
Evolutionary High-dimensional QoS Optimization for

Safety-Critical Utility Communication Networks

Paskorn Champrasert∗, Junichi Suzuki∗ and Tetsuo Otani∗∗

∗Department of Computer Science

University of Massachusetts, Boston, USA

{paskorn, jxs}@cs.umb.edu

∗∗Central Research Institute of Electric Power Industry, Japan

ohtani@criepi.denken.or.jp

Abstract

This paper proposes and evaluates an evolutionary multiobjective optimization algorithm,

called EVOLT, which heuristically optimizes QoS (quality of service) parameters in communica-

tion networks. EVOLT uses a population of individuals, each of which represents a set of QoS

parameters, and evolves the individuals via genetic operators such as crossover, mutation and

selection for satisfying given QoS requirements. For evaluating EVOLT in real-world settings

that have high-dimensional parameter and optimization objective spaces, this paper focuses on

QoS optimization in safety-critical communication networks for electric power utilities. Simu-

lation results show that EVOLT outperforms a well-known existing evolutionary algorithm for

multiobjective optimization and efficiently obtains quality QoS parameters with acceptable com-

putational costs. Moreover, EVOLT visualizes obtained QoS parameters in a Self-Organizing

Map in order to aid network administrators to intuitively understand the QoS parameters and

the tradeoffs among optimization objectives.

Keywords: Quality of Service, Evolutionary Multiobjective Optimization, Self-Organizing Map,

Power Utility Communication Networks

1

1 Introduction

This paper focuses on quality of service (QoS) optimization for safety-critical communication net-

works for electric power utilities. Power utilities leverage communication networks to monitor

and control power delivery from power stations to consumers. Recently, the communication net-

works are increasingly required to adapt their QoS to frequent changes in their configuration and

deployment, which are caused by organizational restructuring, deregulation, new power genera-

tion/delivery policies (e.g., distributed generation) and new software/hardware technologies.

QoS optimization is a combinatorial optimization problem to search the optimal configurations

for network applications to satisfy given QoS requirements (e.g., data transmission latency) in a

best-effort network whose capacity is limited. A network application’s configuration is specified as

a set of QoS parameters such as the parameters for flow control and data transmission reliability.

There exist four key research issues to solve the QoS optimization problem in real-world settings.

First, this problem is known NP-hard [1], which can take a significant amount of time, labor and

costs to find the optimal set(s) of QoS parameters from a huge number of parameter combinations.

Second, it is also known a nonlinear problem [2], which linear optimization algorithms (e.g., [3–6])

do not work well for. Third, it often faces tradeoffs among conflicting QoS optimization objectives

such as success rate, latency and jitter of data transmission. For example, in order to increase

the success rate of data transmission, a network application may duplicate data and transmit du-

plicated data to a destination through multiple network routes. However, this can degrade the

latency of data transmission due to increased network traffic and congestion. Thus, there exist

multiple optimal sets (more precisely, the Pareto-optimal sets) of QoS parameters that satisfy QoS

requirements. In practical decision-making by network administrators, it is important to reveal

the optimal tradeoffs among conflicting optimization objectives by searching the Pareto-optimal

parameter sets, instead of searching a single optimal parameter set as traditional QoS optimization

algorithms do (e.g., [3–11]). The fourth issue is that, when the QoS optimization problem considers

realistic network environments, it often possesses a number of QoS parameters and QoS optimiza-

tion objectives. In general, optimization speed and quality degrade significantly when optimization

problems have high-dimensional parameter and objective spaces [12–14]. High dimensionality in the

parameter space leads to a combinatorial explosion of parameters, which greatly slows optimization

2

speed. High dimensionality in the objective space often leads to premature convergence, which fails

to improve the optimization quality (or optimality) of QoS parameter sets. Traditional QoS opti-

mization algorithms tend to deal with a limited number of parameters and optimization objectives;

for example, less than 20 QoS parameters and three or less optimization objectives1 [3–11, 15–22].

(An exception is [18], which considers 64 QoS parameters.)

In order to address these four research issues, this paper investigates an evolutionary QoS opti-

mization algorithm, called EVOLT. It employs an evolutionary and heuristic optimization method

because, in general, the method is robust in nonlinear NP-hard problems [23, 24]. EVOLT is de-

signed as a multiobjective genetic algorithm (MOGA) that balances the tradeoffs among conflicting

QoS optimization objectives and seeks the Pareto-optimal sets of QoS parameters that satisfy given

QoS requirements. EVOLT uses a population of individuals, each of which represents a set of QoS

parameters, and evolves the individuals through generations via genetic operators such as crossover,

mutation and selection. Through the evolutionary process, EVOLT seeks the Pareto-optimal QoS

parameters. In EVOLT, QoS requirements are considered as optimization constraints. Each con-

straint is defined as a tolerable QoS bound; for example, the upper bound in allowable latency of

data transmission.

EVOLT implements new genetic operators specialized to handle high-dimensional parameter

and objective spaces. Its aging operator identifies feasible and infeasible portions of each individual,

which satisfy and violate given QoS requirements respectively, and preserves feasible portions across

generations. This operator is intended to improve convergence speed in optimization when the

parameter space is high-dimensional. EVOLT ’s offspring size adjustment operator dynamically

changes the number of offspring produced in each generation according to the current selection

pressure. This operator is intended to avoid premature convergence and improve the optimality of

QoS parameter sets by maintaining selection pressure in a high-dimensional objective space.

Moreover, EVOLT visualizes QoS parameter sets, which is high-dimensional data, in a low-

dimensional (two dimensional) space with a self-organizing map (SOM). This aids network admin-

istrators to intuitively understand the tradeoffs among optimization objectives and the similarity

among QoS parameter sets. It allows them to make well-informed decisions for choosing one of

1In the research field of multiobjective optimization, an objective space is considered high-dimensional when it
has more than three objectives [14].

3

QoS parameter sets and deploying that in their applications.

Another key feature of EVOLT is that it minimizes the number of constants that need to be

manually configured. The performance of existing MOGAs is sensitive to constant values [25–27],

and it is often very hard, if not impossible, for domain experts (e.g., network administrators) to

tailor constant values for their problems. EVOLT has virtually no constants to configure manually.

This feature makes EVOLT practical and usable for network administrators who do not know its

algorithmic details.

This paper describes the design of EVOLT and evaluates its performance with simulated power

utility communication networks that possess six optimization objectives and more than 850 QoS

parameters. Simulation results show that individual operators in EVOLT work properly and they

complement with each other well to deal with high-dimensional parameter and objective spaces.

EVOLT outperforms a well-known existing MOGA, called NSGA-II [28], and efficiently obtains

quality QoS parameters with acceptable computational costs.

2 Power Utility Communication Networks

This section overviews power utility communication networks (Section 2.1) and describes a set of

configurations that EVOLT assumes for network structure and applications (Section 2.2), QoS

parameters (Section 2.3) and QoS optimization objectives (Section 2.4). These configurations are

obtained based on the experience that one of the authors has gained in the power utility industry.

2.1 Background

A power delivery system transmits generated electricity from power stations to consumers (Fig-

ure 1) [29, 30]. Electricity is transmitted in high voltage (e.g., 110 KV) from a power station in

order to reduce energy loss in transmission, and distributed toward consumers through a chain

of substations. Each substation is responsible for a certain physical region; for example, one for

a state, one for a city in the state, and one for a town in the city. It reduces incoming voltage

with a transformer(s) based on the electricity load in a region that it is responsible for. (The load

in a region is determined by, for example, the number of consumers in the region. The higher

load is required, the higher voltage a substation uses to deliver electricity.) This way, the volt-

4

age of generated power gradually reduces (e.g., to 1 KV) through a number of substations toward

consumers.

