
August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

Chapter 1

A Biologically-inspired QoS-aware Architecture for
Scalable, Adaptive and Survivable Network Systems

Paskorn Champrasert and Junichi Suzuki

Department of Computer Science
University of Massachusetts, Boston

{paskorn, jxs}@cs.umb.edu

Large-scale network systems, such as grid/cloud computing systems, are
increasingly expected to be autonomous, scalable, adaptive to dynamic
network environments, survivable against partial system failures and
simple to implement and maintain. Based on the observation that vari-
ous biological systems have overcome these requirements, the proposed
architecture, SymbioticSphere, applies biological principles and mecha-
nisms to design network systems (i.e., application services and middle-
ware platforms). SymbioticSphere follows key biological principles such
as decentralization, evolution, emergence, diversity and symbiosis. Each
application service and middleware platform is modeled as a biological
entity, analogous to an individual bee in a bee colony, and implements bi-
ological mechanisms such as energy exchange, migration, replication, re-
production and death. Each agent/platform possesses behavior policies,
as genes, each of which determines when to and how to invoke a partic-
ular behavior. Agents and platforms are designed to evolve and adjust
their genes (behavior policies) through generations and autonomously
improve their scalability, adaptability and survivability. Through this
evolution process, agents/platforms strive to satisfy given constraints for
quality of service (QoS) such as response time, throughput and work-
load distribution. This chapter describes the design of SymbioticSphere
and evaluates how the biologically-inspired mechanisms in Symbiotic-
Sphere impact the autonomy, adaptability, scalability, survivability and
simplicity of network systems.

1.1. Introduction

The scale, dynamics, heterogeneity and complexity of network systems have
been growing at an enormous rate. The Software Engineering Institute

1

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

2 P. Champrasert and J. Suzuki

(SEI) of Carnegie Mellon University and the Department of Defence expect
that the growth rate will keep increasing in the future.1 The authors of the
chapter believe that, in the very near future, the capability of network sys-
tems will exceed the capacity of humans to design, configure, monitor and
understand them. Therefore, network systems need to address new chal-
lenges that traditional systems have not considered well; e.g., autonomy–the
ability to operate with minimal human intervention; scalability–the ability
to scale to, for example, a large number of users and a large volume of
workload; adaptability–the ability to adapt to dynamic changes in network
conditions (e.g., resource availability and network traffic); survivability–the
ability to retain operation and performance despite partial system failures
(e.g., network host failures); and simplicity of implementation and mainte-
nance.

In order to meet these challenges in network systems, the authors of the
chapter observe that various biological systems have already developed the
mechanisms necessary to overcome those challenges.2,3 For example, a bee
colony is able to scale to a huge number of bees because all activities of the
colony are carried out without centralized control. Bees act autonomously,
influenced by local environmental conditions and local interactions with
nearby bees. A bee colony adapts to dynamic environmental conditions.
When the amount of honey in a hive is low, many bees leave the hive to
gather nectar from flowers. When the hive is full of honey, most bees remain
in the hive and rest. A bee colony can survive massive attacks by predators
because it does not depend on any single bee, even on the queen bee. The
structure and behavior of each bee are very simple; however, a group of
bees autonomously emerges these desirable system characteristics such as
adaptability and survivability through collective behaviors and interactions
among ants. Based on this observation, the authors of the chapter believe
that, if network systems are designed after certain biological principles and
mechanisms, they may be able to meet the aforementioned challenges in
network systems (i.e., autonomy, scalability, adaptability, survivability and
simplicity). Therefore, the proposed architecture, called SymbioticSphere,
applies key biological principles and mechanisms to design network systems.

SymbioticSphere consists of two major system components: application
service and middleware platform. Each of them is modeled as a biological
entity, analogous to an individual bee in a bee colony. They are designed to
follow several biological principles such as decentralization, evolution, emer-
gence, diversity and symbiosis. An application service is implemented as
an autonomous software agent. Each agent implements a functional service

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 3

(e.g., web service) and follows biological behaviors such as energy exchange,
migration, replication, reproduction, death and environment sensing. A
middleware platform runs on a network host and operates agents. Each
platform provides a set of runtime services that agents use to perform their
services and behaviors, and implements biological behaviors such as energy
exchange, replication, reproduction, death and environment sensing.

Each agent/platform possesses behavior policies, each of which deter-
mines when to and how to invoke a particular behavior. A behavior policy
is encoded as a gene. In SymbioticSphere, evolution occurs on behavior
policies via genetic operations such as mutation and crossover, which alter
behavior policies when agents/platforms replicate themselves or reproduce
their offspring. This evolution process is intended to increase the adapt-
ability, scalability and survivability of agents/platforms by allowing them
to adjust their behavior policies to dynamic network conditions across gen-
erations. Agents/platforms evolve to satisfy given constraints for quality
of service (QoS) such as response time, throughput and workload distri-
bution. Each constraint is defined as the upper or lower bound of a QoS
measure. Evolution frees network system developers from anticipating all
possible network conditions and tuning their agents and platforms to the
conditions at design time. Instead, agents and platforms evolve and au-
tonomously adjust themselves to network environments at runtime. This
can significantly simplify to implement and maintain agents/platforms.

This chapter describes the design of SymbioticSphere and evaluates the
biologically-inspired mechanisms in SymbioticSphere, through simulation
experiments, in terms of autonomy, scalability, adaptability and survivabil-
ity. Simulation results show that agents and platforms evolve in order to
autonomously scale to network size and demand volume and adapt to dy-
namic changes in network conditions (e.g., user locations, network traffic
and resource availability). Agents/platforms also evolve to autonomously
survive partial system failures such as host failures in order to retain their
availability and performance. Moreover, it is verified that agents and plat-
forms satisfy given QoS constraints through evolution.

This chapter is organized as follows. Section 1.2 overviews key biological
principles applied to SymbioticSphere. Section 1.3 describes the design of
agents and platforms in SymbioticSphere. Section 1.4 discusses a series
of simulation results to evaluate SymbioticSphere. Sections 1.5 and 1.6
conclude this chapter with some discussion on related and future work.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

4 P. Champrasert and J. Suzuki

1.2. Design Principles in SymbioticSphere

SymbioticSphere applies the following biological principles to design agents
and platforms.

• Decentralization: In various biological systems (e.g., bee colony), there
are no central entities to control or coordinate individual entities for
increasing scalability and survivability. Similarly, in SymbioticSphere,
there are no central entities to control or coordinate agents/platforms so
that they can be scalable and survivable by avoiding a single point of
performance bottlenecks4 and failures.5

• Autonomy: Inspired by biological entities (e.g., bees), agents and plat-
forms sense their local network conditions, and based on the condi-
tions, they behave and interact with each other without any intervention
from/to other agents, platforms and human users.

