified time,
which is defined in a configuration file.

A thread pool is an object which holds a pre-created set of
threads that can be dispatched to a task and then returned to
the pool when they are no longer needed. This policy has
the following advantages:

• Confines the elements of failure to create threads

• System resource use is bounded.

• Fast thread dispatching

OpenWebServer provides two different kinds of pools as
utility objects: FixedThreadPool and
GrowableThreadPool, which hold one or more idle
RequestHandlers. The former creates a fixed number
of threads when the pool is instantiated. If there is no
available threads in the pool, Acceptor waits to dispatch
an incoming request to a thread (RequestHandler) until
an idle thread is returned. The latter object is initially
populated with a fixed number of idle threads. However, a
new thread is created and added to the pool, if all threads
are busy, and if the maximum number of threads has not
been reached yet. Also, any thread that has been in the pool
longer than the time decay value without being dispatched
to a task is automatically terminated, if the number of
threads in the pool has not reached the initial thread count.
The initial and maximum number of threads are defined in a
configuration file.

The single-threaded reactive I/O multiplexing is a policy
that consumes “request-arrived” events from connections
and processes them synchronously within a single thread.
The threading models suffer from context switching and
synchronization overhead on single CPU platforms, while
they scale well to multiple CPU platforms. Therefore, a
single-threaded concurrent server is a good choice for a uni-
processor platforms. It is implemented in
ReactiveAcceptor, an implementation class of the
Acceptor metaobject. This object follows the Reactor
design pattern [11]. It has the following benefits:

• Lightweight and efficient

This policy does not need context switching and
synchronization among threads. It also lower the
memory requirements.

• Improves portability

This policy does not use threads and the interface of
ReactiveAcceptor can be reused, independently of
operating systems.

6

The liabilities are followings:

• Non-preemptive

Serialized operations can not be preemptive while they
are executed. Therefore, the long-duration operations,
such as transferring large files, increase the system
overhead.

• Error sensitive and limited number of connections

The number of connections that the server can establish
at same time is limited within the max number of file
descriptors per a single process, which depends on every
OS. Also, an even little error occurred in processing a
request can cause the system down.

Consequently, this concurrency model is appropriate for the
server that is low workload and transfers small files. Some
studies shows that more than 80% of all requested files
from a typical web server are actually small, smaller than
10kB [8].

This policy requires the ReactiveAcceptor must not
block for handling any single connection at the exclusion of
others, since this may significantly delay the responses to
multiple clients. Common system calls for such an
asynchronous I/O are select and poll for Unix [12],
and WaitForMultipleObjects for Win32 [13]. The
Java version of OpenWebServer provides an asynchronous
I/O object, AsyncInputStream, plugged into the
java.io package used for handling I/O streams (Figure
5). AsyncInputStream does not use the method
available() of java.io.InputStream. This

method returns the number of bytes that can be read from
the stream without blocking. However, it does not work
well with certain mechanisms like the network socket, and
read() may not block if available() returns 0 [14].
AsyncInputStream reports the correct number of bytes
that can actually be read asynchronously without using the
derived available(). It can get available data in a non-
blocking manner by spawning a thread that calls blocking
read() exclusively. Figure 6 shows the sequence
performing the single-threaded reactive model. An infinite
loop executes the step 2 and 3 in this figure.

OpenWebServer allows changing concurrency policies at
runtime. For example, it can start as a single-threaded
reactive server, and then change itself into a thread-per-
request server when the workload (i.e. the access rate)
exceeds the predefined threshold. The workload is
monitored by the LoadManager utility object, which
tracks the system’s status and calculates the statistics such
as the average latency and throughput. The patterns to
switch policies and their thresholds are defined in a
configuration file.

In the process of changing concurrency policies, the
RequestQueue utility object is used to store incoming
requests temporally. Next, ReactiveAcceptor
forwards the newly arrived requests to the Queue without
processing them, and processes only the existing requests
that have arrived before the change of policy. When all the
existing requests are processed, the ReactiveAcceptor
signals this fact to the SysController. Then,
SysController dispatches the socket object to
ThreadPerRequestAcceptor, and starts the
acceptor's internal loop. Through the above process, the
server becomes a threaded server and all the requests are
processed on a different thread. These synchronization

Figure 5: AsyncInputStream is used for the
asynchronous I/O capability. It is plugged into
java.io.FilterInputStream, based on the
Decorator design pattern.

Figure 6: Sequence diagram of the single-threaded
reactive I/O multiplexing policy. It follows the Reactor
design pattern.

 : As yncInput
Stream

 : Reactive
Acceptor

 : Http10Reques t
Handler

1: handleEvents ()

2: available()
3: handleReques t()

AsyncInputStream

AsynchInputStream (in : InputStream)
read() : void
read(b : byte[]) : int
read(b : byte[], off : int, len : int) : int
putChar(c : byte) : void
getChar() : byte
getChars (chars : int) : byte[]
s kip(n : long) : long
available() : int
run() : void

FilterInputStream

InputStream

available() : int

7

issues are opaque for baseobjects so that the baselevel
program is kept simple.