Power Station

Substation Substation

Substation Substation

Communication Network Link

Power Transmission Line

Control Center

Consumers

Consumers

Figure 1: An Example Power Delivery System

Since most of substations and some of power stations are unmanned, power utilities remotely

monitor and control them with communication networks [31]. Figure 1 shows an example network

that consists of a control center, substations and a power station. Each substation and power

station periodically monitors its operations and equipment (e.g., every few seconds), and transmits

the monitored status information to a control center. A control center receives periodic updates on

the status of substations and power stations and allows human operators to control their operations

according to their current status.

2.2 Network Structure and Applications

A power utility communication network is often configured as a tree structure where a control center

serves as its root (Figures 1 and 2). This paper considers two types of IP networks: a smaller-scale

network of 34 nodes (a control center, 30 substations and 3 power stations) and a larger-scale

network of 67 nodes (a control center, 60 substations and 6 power stations). In each network, there

are two types of data communication routes between nodes: the primary and secondary routes

(Figure 2). The primary routes are normally used for data transmission. The secondary routes

are used when data is duplicated and transmitted redundantly through two different routes. (This

is called a two route data transmission in this paper.) The Rapid Spanning Tree Protocol (IEEE

5

802.1w) [32] is used to avoid loops in network topology and reduce the time for spanning tree

reconstruction. When a source node sends data to a destination node, the source node uses the

topologically shortest path.

Control Center

Substation

SubstationSubstation

Power Station

Secondary route

Primary route

Figure 2: An Example Power Utility Communication Network

This paper also assumes two types of applications: a SCADA (Supervisory Control and Data

Access) application and a maintenance application. Both applications are deployed on each node.

In a SCADA application, each substation and power station periodically collects data on its op-

erational status (e.g., a status of a substation’s circuit switching operation) and transmits it to a

control center. In exchange, the control center periodically transmits data to substations and power

stations for controlling their operations (e.g., on/off control for a substation’s circuit switching op-

eration). In a maintenance application, each substation and power station periodically collects data

on its equipment status and transmits the data to a control center. A SCADA application has more

stringent QoS requirements than a maintenance application. See Section 4 for more configuration

details of these two applications.

Each node operates two queues (or buffers) for data transmission: a policing queue and a

shaping queue. A policing queue is used to receive incoming packets from remote nodes, queue

them and pass them to the local node. A shaping queue is used to receive outgoing packets from

the local node, queue them and transmit them toward their destinations.

2.3 QoS Parameters

EVOLT considers 13 QoS parameters described below. It optimizes them on each node so that

both SCADA and maintenance applications satisfy given QoS requirements. This means EVOLT

has 442 QoS parameters in total (13 parameters × 34 nodes) in a smaller-scale network and 871

6

QoS parameters in total (13 parameters × 67 nodes) in a larger-scale network.

Maximum size of a shaping queue (MSQ): The maximum number of packets that can

be queued in a shaping queue. Its value range is [0, 10] as an integer. If it is 0, traffic shaping is

disabled. A shaping queue overflows if the number of queued packets exceeds this number.

Flush interval of a shaping queue (FSQ): The interval to flush packets from a shaping

queue and transmit them to their destinations. Its value range is [0, 100] as an integer. (Its unit is

millisecond.) If it is 0, traffic shaping is disabled.

Maximum size of a policing queue (MPQ): The maximum number of packets that can

be queued in a policing queue. Its value range is [0, 10] as an integer. If MPQ=0, traffic policing

is disabled. A policing queue overflows if the number of queued packets exceeds MPQ.

Flush interval of a policing queue (FPQ): The interval to flush packets from a policing

queue and pass them to the local node. Its value range is [0, 100] as an integer. (Its unit is

millisecond.) If it is 0, traffic policing is disabled.

Aggregation size (AS): The number of packets that can be aggregated at a time in a shap-

ing/policing queue. This number is used for both policing and shaping queues in the same node.

When a queue contains more packets than this number, it aggregates those packets and transmits

an aggregated packet to its destination even if its aggregation interval (AI; see below) has not

expired yet. Packets are aggregated only when their application types (SCADA or maintenance)

are same and their destinations are same. The range of this value is [0, 10] as an integer. When

this value is 0, packet aggregation is not performed.

Aggregation interval (AI): The time interval to aggregate packets in a shaping/policing

queue. This number is used for both policing and shaping queues in the same node. When this

number expires, queued packets are aggregated if their application types and their destinations are

same. Its value range is [0, 100] as an integer. (Its unit is millisecond.) If it is 0, packet aggregation

is disabled.

Packet ordering (PO): When a node generates multiple packets at a time, it orders them in

its shaping queue based on their size. The smaller the size of a packet is, the earlier it is dequeued

and transmitted to its destination. This value is 0 or 1. 0 indicates packet ordering is disabled, and

1 indicates it is enabled. If it is disabled, a node injects generated packets to its shaping queue in

a random order.

7

SCADA data duplication (SD): The number of duplicated SCADA data that a node trans-

mits with the same route to their destination. Its value range is [1, 5] as an integer. If it is 1, data

duplication is disabled.

SCADA data duplication interval (SDI): The time interval to transmit duplicated SCADA

data one by one with the same route to their destination. Its value range is [0, 100] as an integer.

(Its unit is millisecond.) When it is 0, data duplication is disabled.

SCADA multiple routes (SMR): The number of routes used to transmit duplicated SCADA

data. Its value range is [1, 2] as a integer. If it is 1, the primary route is used. If it is 2, both the

primary and secondary routes are used.

Maintenance data duplication (MD): The number of duplicated maintenance data that a

node transmits with the same route to their destination. Its value range is [1, 5] as an integer. If

this number is 1, data duplication is disabled.

Maintenance data duplication interval (MDI): The time interval to transmit duplicated

maintenance data one by one with the same route to their destination. Its value range is [0, 100]

as an integer. (Its unit is millisecond.) When this value is 0, data duplication is not performed.

Maintenance multiple routes (MMR): The number of routes used to transmit duplicated

maintenance data. Its value is 1 or 2. If it is 1, the primary route is used. If it is 2, both the

primary and secondary routes are used.

2.4 Optimization Objectives

EVOLT considers the following three objectives in QoS optimization. Each of two (SCADA and

maintenance) applications has these three objectives; EVOLT optimizes QoS parameters with

respect to six objectives in total. A QoS requirement is assigned to each of these objectives. It

serves as a constraint in the optimization process in EVOLT.

Success Rate (FS): The average success rate of data transmissions from a source node to a

destination node. This objective is to be maximized:

FS =
R

T
(1)

R denotes the number of data received at a destination node. T denotes the number of data

8

transmitted from a source node. The expected arrival time of each transmitted data is calculated

by dividing the data’s size by network bandwidth. If a destination node does not receive the data

within a tolerable time bound after the expected arrival time, the data is assumed to be lost. (The

data is not counted to calculate success rate, even if it arrives at the destination after this tolerable

time bound.) If a destination node receives more than one duplicated data, only one of them is

counted for the numerator (R) of Equation 1.

Latency (FL): The average latency in packet transmissions from a source node to a destination

node. This objective is to be minimized:

FL =

∑Np

p=1 Lp

Np
(2)

Lp denotes the transmission latency of packet p, which is the interval between the time when

a source node sends out p and the time when a destination node receives it. Np denotes the total

number of packets transmitted between a source node and a destination node.

Jitter (FJ): The average jitter in data transmissions from a source node to a destination node.

It indicates the timeliness variation of data arrivals at a destination node. This objective is to be

minimized:

FJ =

∑Nd
p=1 Jd

Nd
(3)

Nd denotes the total number of data types transmitted between a source node and a destination

node. (See Table 1 for more details on the data types.) Jd denotes the temporal average jitter in

transmitting data d. It is calculated as the exponentially weighted moving average (EWMA) of the

current and past jitter values:

Jd = EWMAjitter(t) = α ∗ |Ad − Ed|+ (1− α) ∗ EWMAjitter(t− 1) (4)

Ad and Ed denote the actual and estimated arrival times of data d.