• Emergence: In biological systems, collective (group) behaviors emerge
from local interactions of autonomous entities.3 In SymbioticSphere,
agents/platforms only interact with nearby agents/platforms. They be-
have according to dynamic network conditions such as user demands and
resource availability. For example, an agent may invoke the migration
behavior to move toward a platform that forwards a large number of re-
quest messages for its services. Also, a platform may replicate itself on
a neighboring network host where resource availability is high. Through
collective behaviors and interactions of individual agents and platforms,
desirable system characteristics such as scalability, adaptability and sur-
vivability emerge in a group of agents and platforms. Note that they are
not present in any single agent/platform.

• Redundancy: Biological entities (e.g, bees) die due to, for example,
advanced age and consumption by predators. However, biological sys-
tems (e.g., bee colony) can survive because the death is compensated by
the birth of new entities. In SymbioticSphere, agents/platforms repli-
cate themselves and reproduce their offspring to retain redundancy. This
redundancy enhances their survivability; they can continuously provide
their services in case that many agents/platforms are lost due to network
failures.

• Lifecycle and Food Chain: Biological entities strive to seek and con-
sume food for living. In SymbioticSphere, agents store and expend energy
for living. Each agent gains energy in exchange for performing its service
to other agents or human users, and expends energy to use resources such

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 5

as memory space (Figure 1.1). Each platform gains energy in exchange
for providing resources to agents, and continuously evaporates energy
(Figure 1.1). The abundance or scarcity of stored energy in agents/plat-
forms affects their lifecycle. For example, an abundance of stored energy
indicates high demand to an agent/platform; thus, the agent/platform
may be designed to favor reproduction or replication to increase its avail-
ability and redundancy. A scarcity of stored energy indicates a lack of
demand; it causes the agent/platform’s death.

Platform

Host

SymbioticSphere

Environment

Service

Energy

Energy
evaporation

ResourceEnergy

Agent

Service

Platform

Host Host

Energy

Service request

User

Fig. 1.1. Energy Exchange in SymbioticSphere

Also, in ecosystem, the energy accumulated from food is transferred be-
tween different species to balance their populations. For example, pro-
ducers (e.g., shrubs) convert the Sun light energy to chemical energy.
The chemical energy is transferred to consumers (e.g., hares) as con-
sumers consume producers2 (Figure 1.2). In order to balance the popu-
lations of agents and platforms, the energy exchange in SymbioticSphere
is designed after ecological food chain among different species. Symbi-
oticSphere models agents and platforms as different biological species;
it models human users as the Sun, which have an unlimited amount of
energy, agents as producers, and platforms as consumers.

• Diversity: Biological entities are slightly different with each other in
each species. This can contribute to survivability against environmental
changes.6 In SymbioticSphere, agents/platforms retain behavioral diver-
sity. Behavioral diversity means that different agents/platforms have
different behavior policies. For example, in response to abundance of
energy, an agent may migrate toward a user for reducing response time,
while another agent may reproduce offspring with a mate for increas-
ing agent availability/redundancy. Behavioral diversity is generated via

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

6 P. Champrasert and J. Suzuki

 Sun

Producers Primary
Consumers

N-th
Consumers

Decomposers

Ecosystem

Fig. 1.2. Energy Flow in the Ecosystem

genetic operations (i.e., mutation and crossover) during replication and
reproduction.

• Evolution: Biological entities evolve so that the entities that fit bet-
ter to the environment become more abundant.7 In SymbioticSphere,
agents and platforms evolve their genes (i.e., behavior policies) by gen-
erating behavioral diversity and executing natural selection. Natural
selection is governed with agents’ and platforms’ energy levels. It retains
the agents/platforms whose energy levels are high (i.e., the agents/plat-
forms that have effective behavior policies, such as moving toward a user
to gain more energy) and eliminates the agents/platforms whose energy
levels are low (i.e., the agents/platforms that have ineffective behavior
policies, such as moving too often). Through generations, effective be-
havior policies become abundant while ineffective ones become dormant
or extinct. This allows agents/platforms to adjust their behavior policies
to improve their scalability, adaptability and survivability.

• Symbiosis: Although competition for food and terrain always occurs
in the biological world, several species establish symbiotic relationships
to avoid excessive competition and cooperate to survive.8 In Symbiotic-
Sphere, agents and platforms evolve to cooperate in certain circumstances
in order to pursue their mutual benefits and improve their scalability,
adaptability and survivability.

1.3. SymbioticSphere

In SymbioticSphere, each agent runs (or lives) on a platform. A platform
is an execution environment (or middleware) for agents. Each platform
implements runtime services that agents use to perform their services and
behaviors. Each platform can operate multiple agents, and each network
host operates at most one platform.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 7

1.3.1. Agents

Each agent consists of three parts: attributes, body and behaviors. At-
tributes carry descriptive information regarding an agent, such as agent
ID, energy level, description of a service the agent provides and cost of a
service (in energy unit) that the agent provides.

A body implements a service that an agent provides, and contains ma-
terials relevant to the service (e.g., application data and user profiles). For
example, an agent may implement a web service and contain web pages.
Another agent may implement a physical model for scientific simulations
and contain parameter settings for the physical model.

Behaviors implement actions inherent to all agents.

• Migration: Agents may migrate from one platform to another.
• Replication: Agents may make a copy of themselves. A replicated (child)

agent is placed on the platform that its parent agent resides on. It inherits
the half of the parent’s energy level.

• Reproduction: Agents may make their offspring with their mates. A
reproduced (child) agent is placed on the platform that its parent agenta

resides on. It inherits the half of the parent’s energy level.
• Death: Agents may die due to energy starvation. If the energy expen-

diture of an agent is not balanced with its energy gain from users and
other agents, it cannot pay for the resources it requires. Agents have
high chances of dying from lack of energy, if they provide unwanted ser-
vices and/or have wasteful behavioral policies (e.g., replicating too often).
When an agent dies, an underlying platform removes it and releases the
resources it consumes.

1.3.2. Platforms

Each platform consists of attributes, behaviors, and runtime services. At-
tributes carry descriptive information regarding a platform, such as plat-
form ID, energy level and health level. Health level indicates how healthy
an underlying host is. It is defined as a function of resource availability on,
age of and freshness of a host. Resource availability indicates how much
resources (e.g., memory space) are available for a platform and agents on
the host. Age indicates how long a host has been alive. It represents how
much stable the host is. Freshness indicates how recently a host joined the
network. Once a host joins the network, its freshness gradually decreases
aThe parent agent is an agent that invokes the reproduction behavior.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

8 P. Champrasert and J. Suzuki

from the maximum value. When a host resumes from a failure, its fresh-
ness starts with the value that the host had when it went down. Using age
and freshness can distinguish unstable hosts and new hosts. Unstable hosts
tend to have low freshness and low age, and new hosts tend to have high
freshness and low age (Table 1.1).

