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Abstract
Wireless sensor networks (WSNs) possess inherent tradeoffs

among conflicting operational objectives such as data yield, data
fidelity and power consumption. In order to address this chal-
lenge, this paper proposes a biologically-inspired framework to
build cognitive WSN applications, which introspectively under-
stand their conflicting objectives, find optimal tradeoffs with given
constraints and autonomously adapt to dynamics of the network.
The proposed framework, MONSOON, models an application as
a decentralized group of software agents. This is analogous to
a bee colony (application) consisting of bees (agents). Agents
collect sensor data on individual nodes and carry the data to
base stations. They perform this data collection functionality
by autonomously sensing their local and surrounding network
conditions and adaptively invoking biological behaviors such as
pheromone emission, reproduction and migration. Each agent has
its own behavior policy, as a gene, which defines how to invoke
its behaviors. MONSOON allows agents to evolve their behavior
policies via genetic operations such as crossover and mutation.
Simulation results show that agents (WSN applications) exhibit the
properties of self-configuration, self-optimization and self-healing
and adapt to various dynamics of the network (e.g., node/link fail-
ures) by satisfying conflicting objectives under given constraints.

1. Introduction
Wireless sensor networks (WSNs) have inherent trade-

offs among conflicting operational objectives such as data
yield, data fidelity and power consumption. For example,
in data collection applications, hop-by-hop recovery is of-
ten applied for packet transmission in order to improve data
yield (the quantity of collected data). However, this can de-
grade data fidelity (the quality of collected data; e.g., data
freshness). For improving data fidelity, sensor nodes may
transmit data to base stations with the shortest paths; how-
ever, data yield can degrade because of traffic congestion
and packet losses on the paths.

In order to address this issue, the authors of the paper en-
vision cognitive WSN applications that introspectively un-
derstand their conflicting objectives, find optimal tradeoffs
under given constraints and autonomously adapt to dynam-
ics of the network such as node/link failures. For making
this vision a reality, this paper proposes a cognitive sensor
networking framework, called MONSOON1, which allows
WSN applications to exhibit the following self-* properties:

1Multiobjective Optimization for a Network of Sensors using an evO-
lutionary algOrithm with coNstraints

• Self-configuration: allows WSN applications to auto-
mate their own configurations and self-organize into
desirable structures and patterns (e.g., routing paths
and duty cycles).

• Self-optimization: allows WSN applications to con-
stantly seek improvement in their performance by
adapting to changing network conditions with minimal
human intervention.

• Self-healing: allows WSN applications to automati-
cally detect and recover from disruptions in the net-
work (e.g., node and link failures).

As an inspiration for the design strategy of MONSOON,
the authors of the paper observe that various biological sys-
tems have developed the mechanisms necessary to realize
the vision of MONSOON. For example, a bee colony self-
organizes to satisfy conflicting objectives simultaneously
for maintaining its well-being [8]. Those objectives include
maximizing the amount of collected honey, maintaining the
temperature in a nest and minimizing the number of dead
drones. If bees focus only on foraging, they fail to ventilate
their nest and remove dead drones. Given this observation,
MONSOON applies key biological mechanisms to imple-
ment cognitive WSN applications.

Figure 1 shows the architecture of MONSOON. The
MONSOON runtime operates atop TinyOS on each node.
It consists of two types of software components: agents
and middleware platforms, which are modeled after bees
and flowers, respectively. Each application is designed as
a decentralized group of agents. This is analogous to a
bee colony (application) consisting of bees (agents). Agents
collect sensor data on platforms (flowers) atop individual
nodes, and carry the data to base stations on a hop-by-hop
basis, in turn, to a backend server (the MONSOON server
in Figure 1), which is modeled after a nest of bees.

Agents perform this data collection functionality by au-
tonomously sensing their local and surrounding network
conditions and adaptively invoking biological behaviors
such as pheromone emission, replication, reproduction, mi-
gration and death. A middleware platform runs on each
node, and hosts one or more agents (Figure 1). It provides
a series of runtime services that agents use to perform their
functionalities and behaviors.