9

2.5 Safety-Critical Applications in Power Utility Communication Networks

In order to ensure stable and safe power delivery, it is critical to operate power utility applications,

particularly SCADA applications, in a real-time manner by satisfying given QoS requirements. For

example, data loss, delay and high jitter in data transmission in these applications can damage

electric devices or cause fire at consumer sites due to power current fluctuations. They can also

cause a substation failure(s) and in turn a cascading failure of substations. In 2003, a large-scale

cascading blackout in Northeast America was caused partially by defects in operating SCADA

applications [33]. The blackout triggered malfunction of other infrastructures such as water supply,

transportation, telephone lines and the Internet. It affected 10 million people in Canada and 45

million people in eight states in the U.S.

3 EVOLT : The Proposed Evolutionary Optimization Algorithm

This section describes EVOLT ’s algorithmic structure and its operators.

3.1 Individuals

In EVOLT, each individual represents a set of QoS parameters. It consists of multiple segments, each

of which represents a node in the network. Therefore, the number of segments in each individual is

equal to the total number of nodes in the network. Figure 3 shows the structure of each individual.

SS1 to SSn represent the first to the n-th substations. PS1 to PSm represent the first to the m-th

power stations. CC represents the control center. Figure 3 shows 13 QoS parameters for the second

substation.

MSQ FSQ MPQ FPQ AS AI PO SD SDI SMR MD MDI MMR

SS1 SS2 . . . SSn CC

Segments

QoS Parameters

PS1 . . . PSm

Figure 3: The Structure of an Individual

10

3.2 Evolutionary Optimization Process

EVOLT runs on the control center. Every time a packet arrives at its destination node, the

node measures QoS on a packet by packet basis. It periodically reports historical QoS measures

to the control center. Using the reported QoS measures as objective values, EVOLT performs

its evolutionary optimization process to adjust QoS parameters. The adjusted QoS parameters

are transmitted from the control center to individual nodes so that the nodes use them in their

subsequent data transmissions.

Figure 4 shows the algorithmic structure of evolutionary optimization in EVOLT. The initial

population (P 0) consists of µ individuals that contain randomly-generated QoS parameters. In

each generation (g), a pair of individuals, called parents (p1 and p2), are chosen from the current

population P g using the binary tournament operator (BTounament()) [34]. A binary tournament

randomly takes two individuals from P g, compares them based on their fitness values, and chooses

a superior one (i.e., the one whose fitness is higher) as a parent.

Each segment of an individual maintains its age. The age value of a segment indicates how

many generations a node represented by the segment has satisfied optimization constraints (i.e.,

QoS requirements). If this aging method is enabled, two parents (p1 and p2) update the ages of

their segments (Aging()). Then, they reproduce two offspring and mutate the offspring’s QoS

parameters (AgingCrossoverMutation()).

If aging is not enabled, two parents (p1 and p2) reproduce two offspring (q1c and q2c) with the

fitness-based crossover (FitnessCrossover()). Each offspring is mutated with a regular muta-

tion operator (Mutation()), which randomly alters each QoS parameter in the offspring at the

probability of 1/n where n denotes the total number of QoS parameters in each individual.

Binary tournament, crossover and mutation operators are performed repeatedly until the num-

ber of offspring reaches the offspring size (|Qg| = λ). Once λ offspring are reproduced, they are

combined with the parent population P g. Then, a selection process occurs to sort µ+λ individuals

in P g ∪ Qg and choose the top µ individuals as the next generation’s population (P g+1). This

sorting is driven by the fitness of individuals (FitnessSelection()) or by their diversity as well

as their fitness (DiversitySelection()).

The number of reproduced offspring (λ) can be dynamically adjusted on a generation by gen-

11

eration basis (OffspringSizeAdjustment()). If this adjustment is enabled, the offspring size in

the next generation is re-computed to adjust the selection pressure in evolution and the density of

individuals in the objective space. EVOLT terminates its evolutionary optimization process when

the number of generations reaches a given limit (g = gmax).

main
g ← 0
P 0 ← Randomly generated µ individuals
repeat

Q0 ← ∅
repeat

p1 ← BTounament(P g)
p2 ← BTounament(P g)
if Aging is enabled

then

Aging(p1)
Aging(p2)
q1m, q

2
m ← AgingCrossoverMutation(p1, p2)

else

q1c , q

2
c ← FitnessCrossover(p1, p2)

q1m ←Mutation(q1c)
q2m ←Mutation(q2c)

if q1m /∈ Qg
then Qg ← Qg ∪ q1m

if q2m /∈ Qg
then Qg ← Qg ∪ q2m

until |Qg| = λ
if Diversity-aware ranking is enabled
then P g+1 ← DiversitySelection(P g ∪Qg)
else P g+1 ← FitnessSelection(P g ∪Qg)

if Offspring size adjustment is enabled
then λ← OffspringSizeAdustment()

g ← g + 1
until g = gmax

Figure 4: Evolutionary Optimization Process in EVOLT

3.3 Fitness Calculation based on Constraint-based Dominance Relationship

As described in Section 3.2, the notion of fitness is used in several operators in EVOLT. It quan-

tifies how an individual is superior or inferior to the others. It is determined with constraint-based

dominance relationships among individuals. The relationships rank individuals based on the ob-

jective values (i.e., QoS measures) and constraint violation (i.e., QoS requirement violation) that

they yield. Individual Xi is said to constraint-dominate Xj if:

12

• Xi does not violate any constraints but Xj does,

• both Xi and Xj violate at least one constraints, and Xi dominates Xj with respect to their

constraint violation, or

• both Xi and Xj do not violate any constraints, and Xi dominates Xj with respect to their

objective values.

Xi is said to dominate Xj with respect to their constraint violation if:

• Vk(Xi) ≤ Vk(Xj) for all k = 1, 2, ...,m, and

• Vk(Xi) < Vk(Xj) for at least one k ∈ 1, 2, ...m

Vk(Xi) denotes the violation that Xi yields in the k-th constraint. A constraint violation is

the difference between a constraint value (i.e., QoS requirement) and an objective value (i.e., QoS

measure).

Xi is said to dominate Xj with respect to their objective values if:

• Fk(Xi) ≤ Fk(Xj) for all k = 1, 2, ...,m, and

• Fk(Xi) < Fk(Xj) for at least one k ∈ 1, 2, ...m

Fk(Xi) denotes the objective value that Xi yields in the k-th objective. It is assumed here that

all objectives are to be minimized.

V
2:

 V
io

la
ti

on
 in

 th
e

se
co

nd
 c

on
st

ra
in

t

V1: Violation in the
first constraint

D

C

A

B

Figure 5: An Example Constraint Space

B

AF
2:

 O
bj

ec
ti

ve
 v

al
ue

 in

th
e

se
co

nd
 o

bj
ec

tiv
e

F1: Objective value in
the first objective

C

D

Figure 6: An Example Objective Space

13

Figure 5 shows an example two dimensional constraint space that illustrates the constraint

violation by four individuals (A to D). A and D violate two constraints. B and C violate the first

constraint. B dominates A, C and D with respect to their constraint violation because B violates

less in both constraints than A, C and D. A and C do not dominate each other with respect to

their constraint violation. D is dominated by A and C because D violates more in both constraints

than A and C.

Figure 6 shows an example two-dimensional objective space that illustrates the objective values

of four individuals (A to D). Both objectives are assumed to be minimized. A dominates B, C and

D with respect to their objective values because A outperforms the other three individuals in both

objectives. For the same reason, B dominates C and D. C and D do not dominate each other

because one of them does not outperform the other in both objectives, and vise versa.

Considering Figures 5 and 6 simultaneously, B constraint-dominates A, C and D. A and C do

not constraint-dominate each other, but do constraint-dominate D.

Fitness is calculated for each individual (Xi) as follows.

Fitness(Xi) = µ− dXi (5)

µ denotes the population size, and dXi denotes the number of individuals that constraint-

dominate Xi. In an example of Figures 5 and 6, B’s fitness is four (4 − 0) because no individuals

dominate it and the population size is four. The fitness of A and C is three (4 − 1) because they

are dominated by an individual: B. D’s fitness is one.