Table 1.1. Freshness and age
Host type Freshness Age

Unstable host Low Low

New host High Low

Stable host Low High

Health level affects how platforms and agents invoke behaviors. For
example, higher health level indicates higher stability of and/or higher re-
source availability on a host that a platform resides on. Thus, the platform
may replicate itself on a neighboring host if the host is healthier than the
local host. This results in the adaptation of platform locations. Plat-
forms strive to concentrate around stable and resource-rich hosts. Also,
lower health level indicates that a platform runs on a host that is unstable
and/or poor in resources. Thus, agents may leave the platform and migrate
to a healthier (i.e., more stable and/or resource-rich) hosts. This results
in the adaptation of agent locations. Agents strive to concentrate around
stable and/or resource-rich hosts. In this case, the platforms on unstable
and/or resource-poor hosts will eventually die due to energy starvation be-
cause agents do not run on the platforms and transfer energy to them. This
results in the adaptation of platform population. Platforms avoid running
on the hosts that are unstable and/or poor in resources.

Behaviors are the actions inherent to all platforms.

• Replication: Platforms may make a copy of themselves. A replicated
(child) platform is placed on a neighboring host that does not run a
platform. (Two or more platforms are not allowed to run on each host.)
It inherits the half of the parents energy level.

• Reproduction: Platforms may make their offspring with their mates. A
reproduced (child) platform is placed on a neighboring host that does
not run a platform. It inherits the half of the parent’sb energy level.

• Death: Platforms may die due to energy starvation. A dying platform
uninstalls itself and releases the resources it consumes. When a platform

bThe parent platform is a platform that invokes the reproduction behavior.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 9

dies, agents running on it are killed.

Runtime Services are middleware services that agents and platforms
use to perform their behaviors. In order to maximize decentralization and
autonomy of agents/platforms, they only use the local runtime services.
They are not allowed to invoke any runtime services on a remote platform.

1.3.3. Behavior Policies

Each agent/platform possesses policies for its behaviors. A behavior policy
defines when to and how to invoke a particular behavior. Each behavior
policy consists of factors (Fi), which indicate environment conditions (e.g.,
network traffic) or agent/platform/host status (e.g., energy level and health
level). Each factor is associated with a weight (Wi). Each agent/platform
decides to invoke a behavior when the weighted sum of the behavior’s factor
values (

∑
Fi ∗Wi) exceeds a threshold.

1.3.3.1. Agent Behavior Policies

This chapter focuses on four agent behaviors described in Section 1.3.1 (i.e.,
migration, replication, reproduction and death). The behavior policy for
agent migration includes the following four factors.

(1) Energy Level : Agent energy level, which encourages agents to move in
response to high energy level.

(2) Health Level Ratio: The ratio of health level on a neighboring platform
to the local platform, which encourages agents to move to healthier
platforms. This ratio is calculated with three health level properties
(HLPi, 1 ≤ i ≤ 3)): resource availability, freshness and age (Equa-
tion 1.1).

Helth Level Ratio =
3∑

i=1

HLPneighbor
i −HLP local

i

HLP local
i

(1.1)

HLPneighbor
i and HLP local

i denote a health level property on a neigh-
boring platform and local platform, respectively.

(3) Service Request Ratio: The ratio of the number of incoming service
requests on a neighboring platform to the local platform. This factor
encourages agents to move toward human users.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

10 P. Champrasert and J. Suzuki

(4) Migration Interval : Time interval to perform migration, which discour-
ages agents to migrate too often.

If there are multiple neighboring platforms that an agent can migrate
to, the agent calculates the weighted sum of the above factors for each of
them, and moves to a platform that generates the highest weighted sum.

The behavior policy for agent reproduction and replication includes the
following two factors.

(1) Energy Level : Agent energy level, which encourages agents to reproduce
their offspring in response to their high energy levels.

(2) Request Queue Length: The length of a queue, which the local platform
stores incoming service requests to. This factor encourages agents to
reproduce their offspring in response to high demands for their services.

When the weighted sum of the above factors exceeds a threshold, an
agent seeks a mate from the local and neighboring platforms. If a mate is
found, the agent invokes the reproduction behavior. Otherwise, the agent
invokes the replication behavior. Section 1.3.5 describes how an agent seeks
its mate for reproduction.

The behavior policy for agent death includes the following two factors:

(1) Energy Level : Agent energy level. Agents die when they run out of
their energy.

(2) Energy Loss Rate: The rate of energy loss, calculated with Equation
1.2. Et and Et−1 denote the energy levels in the current and previous
time instants. Agents die in response to sharp drops in demands for
their services.

Energy Loss Rate =
Et−1 − Et

Et−1
(1.2)

1.3.3.2. Platform Behavior Policies

This chapter focuses on three platform behaviors described in Section 1.3.2
(i.e., reproduction, replication and death).

The behavior policy for platform reproduction and replication includes
the following three factors.

(1) Energy Level: Platform energy level, which encourages platforms to
reproduce their offspring in response to their high energy levels.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 11

(2) Health Level Ratio: The ratio of health level on a neighboring host
to the local host. This factor encourages platforms to reproduce their
offspring on the hosts that generate higher values with Equation 1.1.

(3) The Number of Agents: The number of agents working on each plat-
form. This factor encourages platforms to reproduce their offspring in
response to high agent population on them.

When the weighted sum of the above factors exceeds a threshold, a
platform seeks a mate from its neighboring hosts. If a mate is found,
the platform invokes the reproduction behavior. Otherwise, it invokes the
replication behavior. Section 1.3.5 describes how a platform finds its mate
for reproduction. If there are multiple neighboring hosts that a platform
can place its child platform on, it places the child on a host whose health
ratio is highest among others.

The behavior policy of platform death includes the following two factors.

(1) Energy Level : Platform energy level. Platforms die when they run out
of their energy.

(2) Energy Loss Rate: The rate of energy loss, calculated with Equa-
tion 1.2. Platforms die in response to sharp drops in demands for
their resources.

Each agent/platform expends energy to invoke behaviors (i.e., behav-
ior invocation cost) except the death behavior. When the energy level of
an agent/platform exceeds the cost of a behavior, it decides whether it
performs the behavior by calculating a weighted sum described above.

1.3.4. Energy Exchange

As described in Section 1.2, SymbioticSphere models agents and platforms
as different biological species and follows ecological concepts to design en-
ergy exchange among agents, platforms and human users. Following the
energy flow in ecosystem (Figure 1.2), SymbioticSphere models users as
the Sun, agents as producers, and platforms as (primary) consumers. Sim-
ilar to the Sun, users have an unlimited amount of energy. They expend
energy units for services provided by agents. Agents gain energy from users
and expend energy to consume resources provided by platforms. They ex-
pend 10% of the current energy level to platformsc. Platforms gain energy
cThis 10% rule is known in ecology2 and applied to the energy exchange in Symbiotic-

Sphere.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

12 P. Champrasert and J. Suzuki

from agents, and periodically evaporate 10% of the current energy level.
Agents dynamically change the frequency to transfer energy to plat-

forms, depending on the rate of incoming service requests from users. When
agents receive and process more service requests from users, they consume
more resources. Thus, agents transfer energy units (i.e., 10% of the current
energy level) to platforms more often. On the contrary, they reduce their
energy transfer rate in response to a lower rate of incoming service requests.