MONSOON implements a constraint-based evolutionary
adaptation mechanism for agents. Each agent has its own



behavior policy, as a gene, which defines when to and how
to invoke its behaviors. MONSOON allows agents to evolve
their behavior policies via genetic operations (mutation and
crossover) and simultaneously adapt them to conflicting ob-
jectives with associated constraints. A constraint is defined
as an upper or lower bound for an objective. For example,
a tolerable (lower) bound may be defined for data fidelity.
Currently, MONSOON considers six objectives related to
data yield, data fidelity and power consumption.
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Figure 1. The Architecture of MONSOON

2. The MONSOON Runtime
MONSOON is currently designed to implement data col-

lection applications. An agent is initially deployed with a
randomly-generated behavior policy on each node. Each
agent collects sensor data on a node periodically (i.e., at
each duty cycle) and carry the data toward a base station.

2.1. Agent Behaviors
Each agent implements seven behaviors and performs

them in the following sequence at each duty cycle.
Step 1: Energy gain. Each agent collects sensor data

and gain energy. In MONSOON, the concept of energy does
not represent the amount of physical battery in a node. It is
a logical concept that impacts agent behaviors. Each agent
updates its energy level with a constant energy intake (EF):

E(t) = E(t−1) + EF (1)

E(t) and E(t− 1) denote the energy levels in the current
and previous duty cycles.

Step 2: Energy expenditure and death. Each agent
consumes a constant amount of energy to use comput-
ing/networking resources available on a node (e.g., CPU
and radio transmitter). It also expends energy to invoke its
behaviors. The energy costs to invoke behaviors are con-
stant for all agents. An agent dies due to energy starvation
when it cannot balance its energy gain and expenditure. The
death behavior is intended to eliminate the agents that have
ineffective behavior policies. For example, an agent would
die before arriving at a base station if it follows a too long
migration path. When an agent dies, the local platform re-
moves the agent and releases all resources allocated to it2.

2If all agents are dying on a node at the same time, a randomly selected
agent will survive. At least one agent runs on each node.

Step 3: Replication. Each agent makes a copy of itself in
each duty cycle. A replicated (child) agent is placed on the
node that its parent resides on, and it inherits the parent’s
behavior policy (gene). A replicating (parent) agent splits
its energy units to halves ( E(t)−ER

2 ), gives a half to its child
agent, and keeps the other half. ER denotes the energy cost
for an agent to perform the replication behavior. A child
agent contains the sensor data that its parent collected, and
carries it to a base station on a hop by hop basis.

Step 4: Swarming. Agents may swarm (or merge) with
others at intermediate nodes on their ways to base stations.
On each intermediate node, each agent decides whether it
migrates to a next-hop node or waits for other agents to ar-
rive at the current node and swarm with them. This decision
is made based on the migration probability (pm). If an agent
meets other agents during a waiting period, it merges with
them and contains the sensor data they carry. It also uses the
behavioral policy of the best one in the aggregating agents
in terms of operational objectives. (See Section 3. on how
to find the ”best” agent.) The swarming behavior is intended
to save power consumption by reducing the number of data
transmissions. If the size of data an agent carries exceeds
the maximum size of a packet, the agent does not consider
the swarming behavior.

Step 5: Pheromone sensing and migration. On each in-
termediate node toward a base station, each agent chooses a
migration destination node (next-hop node) by sensing three
types of pheromones available on the local node: base sta-
tion, migration and alert pheromones.

Each base station periodically propagates a base station
pheromone to individual nodes in the network. Their con-
centration decays on a hop-by-hop basis. Using base station
pheromones, agents can sense where base stations exist ap-
proximately, and move toward them by climbing a concen-
tration gradient of base station pheromones.

Agents emit migration pheromones on their local nodes
when they migrate to neighboring nodes. Each migration
pheromone references the destination node an agent has mi-
grated to. Agents also emit alert pheromones when they fail
migrations within a timeout period. Migration failures can
occur because of node failures due to depleted battery and
physical damages as well as link failures due to interfer-
ence and congestion. Each alert pheromone references the
node that an agent could not migrate to. Each of migration
and alert pheromones has its own concentration. The con-
centration decays by half at each duty cycle. A pheromone
disapears when its concentration becomes zero.