3.4 Aging, Age-based Crossover and Age-based Mutation Operators

The proposed aging operator (Aging() in Figure 4) assigns age to every segment of each individual.

The age value of a segment indicates how many generations a node represented by the segment has

satisfied constraints (i.e., QoS requirements). It is incremented on a generation by generation basis

if the node continues to satisfy constraints. It is reset to zero when the node violates at least one

constraints. This way, the proposed aging operator distinguishes feasible and infeasible segments

in each individual, which satisfy and violate constraints, respectively.

Figure 7 shows how age-based crossover and mutation are designed in AgingCrossoverMutation().

14

(See also Figure 4.) p1 and p2 denote two parent individuals. s indicates the number of segments

in an individual. AGEp1[i] denotes the age of p1’s i-th segment. Age-based crossover and mutation

occur on a segment by segment basis. Crossover occurs on the i-th segment if two parents have the

same age for the segment (AGEp1[i] = AGEp2[i]). Crossover() performs one-point crossover [34]

among p1[i] and p2[i]. If two parents have different ages for the i-th segment (AGEp1[i] 6= AGEp2[i]),

a segment with a higher age is copied to two offspring segments. In this case, one-point crossover

does not occur. As depicted in Figure 7, the proposed age-based crossover operator is designed to

prioritize and preserve feasible segments in the popoulation across generations, thereby improving

optimization/convergence speed.

procedure AgingCrossoverMutation(p1, p2)
for i← 1 to s

do

if (AGEp1[i] = AGEp2[i])

then
{
q1c [i], q

2
c [i]← Crossover(p1[i], p2[i])

else if (AGEp1[i] > AGEp2[i])

then

{
q1c [i]← p1[i]
q2c [i]← p1[i]

else if (AGEp2[i] > AGEp1[i])

then

{
q1c [i]← p2[i]
q2c [i]← p2[i]

q1m[i]← AgingMutation(q1c [i])
q2m[i]← AgingMutation(q2c [i])

return (q1m, q
2
m)

Figure 7: Age-based Crossover and Mutation

Figure 8 shows how the proposed age-based mutation operator (AgingMutation() in Figure 7)

is designed to alter QoS parameters in a given segment of an individual (qc). n denotes the number

of QoS parameters in a segment. At the probability of 1/n, each QoS parameter is mutated. The

l-th QoS parameter (qc[l]) is randomly altered to qm[l] with a normal distribution that has qc[l] as

its mean and σi as its standard deviation.

procedure AgingMutation(qc)
for l← 1 to n

do

{
if random(0, 1) ≤ 1/n
then qm[l]← N(qc[l], σi)

return (qm)

Figure 8: Age-based Mutation

15

σi is called mutation strength for a segment in question (the i-th segment). Note that mutation

strength is adjusted to each segment. σi controls the degree of mutation on QoS parameters; a

higher mutation strength produces a probabilistically bigger difference between qc[l] and qm[l]. With

Equation 6, the proposed age-based mutation operator dynamically adjusts σi on a generation by

generation basis.

σg+1
i =

1

|AGEp1[i] −AGEp2[i]|+ 1
σgi (6)

σi at the g-th generation (σgi) is adjusted by considering the age difference of the i-th segment

between two parent individuals (p1 and p2). When the difference is large, the proposed operator

decreases σgi for exploiting qc[l] to favor a local search. When the difference is small, the proposed

operator increases σgi to favor exploration rather than exploitation. As far as p1[i] and p2[i] satisfy

all given constraints, σi continues to be adjusted. (AGEp1[i] and AGEp1[i] continue to grow as

well.) Once either p1[i] or p2[i] violates at least one constraints, the proposed operator resets σi

to its initial value in order to perform the default global search. (AGEp1[i] and AGEp1[i] are reset

to zero as well.) EVOLT is designed to exploit feasible segments in its mutation process, thereby

improving optimization/convergence speed.

3.5 Fitness-based Crossover Operator

The proposed fitness-based crossover operator (FitnessCrossover() in Figure 4) assigns QoS

parameters to offspring based on their parents’ fitness values. A superior parent (a parent that

has a higher fitness value) makes a higher contribution than the other to determine offspring’s QoS

parameters. As a result, offspring are reproduced more similar to a superior parent. The proposed

operator is designed to increase optimization/convergence speed by taking advantage of parents’

fitness values.

Figure 9 shows how the proposed crossover operator takes two parents (p1 and p2), examines

their QoS parameters (p1[i] and p2[i]) and fitness values (fitness(p1) and fitness(p2)), and cal-

culates offspring’s QoS parameters (q1c [i] and q2c [i]). n denotes the number of QoS parameters

in an individual. Offspring’s i-th QoS parameters (q1c [i] and q2c [i]) are determined with the Eu-

clidean distances (d1[i] and d2[i]) from the average of two parents’ QoS parameters (center[i]). The

16

distances are calculated based on parents’ fitness values. For example, d1[i] is calculated in pro-

portion to the ratio of p1’s fitness (fitness(p1)) to the summation of fitness values of two parents

(fitness(p1) + fitness(p2)).

procedure FitnessCrossover(p1, p2)
for i← 1 to n

do

center[i]← (p1[i] + p2[i])/2

d1[i]← fitness(p1)
fitness(p1)+fitness(p2)

∗ |p2[i]−p1[i]|2

d2[i]← fitness(p2)
fitness(p1)+fitness(p2)

∗ |p2[i]−p1[i]|2

if random(0, 1) > 0.5

then

{
q1c [i]← center[i]− d1[i]
q2c [i]← center[i] + d2[i]

else

{
q1c [i]← (p1[i]− |p2[i]−p1[i]|2) + d1[i]

q2c [i]← (p2[i] + |p2[i]−p1[i]|
2)− d2[i]

return (q1c , q
2
c)

Figure 9: Fitness-based Crossover Operator

Figure 10 shows an example on how to determine offspring’s QoS parameters. This exam-

ple assumes that the second parent (p2) has a higher fitness value than the first parent (p1):

fitness(p2) > fitness(p1). Thus, d2[i] is longer than d1[i]; offspring are placed closer to p2 than

p1.

p1[i]

qc
1[i]

d2[i]d1[i]

qc
2[i] qc

2[i]’qc
1[i]’

p2[i]

Figure 10: An Example Fitness-based Crossover

The proposed crossover operator is designed following a property in Holland’s schema theo-

rem [34,35], which proves that one-point crossover contributes to improve the average fitness values

of individuals through generations. Given this property, Holland’s schema theorem assumes that

offspring are placed either inside or outside the region bounded by their parents. The proposed

crossover operator emulates this property as shown in Figure 10; offspring’s QoS parameters are

placed as either p1[i] < q1c [i] < q2c [i] < p2[i] or q1c [i]
′ < p1[i] < p2[i] < q2c [i]

′ at the probability of 50%.

This way, the proposed operator is intended to improve the average fitness values of individuals

17

through generations.

3.6 Diversity-aware Ranking Operator

Once λ offspring are reproduced via crossover and mutation, EVOLT ranks µ+ λ (i.e., |P g ∪Qg|)

individuals and selects the top µ of them as the individuals in the next generation (P g+1). As

described in Figure 4, EVOLT performs a fitness-based selection operator (FitnessSelection()) or

a diversity-aware selection operator (DiversitySelection()). The fitness-based selection operator

computes each individual’s fitness with the notion of constraint-based dominance (Section 3.3),

ranks individuals based on their fitness values and selects the top µ of them.