3.2 Caching Models
Many servers transmit files via HTTP by reading them from
the underlying file system and writing them to the TCP
socket connected with clients. While this is easy to
implement, it is not very efficient [12]. The main problem is
that the data is copied twice: from the file system into
memory, and again from the memory to network stream. As
described earlier, avoiding file accesses increases system
performance dramatically.

OpenWebServer provides the Cache metaobject that
maintains pre-fetched files in memory and allows fast
access to them. It holds the pairs of an absolute file path
and actual open file. When the caching capability is enable,
i.e. the Cache metaobject exists in the metalevel,
ContentFinder uses it to find and return a target file to
RequestHandler.

In general, the caching capability implements a policy to
limit the size of cached entities. It determines which entity
to cache and which to discard when the number of entities
in the cache reaches the upper bound. There exists some
caching policies for certain requirements [15, 16, 17],
which have been studied in the OS research domain.
OpenWebServer provides the following policies:

• FIFO (First-In, First-Out)

Discards the oldest file, when the number of cached files
reaches the upper bound. It is simple and easy to
implement. However, it is not very optimal [15],
because the lifetime of a cached file depends on the
length of the cache size independently of access
patterns.

• LRU (Least Recently Used)

Discards the file that is least recently used from cache. It
is known optimal, while it may be expensive [15].

OpenWebServer provides fixed and growable variants for
each policy: FixedFIFO, GrowableFIFO, FixedLRU,
and GrowableLRU. These policies are defined as
implementation classes for the Cache metaobject. The
growable models allow the cache size variable. It increases
the size, if the current size reaches the current upper bound
and if it does not reach the maximum size. The initial and
maximum number of cached files can be determined
according to the amount of available memory. These sizes
are defined in a configuration file. OpenWebServer can also
configures the cache disabled if the underlying environment
has the limited size of memory.

3.3 Logging Models
Many servers record the access log in a file once a HTTP
request is accepted. However, the logging-per-request is
relatively expensive policy, because it opens a log file,

writes down access information and then close the file
whenever the server receives a request. Caching a log file is
a workaround for this problem. It reduces overhead by
avoiding the file I/O operation.

OpenWebServer provides the logger metaobject that
specifies the logging policy. It prepares the following
implementation objects for logger:

• FileLogger

Logs the access information in a file whenever the
server accepts a request.

• BatchFileLogger

Logs the access information in a file in the batched
manner.

Both loggers cache a log file by default, if the caching
capability, described above, is enabled.

BatchFileLogger implements the policy of logging for
multiple requests, which maintains a set of access logs in
memory for a pre-defined period, and writes them into a file
later. It is more efficient than the cached FileLogger by
avoids writing an access log into a file.

3.4 Load Balancing and Fault Tolerance
An approach for improving performance of a high-
workload server is to distribute the traffic to replicated
back-end servers. It is a good idea because the back-end
servers work well using the medium-scale hardware, and
because they also increase fault tolerance, i.e. reliability and
availability, by forming a cluster of servers.

OpenWebServer provides the deployment configuration
that achieves load balancing and fault tolerance by
managing two or more replicas of a web server. It can
perform as a reverse proxy server [18, 19], which is a
proxy for servers while a normal proxy server is a proxy for
clients. A reverse proxy determines an appropriate back-end
server to redirect a request and forwards back its response
to a client, instead of processing the request (Figure 7). This
clustering model delivers the following benefits:

• A set of replicated servers behave identically to the
original single server. The difference is transparent to
clients. Clients access a reverse proxy as if it is a normal
web server. An entry point to the cluster remains single.

• A reverse proxy has the complete control over the
delegation policy of incoming requests locally.

OpenWebServer implements the reverse proxy as an
implementation class of the RequestHandler
metaobject, ReverseProxyRequestHandler. It
redirects incoming requests to the appropriate back-end
server by rewriting the original URL and HTTP request/
response headers. When a target back-end server does not
respond in a certain time, this request handler delegate the
undelivered request to another server.

8

The Redirector metaobject defines the policy to
delegate HTTP requests. The following implementations of
Redirector are defined:

• RandomRedirector

Redirects requests to a back-end server at random.

• PriorityDrivenRedirector

Redirects requests with the priorities for back-end
servers. Each priority is defined in a configuration file
and changeable at runtime.

• LatencyDrivenRedirector

Redirects requests with the average response time of
each back-end server. It assigns a request to the most
responsive server.

3.5 Document Personalization
OpenWebServer provides the document personalization
capability as an application-level service. Personalization
involves in fine-tuning contents and presentations based on
the needs of the user. This service is performed with the
Persona toolkit, which is an engine to mine a document’s
appropriate content and/or presentation suited to the context
where the it is accessed. Both HTML and XML (eXtensible
Markup Language) can be personalized with Persona [20,
21].