In order to dynamically change energy transfer rate, each agent keeps an
interval time between arrivals of an incoming service request and a previous
request. It records the average, shortest and maximum intervals of previous
requests (Ta, Ts and Tm, respectively). Figure 1.3 shows how often each
agent transfers energy to an underlying platform. First, an agent waits
for Ts and transfer energy to an underlying platform. Then, the agent
examines whether a new service request(s) has arrived during the previous
Ts interval. If arrived, the agent updates Ta, Ts and Tm, waits for Ta, and
transfer energy. Otherwise, it waits for Ta and transfers energy. Similarly,
each agent repeats energy transfers in Ta, Ts and Tm intervals (Figure 1.3).

Wait for the
shortest interval (Ts)
and expend energy

Update
Ta, Ts, and Tm

Service request
has arrived?

Yes
Yes

No

No

Yes

No

Wait for the
average interval (Ta)
and expend energy

Wait for the
maximum interval (Tm)

and expend energy

Service request
has arrived?

Service request
has arrived?

Fig. 1.3. Energy Exchange in SymbioticSphere

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 13

Ta is the simple average calculated with the intervals of previous N

requests. The shortest and maximum intervals play a role to adjust energy
transfer rate according to dynamic changes in request rate. Ts and Tm

values are periodically reset (every M service requests).
Platforms dynamically change the frequency to evaporate energy (10%

of the current energy level), depending on the rate of incoming energy trans-
fers from agents. The more often they gain energy from agents, the more
often they evaporate energy. Each platform changes its energy evaporation
rate in the same way as each agent changes its energy expenditure rate;
each platform follows the mechanism shown in Figure 1.3.

1.3.5. Constraint-aware Evolution

The weight and threshold values in behavior policies have significant im-
pacts on the adaptability, scalability and survivability of agents and plat-
forms. However, it is hard to anticipate all possible network conditions and
find an appropriate set of weight and threshold values for the conditions.
As shown in Section 1.3.3, there are 18 weight and threshold variables in
total (11 for agent behavior policies and 7 for platform behavior policies).
Assuming that 10 different values can be assigned to each variable, there
are 1018 possible combinations of weight and threshold values.

Instead of manual assignments, SymbioticSphere allows agents and
platforms to autonomously find appropriate weight and threshold values
through evolution, thereby adapting themselves to dynamic network con-
ditions. Behavior policies are encoded as genes of agents and platforms.
Each gene contains one or more weight values and a threshold value for a
particular behavior. Figures 1.4 and 1.5 show the gene structure for agent
and platform behavior policies, respectively. For example, for the agent
reproduction behavior, a gene consists of three gene elements: (1) W a

r1, a
weight value for the energy level factor; (2) W a

r2, a weight value for the
factor of request queue length and (3) T a

r , a threshold value (Figure 1.4)

Reproduction
Policy

Migration
Policy

Death
Policy

Wr1
a Wr2

a Wm1
aTr

a Wm2
a Wm3

a Wm4
a Tm

a Wd1
a Wd2

a Td
a

Fig. 1.4. Gene Structure for Agent Behavior Policies

The genes of agents and platforms are altered via genetic operations

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

14 P. Champrasert and J. Suzuki

Wr1
p Wr2

p Tr
p Wd1

p Wd2
p Td

p

Reproduction
Policy

Death
Policy

Wr3
p

Fig. 1.5. Gene Structure for Platform Behavior Policies

(genetic crossover and mutation) when they perform the reproduction or
replication behaviors. As described in Section 1.3.3, each agent/platform
selects a mate when it performs the reproduction behavior. A mate is
selected by ranking agents/platforms running on the local and neighboring
hosts. For this ranking process, SymbioticSphere leverages a constraint-
based domination ranking mechanism.

Agents and platforms are ranked with the notion of constraint domi-
nation, which considers two factors: optimization objectives and QoS con-
straint violation. SymbioticSphere considers the following three objectives.
For all objectives, the higher, the better.

(1) Energy level
(2) The total number of behavior invocations
(3) Health level of the underlying host

Using these objectives, domination is determined among agents/plat-
forms. Figure 1.6 shows an example to examine domination among four
agents (Agent A to D). For simplicity, this figure shows only two objectives:
energy level and the number of behavior invocations. Agents are plotted on
a two dimensional space whose axes represent the two objectives. In this
example, Agent A is the best in both objectives; it is said to dominate the
other three agents. In other words, Agent A is non-dominated. Agent B is
dominated by Agent A; however, it dominates the other two agents (Agent
C and D). Agent C and D do not dominate with each other because one
of them does not outperform the other in both objectives, and vise versa.

The second factor in the agent/platform ranking process is constraint
violation on QoS such as response time, throughput and workload distri-
bution. Each constraint is defined as the upper or lower bound of a QoS
measure. For example, a constraint may specify that response time must
be lower than 1 second. When an agent/platform satisfies all of given con-
straints, it is said to be feasible. Otherwise, it is said to be infeasible.

With the above two factors examined, an agent/platform i is said to
constraint-dominate another agent/platform j if any of the following con-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 15

B

C

D

A

T
he

 N
um

be
r

of

B
eh

av
io

r
In

vo
ca

ti
on

s

Energy Level

Fig. 1.6. An Example of Agent Domi-

nation

B

A

V
io

la
ti

on
 i

n
th

ro
ug

hp
ut

(t
he

 n
um

be
r

of
 m

es
sa

ge
s

/ s
ec

)

Violation in response time (sec)

C

D

Fig. 1.7. An Example of Constraint

Violation

ditions are true:

(1) i is feasible, and j is not.
(2) Both i and j are feasible; however, i dominates j.
(3) Both i and j are infeasible; however, i has a smaller degree of constraint

violation than j.

Figure 1.7 shows an example to evaluate the degree of constraint viola-
tions by four agents. (Agent A, B, C and D are all infeasible.) The X and
Y axes represent the difference between an actual QoS measure and a QoS
constraint in response time and throughput, respectively. Agent A and D
violate the constraints for response time and throughput. Agent B and C
violate a constraint for response time, but satisfy a constraint for through-
put. In this example, Agent B constraint-dominates the other three agents
because its violation is minimum in both of two QoS measures. Agents
A and C do not constraint-dominate with each other because one of them
cannot yield lower violation in both QoS measures, and vice versa. (Agent
A yields lower violation in response time but higher violation in throughput
than Agent B.) Agent D is constraint-dominated by Agents A and C.

Agents/platforms are ranked with constraint-domination among them.
Non-constraint-dominated agents/platforms are given the lowest rank,
Rank 1. When an agent/platform is constraint-dominated by a Rank N

agent/platform, its rank is N + 1.
Figure 1.8 shows pseudo code that shows the evolution process in Sym-

bioticSphere. Table 1.2 shows a set of variables and functions used in the
pseudo code.