The diversity-aware selection operator in EVOLT ranks individuals based on their diversity in

the objective space as well as their fitness values. It computes each individual’s fitness with the

notion of constraint-based dominance (Section 3.3), and computes each individual’s diversity with

the notion of crowding distance [28]. A crowding distance indicates how an individual is distant from

its nearest neighbors in the objective space. Thus, an individual with a higher crowding distance

exists in a less crowed region in the objective space. The proposed diversity-aware selection operator

plots individuals in a two dimensional space whose axes represent their fitness and diversity. Then,

it determines the dominance relationships among individuals with respect to the two axes and ranks

them from the ones with higher fitness and diversity to the ones with lower fitness and diversity.

Finally, it selects the top µ individuals as the next generation’s individuals. The proposed diversity-

aware selection operator is designed to maintain the diversity of individuals in order to reveal the

trade-offs among conflicting objectives.

3.7 Offspring Size Adjustment Operator

This operator dynamically changes the number of offspring reproduced in a generation (λ in Fig-

ure 4) in order to adjust the density of individuals in the objective space as well as the selection

pressure of individuals. In this paper, selection pressure (ψ) is measured as follows:

ψ =
µ+ λ

µ
(7)

µ denotes the population size. Selection pressure indicates how hard individuals can survive

18

to the next generation; a higher selection pressure means that individuals have lower chances to

survive to the next generation. It is known that a low selection pressure significantly degrades

optimization/convergence speed [34]. The proposed offspring size adjustment operator is designed

to maintain a reasonably high selection pressure by adjusting λ in Equation 7.

The density of individuals in the objective space (η) is measured as follows:

η =
µ+ λ

γ
(8)

γ denotes the volume of the objective space. In a higher-dimensional objective space, it is harder

to determine dominance relationships among individuals because individuals have higher chances

to be non-dominated with each other [14]. This often leads to premature convergence, which fails to

improve the optimization quality of individuals. The proposed offspring size adjustment operator

is designed to alleviate this problem by increasing λ in Equation 8 and in turn maintaining the

density of individuals in the high-dimensional objective space.

The size of offspring is adjusted as follows based on those in the current (the g-th) and previous

(the (g − 1)-th):

λg+1 = λg + (
λ′g−1
λg−1

−
λ′g
λg

)λg (9)

λg denotes the number of offspring reproduced at the g-th generation, and λ′g denotes the

number of offspring that survive to the next generation through a selection process (Section 3.6).

Thus,
λ′g
λg

indicates the survival ratio of offspring. If is is lower than the survival ratio at the previous

generation (
λ′g−1

λg−1
), the proposed operator considers that convergence/evolution does not proceed

well due to a lack of enough selection pressure and/or individual density in the objective space.

Therefore, the operator increases the number of offspring reproduced in the next generation (λg+1).

Conversely, if
λ′g
λg
>

λ′g−1

λg−1
, the operator decreases λg+1.

3.8 Constants in EVOLT

Each operator in EVOLT is carefully designed to minimize the number of constants to be manually

configured. For example, the proposed fitness-based crossover operator eliminates the constants

for crossover rate and the number of cross sections. The proposed age-based mutation operator

19

eliminates the constants for mutation range and strength.

EVOLT has three constants: mutation rate, the initial mutation strength and population size.

However, they all are trivial to configure. EVOLT uses 1/n as mutation rate. (n denotes the

number of QoS parameters in a segment. See Figure 8.) This is a widely accepted design for

mutation rate in the field of evolutinoary algorithms. The initial mutation strength is set to one,

and mutation strength is dynamically adjusted at runtime (Section 3.4). The population size is

fixed as a constant; however, the size of reproduced offspring is dynamically adjusted (Section 3.7).

4 Simulation Evaluation

This section shows a set of simulation results to evaluate the performance of EVOLT.

4.1 Simulation Configurations

All simulations were carried out with a modified Java Network Simulator (JNS)2, a Java imple-

mentation of the ns-2 simulator3. Two types of utility communication networks are simulated. A

smaller-scale network consists of 34 nodes: a control center, 30 substations and 3 hydro power

stations. A larger-scale network consists of 67 nodes: a control center, 60 substations and 6 hydro

power stations. Both networks are constructed with a tree topology, as shown in Figure 2, and a

bandwidth of 10 Mbps. The packet loss rate is 10−10 on each link between two nodes.

A SCADA application and a maintenance application are deployed on each node. Table 1 shows

a set of data types used in the two applications. There are 16 data types: 8 SCADA data types

(S1 to S8) and 8 maintenance data types (M1 to M8). All of these 16 types of data are periodically

transmitted. The tolerable time bounds in arrival delay of SCADA data are 1 second for S1 to S4

data types and 0.25 second for S5 and S8 data types. No tolerable time bound is given maintenance

application data.

Table 2 shows a set of QoS requirements (or optimization constraints) for SCADA and main-

tenance data transmissions in a smaller-scale and a larger-scale networks. Table 3 shows a set of

algorithmic configurations for EVOLT and NSGA-II, which is a well-known evolutionary multi-

objective optimization algorithm [28]. Note that the maximum number of generations in a single

2http://jns.sourceforge.net/
3http://www.isi.edu/nsnam/ns/

20

Table 1: Simulated Data Types
Data Type Source Destination Data Size

S1 Substation Control center 1 bytes
S2 Substation Control center 6 bytes
S3 Power station Control center 1 bytes
S4 Power station Control center 6 bytes
S5 Control center Substation 2 bytes
S6 Control center Substation 6 bytes
S7 Control center Power station 2 bytes
S8 Control center Power station 6 bytes

M1 Substation Control center 450 bytes
M2 Substation Control center 3,600 bytes
M3 Substation Control center 200 bytes
M4 Substation Control center 400 bytes
M5 Substation Control center 50 bytes
M6 Substation Control center 50 bytes
M7 Substation Control center 200 bytes
M8 Substation Control center 300 bytes

simulation (gmax) is 100 and 300 in a smaller-scale network and a larger-scale network, respectively.

Every experimental result is the average of 10 independent simulation results. All experiments are

carried out with a smaller-scale network except in Section 4.4.

Table 2: QoS Requirements (optimization constraints)
Latency (sec) Jitter (sec) Success Rate (%)

Smaller-scale network SCADA 0.8 0.4 99
Maintenance 2.0 0.9 95

Larger-scale network SCADA 1.6 0.8 99
Maintenance 4.0 1.8 95

Table 3: Algorithmic Configurations in EVOLT and NSGA-II
Configuration EVOLT NSGA-II

EWMA coefficient (α in Equation 4) 0.8 0.8
gmax 100 or 300 100
µ 100 100

Mutation rate 1/n 1/n
Crossover rate N/A 0.9

Degree of SBX crossover N/A 15
Degree of polynomial mutation N/A 20

4.2 Comparison of EVOLT and NSGA-II

Table 4 compares EVOLT and NSGA-II with three metrics: distribution, span and QoS violation.

Distribution is a diversity metric that measures the degree of uniform distribution of individuals

in the objective space. It is computed as the standard deviation of Euclidean distances among

21

individuals:

D =

√∑N−1
i=1 (di − d̄)2

N − 1
(10)

di denotes the Euclidean distance between an individual (the i-th individual) and its closest

neighbor (the (i + 1)-th individual) in the objective space. d̄ denotes the mean of di. N denotes

the number of individuals in the population. The objective space is normalized to compute the

distribution metric. Lower distribution means that individuals are more uniformly distributed.

Span is another diversity metric that measures how widely individuals explore and cover the

objective space. It is calculated as the maximum Euclidean distance between two individuals:

S = max
i,j∈µ

(

√√√√ n∑
k=1

(xi[k]− xj [k])2) (11)

µ denotes the population. i and j denote individuals in the population. n is the number

of objectives. xi[k] denotes i’s objective value in the k-th objective. Higher span means that

individuals spread more widely.

The QoS violation metric indicates how many individuals violate at least one QoS requirements.

Table 4 shows the average and standard deviation of 10 independent simulation results. A

bold font face indicates which algorithm outperforms in a metric in question. The symbols * and

** are placed when the average results of EVOLT and NSGA-II are statistically different (via

t-test) with the 95% and 99% significance levels, respectively. As Table 4 demonstrates, EVOLT

outperforms NSGA-II in all three metrics. Particularly, in the span and QoS violation metrics,

EVOLT outperforms NSGA-II at the significance level of 99%.