Each agent examines Equation 2 to determine which
next-hop node it migrates to.

WS j =

3∑
t=1

wt
Pt, j −Ptmin

Ptmax −Ptmin

(2)

An agent calculates this weighted sum (WS j) for each



neighboring node j, and moves to a node that generates the
highest weighted sum. t denotes pheromone type; P1 j, P2 j
and P3 j represent the concentrations of base station, migra-
tion and alert pheromones on the node j. Ptmax and Ptmin

denote the maximum and minimum concentrations of Pt
among all neighboring nodes.

The weight values in Equation 2 (wt,1 ≤ t ≤ 3) govern
how agents perform the migration behavior. For example,
if an agent has zero for w2 and w3, the agent ignores mi-
gration and alert pheromones, and moves toward a base sta-
tion by climbing a concentration gradient of base station
pheromones. If an agent has a positive value for w2, it fol-
lows a migration pheromone trace on which many other
agents have traveled. The trace can be the shortest path to
a base station. Conversely, a negative w2 value allows an
agent to go off a migration pheromone trace and follow an-
other path to a base station. This avoids separating the net-
work into islands. The network can be separated with the
migration paths that too many agents follow, because the
nodes on the paths run out of their battery earlier than the
others. If an agent has a negative value for w3, it avoids
moving to a node referenced by an alert pheromone, thereby
bypassing failed nodes and links.

Step 6: Pheromone emission. When an agent is migrat-
ing to a neighboring node, it emits a migration pheromone
on the local node. If the agent’s migration fails, it emits an
alert pheromone. Each alert pheromone spreads to one-hop
away neighboring nodes.

Step 7: Reproduction. Two parent agents may produce
a child agent. A child agent is placed on the node that their
parents reside on, and it inherits the parents’ behavior poli-
cies (genes). This behavior is intended to evolve agents.
(See Section 3. for more details.)

2.2. Agent Behavior Policy
Each behavior policy consists of two distinctive informa-

tion: migration probability (pm) and a set of weight values
in Equation 2 (wt,1 ≤ t ≤ 3). Migration probability is a non-
negative value between zero and one. It is used for each
agent to decide whether it performs the migration behavior
or swarming behavior. With a higher migration probability,
an agent has a higher chance to perform the migration be-
havior instead of the aggregation behavior.

2.3. Middleware Platforms
Each middleware platform provides a set of runtime ser-

vices for the agents running on the local host (Figure 1). For
example, they implement agent behaviors as reusable ser-
vices, maintain a set of neighboring nodes within the local
node’s communication range and manage the pheromones
emitted on the local node. Also, each platform is responsi-
ble of controlling the local node’s duty cycle by turning it on
and off based on its sleep period. See [1] for full discussion
on the design and implementation of platforms.

3. Evolution Process in MONSOON
In the evolution process in MONSOON, elite selection

and genetic operations are performed in the MONSOON
server (see Figure 1) and each node, respectively.

The elite selection process evaluates the agents that ar-
rive at base stations, based on given operational objectives,
and chooses the best (or elite) ones. Elite agents are prop-
agated to individual nodes in the network. Through genetic
operations (crossover and mutation), an agent running on
each node performs the reproduction behavior with one of
elite agents. A reproduced agent inherits a behavior policy
(gene) from its parents via crossover, and mutation may oc-
cur on the inherited behavior policy.

Reproduction is intended to evolve agents so that the
agents that fit better to the environment become more abun-
dant in the network. It retains the agents that have effective
behavior policies, such as moving toward a base station in a
short latency, and eliminates the agents that have ineffective
behavior policies, such as consuming too much power to
reach a base station. Through successive generations, effec-
tive behavior policies become abundant in agent population
while ineffective ones become dormant or extinct. This al-
lows agents to adapt to dynamic network conditions.