In reproduction, crossover occurs. A parent and its mate contribute
their genes and combine them for a child’s genes. The child’s gene element

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

16 P. Champrasert and J. Suzuki

Table 1.2. Variables and Functions used in Figure 1.8
Variable or function Description

Agents A set of agents at the current simulation cycle.

Platforms A set of platforms at the current simulation cycle.

parent An agent (parenta) or a platform (parentp) that invokes the repro-

duction behavior.

mate An agent (matea) or a platform (matep) that is selected as a mate.

child An agent (childa) or a platform (childp) that is reproduced or repli-

cated.

child[i] The i-th gene element of a child agent/platform (0 ≤ i ≤ N)

mutationRate The probability to perform mutation. 0.1 is currently used.

FINDMATE(parent) Returns a mate for a given parent agent/platform. Returns � if

no agents/platforms exist on the local and direct neighbor (one-hop

away) hosts. Returns a Rank 1 agent/platform on those hosts if the
parent is feasible. Otherwise, returns a feasible agent/platform, on

those hosts, which performs best in the QoS whose constraint(s) the

parent violates.

FITNESS(parent) Returns the number of agents/platforms that the parent constraint-
dominates on the local and direct neighbor hosts.

U(0, 1) Generates a random number between 0 to 1 based on the uniform
distribution.

N(µ, σ) Generates a random number based on a normal distribution whose

average is µ and standard deviation is σ. Currently, 0 and 0.3 are

used for µ and σ.

value is in between its parent’s and a mate’s. It is shifted to closer to its
parent’s and a mate’s, depending on their fitness values. After crossover,
mutation may occur on the child’s genes. Each gene element is randomly
altered based on a uniform distribution function (U(0, 1)). See Figure 1.9
for an example of crossover and mutation. In replication, a parent copies
its genes to its child. Then, mutation may occur on the child’s genes in the
same way as the mutation in reproduction.

1.4. Evaluation

This section shows a series of simulation results to evaluate the biologically-
inspired mechanisms in SymbioticSphere. The objectives of simulations are
to examine how the biologically-inspired mechanisms impact the adapt-
ability, scalability and survivability of network systems. Simulations were
carried out with the SymbioticSphere simulator, which implements the
biologically-inspired mechanisms described in Section 1.3d.
dThe current code base of the SymbioticSphere simulator contains 15,200 lines of Java

code. It is freely available at http://dssg.cs.umb.edu/projects/SymbioticSphere/.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 17

main
while not the last cycle of a simulation run

do

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

for each parenta ∈ Agents

do

8>>>><>>>>:
if parenta invokes the reproduction behavior

then

8>><>>:
matea ← FindMate(parenta)

if matea 6= �
then childa ← Reproduce(parenta,matea)
else childa ← Replicate(parenta)

for each parentp ∈ Platforms

do

8>>>><>>>>:
if parentp invokes the reproduction behavior

then

8>><>>:
matep ← FindMate(parentp)

if matep 6= �
then childp ← Reproduce(parentp,matep)
else childp ← Replicate(parentp)

procedure Reproduction(parent,mate)
child← CrossOver(parent,mate)

child←Mutate(child)

return (child)

procedure Replication(parent)

child←Mutate(parent)

return (child)

procedure CrossOver(parent,mate)

for i← 1 to N

do

8>>>>><>>>>>:

centeri = (parent[i] +mate[i])/2

offset =
(Fitness(mate)−Fitness(parent))

Fitness(parent)+Fitness(mate)
∗ |mate[i]−parent[i]|

2

if mate[i] ≥ parent[i]
then child[i] = centeri + offset
else child[i] = centeri − offset

return (child)

procedure Mutate(parent)
for i← 1 to N

do


if U(0, 1) ≤ mutationRate
then child[i] = parent[i](1 +N(µ, σ))

return (child)

Fig. 1.8. Evolution Process in SymbioticSphere

1.4.1. Simulation Configurations

This section describes the implementation and configuration of the Symbi-
oticSphere simulator. The implementation and configuration are commonly
used in all the simulations.

A simulated network system is designed as a server farm. Each agent
implements a web service in its body. Its behavior policies are randomly
configured at the beginning of each simulation. Figure 1.10 shows a simu-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

18 P. Champrasert and J. Suzuki

Crossover

Mutation

Parent

Mating
partner

Child

Mutated genes

Wr1
a Wr2

a Wm1
aTra Wm2

a Wm3
a Wm4

a Tma Wd1
a Wd2

a Tda

Wr1
a Wr2

a Wm1
aTra Wm2

a Wm3
a Wm4

a Tma Wd1
a Wd2

a Tda

Wr1
a Wr2

a Wm1
aTra Wm2

a Wm3
a Wm4

a Tma Wd1
a Wd2

a Tda

Wr1
a Wr2

a Wm1
aTra Wm2

a Wm3
a Wm4

a Tma Wd1
a Wd2

a Tda

Fig. 1.9. Example Genetic Operations

lated network. It consists of hosts connected in an N x N grid topology,
and service requests travel from users to agents via user access point. This
simulation study assumes that a single (emulated) user runs on the ac-
cess point and sends service requests to agents. Each host has 256 MB or
320 MB of memory spacee Out of the memory space, an operating system
consumes 128 MB, and Java virtual machine consumes 64 MB. The remain-
ing space is available for a platform and agents on each host. Each agent
and platform consumes 5 MB and 20 MB, respectively. This assumption is
obtained from prior empirical experiments.9

Se
rv

ic
e

re
qu

es
ts

fr

om
 u

se
rs

User
access point

Server farm

Host

(Simulated user)

Fig. 1.10. Simulated Network

Each host operates in the active or inactive state. When a platform
works on a host, the host is active and consumes 60 W power. The host
goes to the inactive state when a platform dies on it. An inactive host
consumes 5 W power. This assumption on power consumption is obtained
eCurrently, memory availability represents resource availability on each platform/host.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 19

from Reference 10. A host becomes active from the inactive state using the
Wake On LAN (WOL) technology.11 When a platform places its offspring
on an inactive host, it sends a WOL packet to the host to activate it.

Figure 1.11 shows pseudo code to run users, agents and platforms in
each simulation run. A single execution of this while loop corresponds to
one simulation cycle.

main
while not the last cycle of a simulation run

do

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

for each user

do


Send service requests to agents according to a
configured service request rate.

for each agent

do

8>>>><>>>>:
if a service request(s) received

then Process the request(s) and gain energy.

Determine whether or not to invoke the reproduction,
replication, migration and death behaviors.

Transfer energy to the local platform.

for each platform

do

8>>>><>>>>:
Gain energy from the local agents

Determine whether or not to invoke the reproduction,

replication and death behaviors.
Update health level.

Evaporate energy.