OpenWebServer prepares an implementations for the
ContentFinder metaobject, HtmlFinder and
XmlFinder, which find a requested HTML and XML
document respectively. It also provides utility objects that
parse HTML/XML documents, create their syntax trees,
and retrieves elements and attributes in the parsed tree.
Personalized documents are dynamically generated with the
context of client-side environment, user profile and users’
behaviors. The personalization for HTML documents is
performed by re-authoring their contents. XML documents
are personalized by either applying an appropriate XSL

(eXtensible Stylesheet Language) stylesheet or re-authoring
the document content.

4. Current Project Status and Future Work
The current OpenWebServer includes 9 metaobjects, 40
implementation objects and 52 utility objects. It was
initially implemented with the Python programming
language and, later, with Java. We are investigating other
languages to illustrate that the architectural design of
OpenWebServer does not depend on a specific language.

As for the metalevel in OpenWebServer, we are
aggressively making metaobjects fine-grained. At present,
we are dividing the metaobject Acceptor into different
objects that deal with concurrency and I/O, as described in
[22], because the current Acceptor is somewhat coarse.

We are also developing examples of system adaptation with
OpenWebServer to demonstrate the power of its metalevel
and improve it. We plan to introduce additional
communication protocols such as HTTP 1.1, HTTP-ng,
LDAP (Lightweight Directory Access Protocol) and SNMP
(Simple Network Management Protocol). We also plan to
provide real-time streaming functionality for continuous
media using RTP (Realtime Transport Protocol) or RTSP
(RealTime Streaming Protocol). New underlying
environments of OpenWebServer are also planned
including CORBA, embedded environments, and real-time
operating systems.

5. Conclusion
This paper addresses how our adaptive web server can meet
diverse requirements in the web server design space, and
describes the advantage of its meta-architecture that makes
the system adaptable and configurable. OpenWebServer
makes its aspects open-ended for extension, and allows
itself to continually evolve beyond the static and monolithic
servers of today.

6. References
[1] J. Suzuki and Y. Yamamoto. OpenWebServer: an

Adaptive Web Server using Software Patterns. In IEEE
Communications Magazine, April 1999. to be
appeared.

[2] J. Suzuki and Y. Yamamoto. Building an Adaptive
Web Server with a Meta-architecture: AISF approach.
In Proceedings of SPA’98, March 1998.

[3] G. Kiczales et. al. The Art of the Metaobject Protocol.
MIT Press, 1991.

[4] P. Maes. Concepts and experiments in computational
reflection. In Proceedings of OOPSLA '87, 1987.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal. A System of Patterns: Pattern-oriented
software architecture. WILEY, 1996.

Figure 7: A web server cluster using a reverse proxy.

Client Reverse
Proxy

(1) A HTTP request

Back-end Server 1

Back-end Server n

Back-end Server 2

(2) Rewrite the target URL

(3) Switch the request to an
appropriate back-end server

9

[6] B. Meyer. Object-Oriented Software Construction 2nd

edition. Prentice Hall, 1998.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[8] J. C. Hu, S. Mungee and D. C. Schmidt. Principles for
Developing and Measuring High-Performance Web
Servers over ATM. In Proceedings of
INFOCOMM’98, 1998.

[9] J. C. Mogul. The Case for Persistent-Connection
HTTP. Technical Report, Digital Equipment
Corporation Western Research Laboratory, May 1995.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T.
Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
Standards Track RFC 2068, January 1997.

[11] D. C. Schmidt. Reactor - An Object Behavioral Pattern
for Event Demultiplexing and Event Handler
Dispatching. In Proceedings of the First Pattern
Languages of Programs, 1994.

[12] W. R. Stevens. UNIX Networking Programming, First
Edition. Prentice Hall, 1990.

[13] H. Custer. Inside Windows NT. Microsoft Press, 1993.

[14] S. Oaks and H. Wong. Java Threads. O’Reilly, 1997.

[15] A. S. Tanenbaum. Modern Operating Systems. Prentice
Hall, 1992.

[16] C. Maeda. A Metaobject Protocol for Controlling File
Cache Management. In Proceedings of International
Symposium on Object Technology for Advanced
Software (ISOTAS ’96), 1996.

[17] M. Grand. Patterns in Java. WILEY, 1998.

[18] R. S. Engelschall. Load Balancing Your Web Site.
Web Techniques Magazine, vol.3 issue 5, May, 1998.

[19] A. Nuotonen. Web Proxy Servers. Prentice Hall, 1997.

[20] J. Suzuki and Y. Yamamoto. Document Brokering with
Agents: Persona approach. In Proceedings of the Sixth
Workshop on Interactive Systems and Software (JSSST
WISS ’98), December, 1998.

[21] J. Suzuki and Y. Yamamoto. Metadata Management in
Personalizing Web Presentations. Submitted to the
Seventh International Conference on User Modeling
(UM ’99), 1999.

[22] J. C. Hu and D. C. Schmidt. Developing Flexible and
High-performance Web Servers with Frameworks and
Patterns. In ACM Computing Surveys, May 1998.