Table 4: Comparison of EVOLT and NSGA-II with the Distribution, Span and QoS Violation
Metrics

Algorithm Distribution Span QoS Violation

EVOLT Average 0.021 0.28** 0**
SD 0.003 0.113 0

NSGA-II Average 0.03 0.061 23.7
SD 0.004 0.075 41.67

Tables 5 and 6 compare EVOLT and NSGA-II with respect to QoS optimization objectives in

SCADA and maintenance data transmissions. In both the average and standard deviation results,

22

EVOLT outperforms NSGA-II in all objectives except jitter in maintenance data transmission. On

the average basis, EVOLT satisfies all QoS requirements in both SCADA and maintenance data

transmissions. In fact, as Table 4 shows, all EVOLT individuals satisfy all QoS requirements in 10

simulations. In contrast, on the average basis, NSGA-II violates the jitter requirement in SCADA

data transmission. As Table 4 shows, more than 20% of individuals in the NSGA-II population

violate at least one QoS requirements.

Table 5: QoS Comparison in SCADA Data Transmission
Algorithm Latency (sec) Jitter (sec) Success Rate (%)

EVOLT Average 0.715 0.340 100
SD 0.036 0.023 0

NSGA-II Average 0.749 0.401 100
SD 0.282 0.216 0

QoS requirement 0.8 0.4 99

Table 6: QoS Comparison in Maintenance Data Transmission
Algorithm Latency (sec) Jitter (sec) Success Rate (%)

EVOLT Average 1.54 0.871 100
SD 0.49 0.46 0

NSGA-II Average 1.80 0.671 100
SD 0.604 0.342 0

QoS requirement 2.0 0.9 95

Table 7 compares EVOLT and NSGA-II with the C-metric [36]. The metric is defined as follows

in order to compare two algorithms: A and B.

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B|
(12)

a � b means that a constraint-dominates b. C(A,B) is calculated as the fraction of B’s in-

dividuals that at least one individual of A constraint-dominates. Thus, if C(A,B) = 1, all of B’s

individuals are constraint-dominated by at least one of A’s individuals. As shown in Table 7,

C(EVOLT, NSGA-II) is significantly greater than C(NSGA-II, EVOLT). This complements the re-

sults of Tables 5 and 6 and demonstrates that EVOLT outperforms NSGA-II with respect to QoS

optimization objectives.

Tables 4 to 7 consistently illustrate that the operators in EVOLT work properly to find quality

QoS parameters and EVOLT outperforms NSGA-II.

23

Table 7: Comparison of EVOLT and NSGA-II with the C-metric
C-metric C-metric Value (%)

C(EVOLT, NSGA-II) 97

C(NSGA-II, EVOLT) 0

4.3 Variations of EVOLT

This section analyzes the impacts of EVOLT ’s genetic operators on its performance. For this

analysis, five variations of EVOLT are configured and evaluated:

1. Baseline: enables EVOLT’s fitness-based crossover operator and disables aging, diversity-

aware ranking and offspring size adjustment. (The baseline configuration differs from NSGA-

II in that it performs its fitness-based crossover operator rather than SBX.)

2. Baseline+A: enables aging and disables fitness-based crossover on top of the baseline config-

uration.

3. Baseline+D : enables diversity-aware ranking on top of the baseline configuration.

4. Baseline+O : enables offspring size adjustment on top of the baseline configuration.

5. EVOLT : enables aging, diversity-aware ranking and offspring size adjustment and disables

fitness-based crossover on top of the baseline configuration.

Table 8 compares these EVOLT variations with respect to the distribution, spread and QoS

violation metrics. Baseline+D yields the best distribution result it considers the distribution of

individuals in its selection process. Baseline+O is the worst in distribution. EVOLT yields the

best spread performance. This means that the spread of individuals improves by combining the

genetic operators in EVOLT. No individuals violate QoS requirements in all variations.

Table 8: Comparison of EVOLT Variations with the Distribution, Spread and QoS Violation
Metrics

Variation Distribution Spread QoS Violation

EVOLT 0.021 0.28 0
Baseline 0.028** 0.26* 0

Baseline+A 0.027** 0.23* 0
Baseline+D 0.018 0.25 0
Baseline+O 0.032** 0.27 0

24

Table 8 also shows whether the result of EVOLT is statistically different (via t-test) from

those of the other four variations. With respect to distribution, EVOLT statistically outperforms

Baseline, Baseline+A and Baseline+O at the significance level of 99%. The results of EVOLT

and Baseline+D are statistically at the same level. With respect to spread, EVOLT statistically

outperforms Baseline and Baseline+A at the significance level of 95%. These results demonstrate

that genetic operators complement with each other well in EVOLT to balance distribution and

spread while satisfying QoS requirements.

Table 9 compares EVOLT ’s variations and NSGA-II with the C-metric. C(EVOLT, NSGA-II)

and C(NSGA-II, EVOLT) are 97% and 0%, respectively, as discussed in Section 4.2 (Table 7).

All EVOLT ’s variations outperform NSGA-II. For example, C(Baseline, NSGA-II) > C(NSGA-II,

Baseline) (46 > 11). Baseline+A and Baseline+O tend to outperform the other variations; aging

and offspring size adjustment successfully improve the optimality of individuals.

Table 9: Comparison of EVOLT Variations with the C Metric (%)
C NSGA-II EVOLT Baseline Baseline+A Baseline+D Baseline+O

NSGA-II – 0 11 0 20 0

EVOLT 97 – 47 23 34 13

Baseline 46 32 – 13 27 3

Baseline+A 78 46 26 – 82 47

Baseline+D 39 29 37 3 – 8

Baseline+O 84 64 54 16 79 –

Figure 11 compares the optimality of EVOLT ’s variations with the generation distance (GD)

metric. This metric indicates the minimum distance between non-constraint-dominated individuals

and the Utopian point in the normalized objective space:

GD = min
i∈µ

√√√√ n∑
k=1

(xi[k])2 (13)

µ denotes the population. n is the number of objectives. xi[k] denotes the i-th non-constraint-

dominated individual’s objective value in the k-th objective. Objective values of success rate are

computed as (1− success rate) so that the Utopian point is placed at (0, 0, 0). A lower generation

distance means that individuals converge better and closer to the Utopian point.

As Figure 11 illustrates, EVOLT variations converge individuals generation by generation.

Baseline+A yields the fastest convergence; aging successfully improves convergence speed by pre-

25

serving feasible segments in individuals across generations. EVOLT’s convergence speed is the

second fastest.

Generation

0 10 20 30 40 50 60 70 80 90 100 110

G
en

er
at

io
n

D
is

ta
nc

e

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

EVOLT
Baseline
Baseline+D
Baseline+O
Baseline+A
NSGA-II

Figure 11: Comparison of EVOLT Variations with the Generation Distance Metric

Table 10 shows the number of generations that EVOLT and NSGA-II requires to achieve a

given GD. EVOLT always reach a given GD faster than NSGA-II. The average speedup is 1.98.

This means that EVOLT converges approximately two times faster than NSGA-II.

Table 10: Comparison of EVOLT and NSGA-II in Convergence Speed
GD EVOLT NSGA-II Speedup

(# of generations) (# of generations)

1.8 1 3 3
1.6 3 5 1.67
1.4 5 5 1
1.2 5 8 1.6
1.05 18 54 3
1.03 52 85 1.63

Table 8, Table 9 and Figure 11 demonstrate that EVOLT ’s operators complement with each

other well and their combination successfully balances the optimality, diversity (i.e., distribution

and spread) and convergence speed of individuals while satisfying given QoS requirements.