Fig. 1.11. Pseudo Code to Run Users, Agents and Platforms in a Simulation

When a user issues a service request, the service request is passed to
the local platform on which the user resides, and the platform performs a
discovery process to search a target agent that can process the issued service
request. The platform (discovery originator) forwards a discovery message
to its neighboring platforms, asking whether they host a target agent. If a
neighboring platform hosts a target agent, it returns a discovery response
to the discovery originator. Otherwise, it forwards the discovery message
again to its neighboring platforms. Figure 1.12 shows this decentralized
agent discovery process. Note that there is no centralized directory to keep
track of agent locations.

Through the above discovery process, a user finds a set of platforms
hosting the target agents that can process his/her service request. The
user chooses the platform closest to him/her and transmits his/her service
request to the platform. When the service request arrives the platform,
the platform inserts the request into its request queue. (Each platform
maintains a request queue for queuing incoming service requests and dis-
patching them to agents.) Each platform inspects the number of queued

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

20 P. Champrasert and J. Suzuki

while not the last cycle of a simulation run

do

8>>>>>>>><>>>>>>>>:

if a discovery message(s) arrived

then

8>>>>>><>>>>>>:

for each discovery message

do

8>>>><>>>>:
if the discovery message matches one of the local agents

then


Return a discovery response to the

discovery originator.

else


Forward the discovery message to

neighboring platforms.

Fig. 1.12. Pseudo Code for Agents Discovery Process

service requests and the number of the local agents running on it in each
simulation cycle. If the number of queued requests exceeds the number of
service requests that the local agents can process in one simulation cycle,
the platform transfers the queued requests to neighboring platforms hosting
the (idle) agents that can process the requests. This propagation continues
until the number of queued requests becomes smaller than the number of
service requests that the local agents can process in one simulation cycle.
Figure 1.13 shows this request propagation process.

while not the last cycle of a simulation run

do

8>>>>>><>>>>>>:

if # of queued requests > # of requests that the local agents can process
in one simulation cycle

then

8<:
if there are one or more neighboring platform(s) that can process
queued requests

then Transfer queued requests to those platforms in round robin.

else Dispatch queued requests to the local agents.

Fig. 1.13. Pseudo Code for Service Request Propagation

In this simulation study, SymbioticSphere is compared with the Bio-
Networking Architecture (BNA).9,12,13 In BNA, agents are modeled after
biological entities and designed to evolve and adapt dynamic network con-
ditions in a decentralized manner. See also Section 1.5.

1.4.2. Evaluation of Energy Exchange

This section evaluates SymbioticSphere’s energy exchange mechanism de-
scribed in Section 1.3.4. In this evaluation, an agent is deployed on a
platform to accept service requests from the user. The agent does not in-
voke any behaviors to focus on the evaluation of energy exchange. Ts and
Tm values are periodically reset every 50 service requests.

Figure 1.14 shows how the user changes service request rate over time.
In order to evaluate the energy exchange in SymbioticSphere, two agents

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 21

are implemented and compared. The first agent implements the energy
exchange mechanism described in Section 1.3.4 It uses Ta, Ts and Tm in-
tervals. The second agent uses Ta only.

Figure 1.15 shows how much energy the two agents transfer to their local
platforms. It demonstrates that the SymbioticSphere’s energy exchange
mechanism allows an agent to change its energy expenditure rate against
dynamic changes in energy intake (i.e., service request rate). With Ta, Ts

and Tm, an agent’s energy expenditure better follows the changes in energy
intake than using Ta only.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

S
er

vi
ce

 r
eq

ue
st

 r
at

e
(#

 o
f

re
qu

es
ts

/m
in

)

Fig. 1.14. Service Request Rate

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

E
ne

rg
y

ex
pe

nd
itu

re
 r

at
e

(e
ne

rg
y

un
its

 p
er

 m
in

)

With Ta, Ts and Tm
Only with Ta

Fig. 1.15. Energy Expenditure Rate

1.4.3. Evaluation of Adaptability

This section evaluates how agents and platforms adapt to dynamic network
conditions. In this evaluation, adaptability is defined as service adaptation
and resource adaptation. Service adaptation is a set of activities to adap-
tively improve the quality and availability of services provided by agents.
The quality of services is measured as response time and throughput of
agents for processing service requests from users. Service availability is
measured as the number of agents. Resource adaptation is a set of ac-
tivities to adaptively improve resource availability and resource efficiency.
Resource availability is measured as the number of platforms that make re-
sources available for agents. Resource efficiency indicates how many service
requests can be processed per resource utilization of agents and platforms.

A simulated network is a 7x7 network with 49 network hosts, each of
which has 256 MB memory space. At the beginning of each simulation,
an agent and a platform are deployed on each node (i.e., 49 platforms and
49 agents on 49 network hosts). Figure 1.16 shows how the user changes
service request rate over time. This is obtained from a workload trace of the

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

22 P. Champrasert and J. Suzuki

1998 Olympic official website.14 The peak demand is 9,600 requests/min.
Each simulation was carried out for 10 days in simulation time by repeating
the daily workload trace 10 times.

Figure 1.17 shows how service availability (i.e., the number of agents)
changes against dynamic service request rate. At the beginning of a sim-
ulation, the number of agents fluctuates in SymbioticSphere and BNA be-
cause agent behavior policies are initially random. However, as evolution
continues over time, agents adapt their population to the changes in service
request rate. When service request rate becomes high, agents gain more
energy from a user and replicate themselves more often. In contrast, when
service request rate becomes low, some agents die due to energy starvation
because they cannot balance their energy gain and expenditure. This result
demonstrates that the biologically-inspired mechanisms in SymbioticSphere
allow agents to evolve their behavior policies and adaptively adjust their
availability as a group. Figure 1.17 also shows that agent population are
more sensitive to workload changes in SymbioticSphere than BNA.

Figure 1.18 shows how resource availability (i.e., the number of plat-
forms) changes against dynamic service request rate. At the beginning of a
simulation, the number of platforms fluctuates in SymbioticSphere because
platform behavior policies are initially random. However, as evolution con-
tinues over time, platforms adapt their population to the changes in service
request rate. When service request rate becomes high, agents gain more
energy and transfer more energy to platforms. In response to abundance
of stored energy, platforms replicate or reproduce offspring more often. In
contrast, when service request rate becomes low, some platforms die due
to energy starvation because they cannot gain enough energy from agents
to keep their population. Figure 1.18 demonstrates that the biologically-
inspired mechanisms in SymbioticSphere allow platforms to evolve their
behavior policies and adaptively adjust resource availability as a group.
In BNA, platforms are not designed as biological entities; the number of
platforms does not change dynamically, but remains at 49.

Figure 1.19 shows the average response time for agents to process one
service request from the user. This includes the request transmission la-
tency between the user and an agent and the processing overhead for an
agent to process a service request. In SymbioticSphere, the average response
time is maintained very low; less than 5 seconds, because agents increase
their population to process more service requests (see Figure 1.17) and
migrate toward the user. Figure 1.19 demonstrates that the biologically-
inspired mechanisms in SymbioticSphere allow agents to autonomously im-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 23

prove and maintain response time. In BNA, agents fail to consistently
maintain low response time in several days because they do not adapt their
population well to the changes in service request rate (Figure 1.17). Agent
evolution process operates better in SymbioticSphere than BNA. See Sec-
tion 1.5 for the differences in the evolution process in the two architectures.