3.1. Operational Objectives
Each agent considers six conflicting objectives related

to data yield, data fidelity and power consumption: latency,
cost, success rate, the degree of data aggregation, sleep pe-
riod and data accuracy. Success rate and the degree of data
aggregation are related to data yield. Latency and data ac-
curacy are related to date fidelity. Cost and sleep period are
related to power consumption. MONSOON strives to mini-
mize latency and cost and maximize success rate, the degree
of data aggregation, sleep period and data accuracy.

(1) Latency represents the time required for an agent to
travel to a base station from a node where the agent is repli-
cated. It (L) is measured as a ratio of this agent travel time
(t) to the physical distance (d) between a base station and a
node where the agent is replicated.

L =
t
d

(3)

(2) Cost represents the amount of power consumption
required for an agent to travel to a base station. It (C) is
measured with d, each node’s radio communication range
(r), and the total number of node-to-node data transmissions
required for an agent to arrive at a base station (ntran).

C =
ntran

r/d
(4)

The total number of data transmissions counts success-
ful and unsuccessful migrations of an agent as well as the
transmissions of its migration and alert pheromones.



(3) Success rate (S ) is measured as the ratio of the num-
ber of sensor data carried to base stations (narrive) to the total
number of nodes in the network (N).

S =
narrive

N
(5)

(4) Degree of data aggregation is measured as the num-
ber of sensor data in an agent. It is more than two in a
swarming agent.

(5) Sleep period is the period for which a node is turned
off between two duty cycles.

(6) Data accuracy (A) is measured based on the mean
squared error between collected sensor data (s) and esti-
mated sensor data (ŝ).

A =
1

1
narrive

∑narrive
j=1 (s j − ŝ j)2

(6)

ŝ is calculated with a data prediction model using Au-
toregressive Integrated Moving Average (ARIMA). Higher
data accuracy indicates either higher quality in estimated
data or less noises in collected data.

3.2. Elite Selection
Figure 2 shows how the MONSOON server periodically

performs elite selection. The first step is to measure six ob-
jective values of each agent that arrives at base stations. If an
agent violates given constraints in at least one of six objec-
tives, it is eliminated. Each of remaining agents is evaluated
whether it is dominated by another one. It is considered to
be dominated if another outperforms it in all six objectives.

Empty the archive
while true

do



Empty the population pool.
Collect the agents that have arrived at base stations.
Add collected agents to the population pool.
Move agents from the archive to the population pool.
Empty the archive
for each agent of in the population pool

do


Obtain the agent’s objective values.
if One or more objective values violate
given constraints.
then Remove the agent from the population pool.

for each agent in the population pool

do


if Not dominated by all other agents in
the population pool.
then Add the agent to the archive.

Select elite agents from the archive.
Propagate elite agents, mutation rate and sleep period
to individual nodes in the network.

Sleep for the sleep period.

Figure 2. Elite Selection in MONSOON

Then, a subset of non-dominated agents is selected as
elite agents. This is performed with a six dimensional hyper-
cube space whose axes represent six objectives. Each axis
of the hypercube space is divided so that the space contains
small cubes. Each non-nominated agent is plotted in this

hypercube space based on their objective values. If multi-
ple agents are plotted in a cube, a single agent is randomly
selected as an elite agent. If no agents is plotted in a cube,
no elite agent is selected from the cube. This hypercube-
based elite selection is designed to maintain the diversity of
elite agents, which is can improve their adaptability even to
unanticipated network conditions.

Figure 3 shows an example hypercube that shows three
objectives (success rate, cost and latency). It is divided to
two ranges for each objective; eight cubes exist in total. In
this example, six (A to F) non-dominated agents are plotted.
Three agents (B, C, and D) are plotted in the lower left cube,
while the other three agents (A, E, and F) are plotted in three
different cubes. From the lower left cube, only one agent is
randomly selected as an elite agent. A, E, and F are selected
as elite agents because they are in different cubes.