4.4 Scalability Analysis

This section discusses the scalability of EVOLT by comparing simulation results in a smaller-scale

and larger-scale networks. Tables 11 and 12 show QoS objective values and QoS violation in a

smaller-scale network and a larger-scale network, respectively. In both networks, EVOLT satisfies

26

all QoS requirements in SCADA and maintenance data transmissions. No individuals violate QoS

requirements. Tables 11 and 12 demonstrate that EVOLT scales to the network size (i.e., the

number of nodes in the network).

Table 11: QoS in SCADA Data Transmission
Latency Jitter Success Rate QoS Violation

(sec) (sec) (%)

Smaller-scale Agerage 0.715 0.340 100 0
SD 0.036 0.023 0 0

Larger-scale Agerage 1.52 0.754 100 0
SD 0.069 0.039 0 0

Table 12: QoS in Maintenance Data Transmission
Latency Jitter Success Rate QoS Violation

(sec) (sec) (%)

Smaller-scale Agerage 1.54 0.871 100 0
SD 0.49 0.46 0 0

Larger-scale Agerage 3.07 1.76 100 0
SD 1.02 0.71 0 0

5 Visualization of QoS Parameters with Self-Organizing Maps

When EVOLT finishes its evolution process at the last generation, it provides non-constraint-

dominated individuals, as its solutions, to network administrators. They choose one of the solutions

to adapt their network applications’ QoS performance. However, it is not alway straightforward and

obvious for network administrators to decide which one to choose because different solutions can

yield very different QoS results even though all of them are feasible and non-constraint-dominated.

For example, a solution may yield low latency and high jitter while another solution may yield high

latency and low jitter. Moreover, high dimensionality in the objective space make it harder for

network administrators to choose a solution that can yield their desired/preferred QoS performance.

EVOLT visualizes its solutions with a self-organizing map (SOM)4 in order to aid network

administrators to intuitively understand the tradeoffs among QoS optimization objectives and the

similarity among solutions. It maps each solution, which is high-dimensional (six dimensional)

data, on a low-dimensional (two dimensional) space. For example, Figure 12 shows a 25×25 SOM

that maps 100 solutions obtained from a particular simulation with a smaller-scale network. (All

4SOM is an unsupervised classifier that classifies high-dimensional data in a low-dimensional space [37].

27

individuals are constraint-dominated at the last generation.) The number in a cell indicates the

number of solutions mapped to the cell. The SOM illustrates that 43 solutions in the right bottom

cell (i.e., the (25, 25) cell) yield similar QoS results. Their QoS results are very different from those

of the individuals at distant cells; for example, five individuals in the (1, 2) cell and 13 individuals

in the (1, 4) cell.

Figures 13 to 16 shade Figure 12’s cells in four different ways based on the objective values of

solutions. For example, Figures 13 and 14 indicate the average latency and jitter in SCADA data

transmissions. These two figures illustrates that 43 solutions in the (25,25) cell yield low latency

(lower than 0.6 second) and high jitter (higher than 0.35 second). 6 solutions in the (11, 12) cell

yield high latency (higher than 0.7 second) and low jitter (lower than 0.3 second). 6 individuals in

the (25, 15) cell yield mid-range latency (between 0.6 and 0.7 second) and mid-range jitter (between

0.3 and 0.35 second). Therefore, if a network administrator places a higher priority to latency than

jitter, it is reasonable for him/her to choose a solution from the (25,25) cell rather than the (11,

12) cell. If he/she places the same level of priority to latency and jitter, a solution in the (25, 15)

cell is a reasonable choice for him/her. This way, EVOLT allows network administrators to make

well-informed decisions for choosing one of given solutions and deploying that in their applications.

6 Related Work

This paper describes a set of extensions to the authors’ prior work [38]. This paper investigates

a new operators, diversity-aware ranking and offspring size adjustment operators, which the prior

work did not focus on. It also studies a SOM-based visualization method for non-dominated

individuals; it was beyond the scope of the prior work. Moreover, this paper carries out more

extensive simulation studies than the prior work.

There are several research efforts that apply genetic algorithms (GAs) to optimize operational

parameters in power systems [39–42]. [39–41] study parameter optimization for controllers (e.g.,

programmable logic controllers; PLC) in substations and control centers in order to, for example,

stabilize the power current in circuit switching devices. [42] leverages a GA to find the optimal size

of equipment (e.g. turbine size) in a power station and the optimal locations of power stations

to be constructed in a power delivery system. Unlike these existing work, this paper studies QoS

28

5

13

1 1

1

6

14

6

1

1

6

2

1

43

Figure 12: Solutions mapped on a 25×25 SOM

5

1
3

1 1

1

6

1
3

6

1

1

6

2

1

4
3

<0.6 0.6-0.7 >0.7

Figure 13: SCADA Latency

5

1
3

1 1

1

6

1
3

6

1

1

6

2

1

4
3

<0.3 0.3-0.35 >0.35

Figure 14: SCADA Jitter

5

1
3

1 1

1

6

1
3

6

1

1

6

2

1

4
3

<1.3 1.3-1.5 >1.5

Figure 15: Maintenance Latency

5

1
3

1 1

1

6

1
3

6

1

1

6

2

1

4
3

<0.5 0.5-0.7 >0.7

Figure 16: Maintenance Jitter

29

optimization in a power utility communication network that connects a control center, substations

and power stations.

As discussed in Section 1, existing QoS optimization algorithms have considered a limited

number of QoS parameters and optimization objectives [3–11,15–22]. None of them consider high-

dimensional parameter and objective spaces as EVOLT does.

Several linear optimization algorithms have been proposed for the QoS optimization problem [3–

6]. However, they are not designed to seek the optimal tradeoffs among conflicting optimization

objectives. They also have a scalability issue; their computational costs increase exponentially as

their parameter space grows.

In order to solve large-scale QoS optimization problems, it is required to use heuristic algorithms

such as GAs [7–11]. In general, GAs scale better than linear optimization algorithms. However,

it is not always straightforward to manually tune weight values in the fitness functions of classical

GAs. (A classical GA has a fitness function as a weighted sum of objective values.) Also, classical

GAs do not seek the optimal tradeoffs among conflicting objectives.

Multiobjective GAs (MOGAs) avoid these issues in classical GAs. They seek the optimal

tradeoff (or Pareto-optimal) solutions and have no weight parameters to manually configure in their

fitness functions [15–18]. Unlike existing MOGAs, EVOLT is designed to handle high-dimensional

parameter and objective spaces well, minimize the number of manually-configured constants in

genetic operators and visualize non-dominated individuals in a low-dimensional (two dimensional)

SOM space.

Parameter-less GA [43] and Meta-GA [44] intend to reduce the number of manually-configured

constants. Parameter-less GA eliminates a constant for the population size and adjusts it dy-

namically. However, it introduces a new constant to determine how often the population size is

adjusted. Meta-GA introduces an extra (or meta-level) GA to optimize the constants in a regular

GA. However, the meta-level GA has a set of constants to be configured manually. Unlike these

existing GAs, EVOLT has no constants that are hard to configure, as discussed in Section 3.

30

7 Conclusion

This paper proposes and evaluates a multiobjective GA (MOGA), called EVOLT, which optimizes

QoS parameters in power utility communication networks that have high-dimensional parameter

and objective spaces. Simulation results show that individual operators in EVOLT work prop-

erly and complement with each other to handle high-dimensional parameter and objective spaces

well. EVOLT outperforms a well-known existing MOGA, called NSGA-II, and efficiently obtains

quality QoS parameters that satisfy given QoS requirements. Moreover, EVOLT visualizes QoS

parameter sets in a two dimensional SOM space in order to aid network administrators to intu-

itively understand the similarity among QoS parameter sets and the tradeoffs among optimization

objectives.

Several extensions are planned as future work. A key extension is dimensionality reduction in the

parameter and objective spaces. Several dimensionality reduction algorithms will be investigated to

reduce the dimensions of the parameter and objective spaces before and/or during an optimization

process in EVOLT.