Figure 1.20 shows the throughput of agents. Throughput is measured
as the ratio of the number of service requests agents process to the total
number of service requests the user issues. In SymbioticSphere, through-
put is maintained very high; i.e., higher than 98%, because agents adapt
their population to dynamic service request rate (Figure 1.17). Figure 1.20
demonstrates that the biologically-inspired mechanisms in SymbioticSphere
allow agents to autonomously improve and maintain throughput. In BNA,
agents fail to consistently maintain high throughput in several days. For
example, throughput drops to 84% in Day 6. This is because agents do not
adapt their population well to the changes in service request rate. Agent
evolution process operates better in SymbioticSphere than BNA. See Sec-
tion 1.5 for the differences in the evolution process in the two architectures.

Figure 1.21 shows how resource efficiency changes. Resource efficiency
is measured with the following equation:

Resource efficiency =
The total number of service requests processed by agents

The total amount resources consumed by agents and platforms
(1.3)

SymbioticSphere always yields higher resource efficiency than BNA be-
cause, in BNA, platforms do not adapt their population to dynamic service
request rate; 49 platforms are active at all times (Figure 1.18). In Symbi-
oticSphere, both agents and platforms autonomously adapt their popula-
tions to dynamic service request rate (Figures 1.17 and 1.18); thus, resource
efficiency is always higher in SymbioticSphere. Figure 1.21 demonstrates
that the biologically-inspired mechanisms in SymbioticSphere allows agents
and platforms to retain high resource efficiency.

Figure 1.22 shows the total power consumption in SymbioticSphere and
BNA. In SymbioticSphere, each host operates in active or inactive state
depending on whether a platform works on the host (Section 1.4.1). Since
platforms adapt their population to dynamic service request rate (Fig-
ure 1.18), hosts change their states between active and inactive based on
the changes in service request rate. More hosts become active in response
to higher service request rate, and more hosts become inactive in response
to lower service request rate. In BNA, all hosts are always active because

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

24 P. Champrasert and J. Suzuki

platforms never die. As a result, SymbioticSphere consumes a lower amount
of power(443.1 kWh) than BNA does (705.6 kWh). SymbioticSphere saves
approximately 40% power consumption compared with BNA. Figure 1.22
shows that the biologically-inspired mechanisms in SymbioticSphere allows
platforms to improve power efficiency by adapting their population.

Figure 1.23 shows workload distribution over available platforms in
SymbioticSphere. It is measured as Load Balancing Index (LBI) with Equa-
tion 1.4. A lower LBI indicates a higher workload distribution.

Load Balancing Index =

sPN
i (Xi − µ)2

N
(1.4)

where

Xi =
The number of messages processed by agents running on platform i

The amount of resources utilized by platform i and agents running on platform i

µ = The average of Xi

=
The total number of messages processed by all agents

The total amount of resources utilized by all platforms and all agents

N = The number of available platforms

As Figure 1.23 shows, agents and platforms always strive to improve
workload distribution through evolution. This is an example of symbiotic
emergence, a unique property that SymbioticSphere exhibits. in Symbi-
oticSphere. Agent migration behavior policy encourages agents to move
towards platforms running on healthier hosts. Platform replication behav-
ior policy encourages platforms to replicate themselves on healthier hosts.
As a result, service requests are processed by agents that are spread over
the platforms running on healthy hosts. This contributes to balance work-
load per platform, although agent migration policy and platform replication
policy do not consider platform population nor workload distribution. This
results in a mutual benefit for both agents and platforms. Platforms help
agents decrease response time by making more resources available for them.
Agents help platforms to keep their stability by distributing workload on
them (i.e., by avoiding excessive resource utilization on them).

Figures 1.24 and 1.25 show the response time results with and with-
out a QoS constraint. The constraint specifies 5 seconds as maximum (or
worst) response time. Figure 1.24 shows that the constraint contributes to
improve the average response time from 1.95 to 1.66 second. Figure 1.25
shows the number of constraint violations (i.e., the number of simulation
cycles in which actual response time exceeds a given constraint). With

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 25

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

S
er

vi
ce

 r
eq

ue
st

 r
at

e
(#

 o
f

re
qu

es
ts

/m
in

)

Fig. 1.16. Service Request Rate

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

T
he

 n
um

be
r

of
 a

ge
nt

s

BNA
SymbioticSphere

Fig. 1.17. The Number of Agents

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

T
he

 n
um

be
r

of
 p

la
tf

or
m

s

BNA
SymbioticSphere

Fig. 1.18. The Number of Platforms

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

R
es

po
ns

e
tim

e
(s

ec
)

BNA
SymbioticSphere

Fig. 1.19. Response Time

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

T
hr

ou
gh

pu
t (

%
)

BNA
SymbioticSphere

Fig. 1.20. Throughput

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

R
es

ou
rc

e
ef

fi
ci

en
cy

BNA
SymbioticSphere

Fig. 1.21. Resource Efficiency

a constraint enabled, the number of constraint violations dramatically re-
duces by 90% (from 849 to 78). This is because it is unlikely agents are
selected as mates when they violate a constraint. SymbioticSphere perform
its evolution process to better satisfy a response time QoS constraint.

Figures 1.26 and 1.27 show the LBI results with and without a QoS
constraint. The constraint specifies 30% as the maximum (or worst) dif-
ference in LBI of an agent and another running on a neighboring platform.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

26 P. Champrasert and J. Suzuki

443.10

705.60

0

100

200

300

400

500

600

700

800

SymbioticSphere BNA

Po
w

er
 c

on
su

m
pt

io
n

(
kW

h
)

Fig. 1.22. Power Consumption

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

Simulation time (day)
L

B
I

Fig. 1.23. Load Balancing Index (LBI)

1.95

1.66

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Without a reponse time
constraint

With a response time
constraint

T
he

 a
ve

ra
ge

 r
es

po
ns

e
tim

e
 (

se
c)

Fig. 1.24. The Average Response Time
with and without a Constraint

849

78

0

100

200

300

400

500

600

700

800

900

Without a reponse time
constraint

With a response time
constraint

T
he

 n
um

be
r

of
 v

io
la

tio
ns

Fig. 1.25. The Number of Constraint Vi-
olations in Response Time

Figure 1.26 shows that the constraint contributes to improve LBI from 4.31
to 3.96. Figure 1.27 shows the number of constraint violations reduces
by 70% (from 4841 to 1336). This is because it is unlikely agents are se-
lected as mates when they violate a constraint. SymbioticSphere perform
its evolution process to better satisfy an LBI QoS constraint.