Success Rate
(Maximize)

Latency
(Minimize)

Cost
(Minimize)

Non-dominated
 agent

A

B
C

D
E
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Figure 3. An Example Elite Selection

As Figure 2 shows, the MONSOON server performs
elitism based on a (µ, λ) evolution strategy. Non-dominated
agents in the current duty cycle will compete with (or will
be evaluated together with) a set of agents that arrive at base
stations in the next duty cycle.

In addition to select elite agents, the MONSOON server
adjusts the mutation rate of agents and the sleep period of
nodes. Mutation rate is adjusted based on how fast non-
dominated agents improve their performance (objective val-
ues). The smaller improvement they make, the higher muta-
tion rate the MONSOON server assigns to agents, thereby
accelerating agent evolution.

The performance of non-dominated agents is measured
as a set of performance representative points in different
objectives. Equation 7 shows how to obtain a performance
representative point (ōi) in each objective i.

ōi =

∑
a∈And oi(a)
|And |

(7)

And denotes the set of non-dominated agents, and oi(a)
denotes the objective value that a non-dominated agent a
yields in an objective i.

The improvement of performance is measured as the nor-
malized Euclidean distance (d) between the current and the
Utopian point (ōi(t) and ōUi )) in each objective.



d =

√∑
i∈O(ōi(t)− ōUi )2

|O|
(8)

O is the set of all objectives. ōUi exists around the ideal
value in objective i; it is a slightly smaller or larger point
from the possible minimum or maximum objective value.

Mutation rate (m) is adjusted with Equation 9 where k is
the maximum mutation rate. c is a constant (≥ 1).

m = k
ln(d) + c

c
(9)

Sleep period is adjusted in a stepwise manner in between
a predefined minimum and maximum values. If data accu-
racy (A) is lower than a given constraint, sleep period is de-
creased by one minute; otherwise, increased by one minute.

The MONSOON server propagates adjusted mutation
rate and sleep period as well as elite agents to individual
nodes in the network. This propagation is performed with a
base station pheromone. When a node receives an adjusted
sleep period, it changes its current sleep period accordingly.

3.3. Genetic Operations

Upon receiving a base station pheromone, an agent run-
ning on each node performs the reproduction behavior with
a certain reproduction rate. It selects one of propagated elite
agents, as a mating partner, which has the most similar gene
(behavior policy). Gene similarity is measured with the Eu-
clidean distance between the values of two genes. If two or
more elite agents have the same similarity to the local agent,
one of them is randomly selected. During reproduction, a
child agent performs one-point half-and-half crossover; it
randomly inherits the half of its gene from its parent agent
and the other half from the parent’s mating partner.

Mutation occurs on a child agent’s gene, with a certain
mutation rate, by randomly changing gene values within a
predefined value range. As described in the previous sec-
tion, mutation rate is periodically adjusted by the MON-
SOON server and propagated to individual nodes. After re-
production, a child agent takes over the local parent as the
next generation agent.

4. Simulation Results
This section shows simulation results to evaluate MON-

SOON in terms of self-configuration, self-optimiztion and
self-healing. The MONSOON server is implemented in
Java, and the MONSOON runtime is implemented in nesC.
All simulations were run with the TOSSIM simulator [6].

The network consists of 100 nodes deployed uniformly
in a 300x300 meters observation area. Each node’s commu-
nication range is 30 meters. A base station is deployed on
the northwestern corner of the observation area. The base

station connects to the MONSOON server via emulated se-
rial port connection. The initial sleep period is five minutes,
and its minimum and maximum is 1 and 10 minutes, re-
spectively. For genetic operations, the reproduction rate is
0.9, and maximum mutation rate (k in Equation 9) is 0.25.
c in Equation 9 is set to 5. The constraint (lower bound)
of data accuracy is 0.1. To measure data accuracy, a data
prediction model is configured as ARIMA(4, 1, 1); using
four prior data, one random term and first-order differential.
Each sensor data is affected by Gaussian noises.