References

[1] Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting Multimedia Applications. IEEE

Journal on Selected Areas in Communications, 14(7):1228–1234, 1996.

[2] Y. Diao, J. L. Hellerstein, and S. Parekh. Optimizing Quality of Service Using Fuzzy Control. In Proc.

of IFIP/IEEE Int’l Workshop on Distributed Systems: Operations and Management: Management

Technologies for E-Commerce and E-Business Applications, pages 42–53, 2002.

[3] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury. Using MIMO Feedback Control

to Enforce Policies for Interrelated Metrics with Application to the Apache Web Server. In Proc. of

IEEE/IFIP Network Operations and Management Symposium, pages 219–234, 2002.

[4] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Marley. Performance Specifications

and Metrics for Adaptive Real-time Systems. In Proc. of IEEE Real-Time Systems Symposium, pages

13–23, 2000.

[5] D. A. Menasce, D. Barbara, and R. Dodge. Preserving QoS of E-commerce Sites through Self-tuning: A

Performance Model Approach. In Proc. of ACM Conference on Electronic Commerce, pages 224–234,

2001.

31

[6] Z. Liu, M. S. Squillante, and J. L. Wolf. On Maximizing Service Level Agreement Profits. In Proc. of

ACM Conference on Electronic Commerce, pages 213–223, 2001.

[7] A. T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, and Y. Ghahremani. GA-based Heuristic Algo-

rithms for QoS Based Multicast Routing. Knowledge-Based Systems, 16(5-6):305–312, 2003.

[8] L. Barolli, A. Koyama, and N. Shiratori. A QoS Routing Method for Ad-hoc Networks Based on Genetic

Algorithm. In Prof. of Int’l Workshop on Database and Expert Systems Applications, pages 175–179,

2003.

[9] A. Riedl. A Hybrid Genetic Algorithm for Routing Optimization in IP Networks Utilizing Bandwidth

and Delay Metrics. In Proc. of IEEE Workshop on IP Operations and Management, pages 166–170,

2002.

[10] F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun. QoS Routing Based on Genetic Algorithm. Computer

Communications, 22(15):1392–1399, 1999.

[11] D. Montana, T. Hussain, and T. Saxena. Adaptive Reconfiguration of Data Networks Using Genetic

Algorithms. In Proc. of ACM Conference on Genetic and Evolutionary Computation, pages 1141–1149,

2002.

[12] V. Khare, X. Yao, and K. Deb. Performance Scaling of Multi-Objective Evolutionary Algorithms. In

Proc. of Int’l Conference on Evolutionary Multi-Criterion Optimization, pages 376–390, 2003.

[13] R. C. Purshouse and P. J. Fleming. Evolutionary Many-Objective Optimization: An Exploratory

Analysis. In Proc. of IEEE Congress on Evolutionary Computation, pages 2066–2073, 2003.

[14] H. Ishibuchi, N. Tsukamoto, Y. Hitotsuyanagi, and Y. Nojima. Effectiveness of Scalability Improvement

Attempts on the Performance of NSGA-II for Many-Objective Problems. In Proc. of ACM Conference

on Genetic and Evolutionary Computation, pages 649–656, 2008.

[15] A. Roy and S. K. Das. QM2RP: a QoS-based Mobile Multicast Routing Protocol Using Multi-objective

Genetic Algorithm. Wireless Networks, 10(3):271–286, 2004.

[16] B. Sun and L. Li. Optimizing on Multiple Constrained QoS Multicast Routing Algorithms Based on

GA. Journal of Systems Engineering and Electronics, 15(4):677–683, 2004.

[17] H. Meunier, E. G. Talbi, and P. Reininger. A Multiobjective Genetic Algorithm for Radio Network

Optimization. In Proc. of IEEE Congress on Evolutionary Computation, pages 317–324, 2000.

[18] A. Koyama, L. Beralli, K. Matsumoto, and B. O. Apduhan. A GA-based Multi-purpose Optimization

Algorithms for QoS Routing. In Proc. of IEEE Int’l Conference on Advanced Information Networking

and Applications, pages 23–28, 2004.

[19] T. Ye and S. Kalyanaraman. A Recursive Random Search Algorithm for Large-scale Network Parameter

Configuration. ACM SIGMETRICS Performance Evaluation Review, 31(1):196–205, 2003.

32

[20] A. Orda. Routing with End-to-end QoS Guarantees in Broadband Networks. IEEE/ACM Transactions

on Networking, 7(3):365–374, 1999.

[21] T. F. Abdelzaher and K. G. Shin. End-host Architecture for QoS-adaptive Communication. In Proc.

of IEEE Symposium on Real-Time Technology and Applications, pages 121–130, 1998.

[22] S. Chen and K. Nahrstedt. An Overview of Quality of Service Routing for Next-generation High-speed

Networks: Problems and Solutions. IEEE Network, 12(6):64–79, 1998.

[23] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Son, 2001.

[24] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[25] F. G. Lobo, C. F. Lima, and Z. Michalewicz. Parameter Setting in Evolutionary Algorithms. Springer,

2007.

[26] A.E. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith. Parameter Control in Evolutionary Algo-

rithms. In Studies in Computational Intelligence, volume 54, pages 19–46. Springer, 2007.

[27] F. G. Lobo and D. E. Goldberg. The Parameter-less Genetic Algorithm in Practice. Information

Sciences: An International Journal, 167(1-4):217–232, 2004.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[29] J. Northcote-Green and R. Wilson. Control and Automation of Electrical Power Distribution Systems.

CRC Press, 2006.

[30] H. W. Beaty. Electric Power Distribution Systems: A Nontechnical Guide. PennWell Books, 1998.

[31] M. Shahidehpour and Y. Wang. Communication and Control in Electric Power Systems: Applications

of Parallel and Distributed Processing. Wiley-IEEE, 2003.

[32] IEEE Computer Society. 802.1D: IEEE Standard for Local and Metropolitan Area Networks: Media

Access Control (MAC) Bridges. June 2004.

[33] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins, J. Paserba,

P. Pourbeik, J. Sanchez-Gasca, et al. Causes of the 2003 Major Grid Blackouts in North America and

Europe, and Recommended Means to Improve System Dynamic Performance. IEEE Transactions on

Power Systems, 20(4):1922–1928, 2005.

[34] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.,

1989.

[35] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

[36] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the

Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.

[37] T. Kohonen. The Self-organizing Map. Neurocomputing, 21(1-3):1–6, 1998.

33

[38] P. Champrasert, J. Suzuki, and T. Otani. Constraint-based Evolutionary QoS Adaptation for Power

Utility Communication Networks. In Proc. of IEEE Int’l Conference on Tools with Artificial Intelligence,

pages 395–403, 2009.

[39] J. W. Finch and M. R. Besmi. Genetic Algorithms applied to a Power System Stabilizer. In Proc.

IEEE Int’l Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications,

pages 100–105, 1995.

[40] I. J. Ramı́rez-Rosado and J. L. Bernal-Agust́ın. Genetic Algorithms applied to the Design of Large

Power Distribution Systems. IEEE Transactions on Power Systems, 13(2):696–703, 1998.

[41] Y. L. Abdel-Magid and M. A. Abido. Optimal Multiobjective Design of Robust Power System Stabilizers

using GA. IEEE Transactions on Power Systems, 18(3):1125–1132, 2003.

[42] J. E. Lansberry and L. Wozniak. Adaptive Hydrogenerator Governor Tuning with a Genetic Algorithm.

IEEE Transactions on Energy Conversion, 9(1):179–185, 1994.

[43] G. R. Harik and F. G. Lobo. A Parameter-less Genetic Algorithm. In Proc. of ACM Conference on

Genetic and Evolutionary Computation, pages 258–265, 1999.

[44] J. Clune, S. Goings, B. Punch, and E. Goodman. Investigations in Meta-GAs: Panaceas or Pipe

Dreams? In Proc. of ACM Conference on Genetic and Evolutionary Computation, pages 235–241,

2005.

34