4.1. Results with a Single Constraint
Figure 4 shows the average objective values that agents

yield with a constraint for data accuracy. Each simulation
tick represents a duty cycle. Figure 4 (a) shows a result in
the static network, in which node/link failures never occur.
Each objective value improves and converges around the
20th tick. This result shows that, through evolution, agents
self-configure their behavior policies and self-optimize their
performance against conflicting objectives. Please note that
agents satisfy a data accuracy constraint after the 10th tick.

Figures 4 (b), (c), (d) and (e) show how agents perform
against dynamic changes in the network. Upon each change
that occurs at the 30th tick, objective values drops. In Fig-
ures 4 (b), when 25 nodes are added at random locations,
objective values degrade because agents initially have ran-
dom behavior policies on new nodes. Those agents can-
not migrate efficiently to the base station. Also, enough
pheromones are not available on new nodes when they
are deployed; agents cannot make proper migration deci-
sions on those nodes. In Figures 4 (c), randomly-selected 25
nodes fail. As a result, objective values drop because some
agents try to migrate to failed nodes. In Figure 4 (d), ob-
jective values degrade when 20 nodes fail at the center of
the observation area. (This means the network has a hole
at its center.) In Figure 4 (e), two base stations are initially
deployed at the northwestern and southeastern corners of
the observation area. Then, a base station fails at the south-
eastern corner. Consequently, objective values drop because
some agents try to migrate to the failed base station.

Once objective values drop due to a dynamic change in
the network, agents gradually improve and converge their
objective values again. Objective values are mostly same
before and after each dynamic change. In Figures 4 (b),
agents yield a higher degree of data aggregation after a
dynamic node addition because there are more agents mi-
grating in the network and there are higher chances for
them to aggregate. Figures 4 (b), (c), (d) and (e) show that
MONSOON allows agents to posses a self-healing prop-
erty; agents autonomously detect and recover from dynamic
changes in the network. Despite those changes, agents self-
configure their behavior policies and self-optimize their per-
formance by evolving their behavior policies. Also, agents
always satisfy a data accuracy constraint after the 10th tick.
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(c) Random Node Failure

20 40 60 80 100
Simulation Ticks

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 (%
) a

nd
 S

le
ep

 P
er

io
d 

(M
in

.)

0

0.5

1

1.5

2

2.5

3

Co
st

, L
at

en
cy

, D
at

a 
Ag

gr
eg

at
io

n,
 a

nd
 D

at
a 

Ac
cu

ra
cy

(d) Spatially-Correlated Node Failure
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Figure 4. Performance with a
Data Accuracy Constraint
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(e) Base Station Failure

Figure 5. Performance with
Data Accuracy, Latency and
Cost Constraints
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(b) Node Addition
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(c) Random Node Failure
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(d) Spatially-Correlated Node Failure
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Figure 6. Performance with
Adaptive Mutation Disabled



4.2. Results with Multiple Constraints
Figure 5 shows the average objective values that agents

yield with three constraints for data accuracy, latency and
cost. Latency and cost are expected to be lower than 0.05
second per 30 meters and 2.05 transmissions per 30 meters,
respectively. All other simulation configurations are same
as the ones used for Figure 4.

In Figure 5 (a), data accuracy, latency and cost improve
faster than the other three objectives because agents focus
on satisfying given three constraints. In fact, latency and
cost improve faster and remain more stable than they do in
Figure 4 (a). They are always around or lower than their
constraints (0.05 and 2.05) after the 20th tick, and data ac-
curacy is always higher than its constraint (0.1) after the
10th tick. Figure 5 (a) shows that agents simultaneously sat-
isfy conflicting objectives under given constraints by self-
optimizing their behavior policies through evolution.

In Figures 5 (b), (c) and (d), agents perform similarly
to Figures 4 (b), (c) and (d) in that they exhibit a self-
healing property against dynamics of the network. Object
values converge again after each failure. Compared with
Figures 4 (b), (c) and (d), agents recover their latency and
cost performance faster and retain the performance more
stable by following given constraints. These results show
that agents to evolve and simultaneously satisfy conflicting
objectives in dynamic networks.

4.3. Impacts of Adaptive Mutation
In order to evaluate the impacts of adaptive mutation

(Equation 9) Figure 6 shows the average objective values
that agents yield with adaptive mutation disabled. Their mu-
tation rate is fixed at 0.2. All other simulation configurations
are same as the ones used for the Figures 5.

Compared with Figure 5, all objective values improve
slower and fluctuate more in Figure 6. For example, in Fig-
ure 6 (b), it takes about 35 simulation ticks for success rate
to reach 100% while it takes only 25 ticks in Figures 5
(b). Simulation results show that adaptive mutation allows
agents to perform more efficiently and stably.

4.4. Mutation Rate, Power Consumption
and Self-organization

Figures 7 shows the average amount of power that nodes
consume as well as the average mutation rate that agents
have. All simulation configurations are same as the ones
used for the Figures 5. As Figures 7 shows, mutation rate
dynamically adjusted lower by the MONSOON server as
agents adapt to network conditions. This allows them to sta-
bilize the fluctuations in their performance, as discussed in
the previous section.

Power consumption decreases as agents adapt to net-
work conditions and sleep period increases. When a fail-
ure occurs, the degree of agent adaptation drops. Also, the

sleep period of nodes decreases because the data prediction
model in MONSOON fails to estimate sensor data. As a re-
sult, power consumption increases upon a failure. However,
power consumption goes down again soon. Figures 7 shows
that MONSOON strives to minimize power consumption.

Figures 7 also shows the degree of self-orgnization in
agent population. It is measured with the notion of entropy.
In this paper, entropy indicates how similar performance
different agents yield. The lower entropy, the more similar
performance they yield. Entropy (E) is given as follows.

E =
∑
i∈S

pi log(pi) (10)

i identifies individual cubes in the hypercube space in
MONSOON. (See also Section 3 and Figure 3.2.), and S de-
notes the set of all cubes. pi denotes the probability in which
agents are plotted in the cube i. Figures 7 shows agents grad-
ually decrease their entropy. This means they adapt to net-
work conditions and perform similar with each other. En-
tropy spikes upon a failure; however, it goes lower again
through agent evolution.

4.5. Memory Footprint

The MONSOON runtime is implemented lightweight.
Its memory footprint is 3.1 KB in RAM and 32 KB in ROM
on a MICA2 mote. (The capacity of a MICA2 mote is 4 KB
in RAM and 128 KB in ROM.) It can run on a smaller-scale
node, for example, a TelosB mote, which has a 48 KB ROM.
The MONSOON runtime is more lightweight than Agilla,
which is a mobile agent platform for mesh networks. Agilla
consumes 3.59 KB in RAM and 41.6 KB in ROM [5].

5. Related Work
This work is an extension to the authors’ prior work [2].

This paper considers three additional objectives and investi-
gates adaptive mutation and constraints in agent evolution,
which were not studied in [2].

Genetic algorithms are applied to several aspects in
WSNs, such as cluster-based routing [4], localization [9]
and node placement [10]. Every work uses a fitness function
that aggregates multiple objective values as a weighted sum,
and uses the function to rank agents/genes in elite selection.
Application designers need to manually configure every
weight value in a fitness function through trial and errors. In
MONSOON, no manually-configured parameters exist for
elite selection because of domination ranking. MONSOON
imposes much less configuration cost. Also, [3, 4, 9, 10] do
not assume dynamic networks, but static networks.

Evolutionary multiobjective optimization algorithms are
used for node placement [7] in WSNs. In each of these
work, an optimization process is performed only in a central
server. This can lead to a scalability issue as the network
size increases. In contrast, MONSOON is carefully de-



signed to perform its adaptation process in both the MON-
SOON server and individual nodes.

6. Conclusion
This paper proposes and evaluates a cognitive sensor net-

working framework, called MONSOON, for data collection
applications in WSNs. MONSOON allows applications to
introspectively understand given objectives and constraints,
adapt to dynamic network conditions in a self-configuring,
self-optimizing and self-heling manner, and simultaneously
satisfy conflicting objectives. MONSOON is implemented
lightweight and power efficient.
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Figure 7. Mutation Rate, Power Consumption
and Entropy