4.31

3.96

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Without a LBI constraint With a LBI constraint

T
he

 a
ve

ra
ge

 L
B

I

Fig. 1.26. The Average LBI with and
without a Constraint

4841

1336

0

1000

2000

3000

4000

5000

6000

Without a LBI constraint With a LBI constraint

T
he

 n
um

be
r

of
 v

io
la

tio
ns

Fig. 1.27. The Number of Constraint Vi-
olations in LBI

Figures 1.28 and 1.29 show the throughput results with and without a

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 27

QoS constraint. The constraint specifies 3 messages/sec as the minimum
(or worst) throughput. Figure 1.28 shows that the constraint contributes
to improve the average throughput from 99.50% to 99.92%. Figure 1.29
shows the number of constraint violations reduces by 70% (from 6554 to
1992). This is because it is unlikely agents are selected as mates when
they violate a constraint. SymbioticSphere perform its evolution process to
better satisfy a throughput QoS constraint.

99.92%

99.50%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

Without throughput
constraint

With throughput
constraint

T
he

 a
ve

ra
ge

 th
ro

ug
hp

ut

Fig. 1.28. The Average Throughput with

and without a Constraint

1922

6554

0

1000

2000

3000

4000

5000

6000

7000

Without throughput
constraint

With throughput
constraint

T
he

 n
um

be
r

of
 v

io
la

tio
ns

Fig. 1.29. The Number of Constraint Vi-

olations in Throughput

1.4.4. Evaluation of Scalability

This section evaluates how agents and platforms autonomously scale to
demand volume and network size. In this simulation study, service request
rate starts with 3,000 requests/min, spikes to 210,000 requests/min at 8:00,
and drops to 3,000 requests/min at 16:30 (Figure 1.30). The peak demand
and spike ratio (1:70) are obtained from a workload trace of the 1998 World
Cup web site.15 A simulated network is 7x7 (49 hosts) from 0:00 to 12:00
and 15x15 (225 hosts) from 12:00 to 24:00. This simulates that new hosts
are added to a server farm at 12:00. 30% of the hosts (resource rich hosts)
have 320 MB memory space. The other 70% are resource poor hosts, which
have 256 MB memory space. Both types of hosts are placed randomly in a
server farm. At the beginning of a simulation, a single agent and platform
is deployed on each host (i.e., 49 agents and 49 platforms on 49 hosts).
This simulation study uses the genes (i.e., behavior policies) obtained after
a 10 days simulation in Section 1.4.3 as the initial genes for each agent and
platform.

Figure 1.31 shows how the number of agents changes against the dy-
namic changes in service request rate and network size. At the beginning of
a simulation, the number of agents is about 50 agents in SymbioticSphere

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

28 P. Champrasert and J. Suzuki

and BNA because this number of agents is enough to process all service
requests (3,000 requests/min). When service request rate spikes at 8:00,
agents gain more energy from the user and reproduce/replicate offspring
more often. From 10:00 to 12:00, agent population does not grow due to
resource limitation on available hosts. (Agents and platforms cannot re-
produce/replicate any more offspring because they have consumed all the
resources available on 49 hosts.) When network size expands at 12:00,
agents rapidly reproduce/replicate offspring on newly added hosts. When
service request rate drops at 16:30, many agents die due to energy starva-
tion. This result demonstrates that the biologically-inspired mechanisms
in SymbioticSphere allow agents to adaptively adjust their availability to
dynamic network conditions such as demand volume, spike ratio and net-
work size. Figure 1.31 also shows that agent population follows workload
changes better in SymbioticSphere than BNA.

Figure 1.32 shows how the number of platforms changes against the
dynamic changes in service request rate and network size. In Symbiotic-
Sphere, at the beginning of a simulation, the number of platforms is about
7 platforms because this number of platforms is enough to run agents for
processing service requests. When service request rate spikes at 8:00, agents
gain more energy from the user and transfer more energy to underlying plat-
forms. As a result, platforms also increase their population. From 10:00 to
12:00, platform population does not grow because platforms have already
run on 49 hosts. When network size expands at 12:00, platforms rapidly
reproduce offspring on newly added hosts. When service request rate drops
at 16:30, most platforms die due to energy starvation. This result demon-
strates that the biologically-inspired mechanisms in SymbioticSphere allow
platforms to adaptively adjust their availability to dynamic network con-
ditions such as demand volume, spike ratio and network size. In BNA,
platforms are not designed as biological entities; they do not adaptively
change their population.

Figure 1.33 show how the average response time changes. In Symbi-
oticSphere, from 0:00 to 8:00, the average response time is maintained very
low; less than 5 seconds. At 8:00, response time spikes because service
request rate spikes. It starts decreasing at 12:00 when agents/platforms
reproduce/replicate offspring on newly added hosts. It is approximately 12
seconds at 16:00. At 16:30, response time drops because service request
rate drops. Figure 1.33 demonstrates that the biologically-inspired mech-
anisms in SymbioticSphere allow agents and platforms to strive to keep
response time low despite demand surges. In BNA, agents do not adapt

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 29

their population well to the changes in service request rate and network
size (Figure 1.31); response time is rather high, about 24 seconds, at 16:00.

Figure 1.34 shows how throughput changes. In SymbioticSphere, by
changing their populations, agents and platforms autonomously adapt
throughput to dynamic changes in demand (at 8:00 and 16:30) and net-
work size (at 12:00). From 0:00 to 8:00, throughput is maintained very
high; i.e., more than 98%. At 8:00, throughput drops (lower than 20%)
because the service request rate is very high and agents cannot process
all service requests in a timely manner. Then, agents and platforms im-
prove throughput by increasing their populations. Until 12:00, throughput
cannot reach 100% due to resource limitation on available hosts. After
12:00, throughput improves to 100% because agents and platforms can
replicate/reproduce offspring on newly added hosts. Figure 1.34 shows that
the biologically-inspired mechanisms in SymbioticSphere allows agents and
platforms to scale well to demand volume, spike ratio and network size.
SymbioticSphere and BNA yield similar throughput from 0:00 to 12:00.
From 12:00 to 16:30, BNA does not leverage newly added hosts well to
improve throughput; throughput never reach 100%.

Figure 1.35 shows how resource utilization is distributed over available
hosts in SymbioticSphere. It is measured as Resource Utilization balanc-
ing index (RUBI) with Equation 1.5. A lower RUBI indicates a higher
distribution of resource utilization.

Resource Utilization Blancing Index =

sPN
i (Ri − µ)2

N
(1.5)

where

Ri =
The amount of resources a platform and agents utilize on the host i

The total amount of resources the host i has
µ = The average of Ri

=
The total amount of resources utilized by all agents and platforms

The total amount of resources available on all hosts
N = The number of available platforms

From 0:00 to 8:00, RUBI is relatively constant around 0.2. When ser-
vice request rate spikes at 8:00, RUBI drops and constantly remains very
low, around 0.02, because available resources are fully consumed on hosts.
At 12:00, RUBI spikes because resources are not consumed first on newly
added nodes. Agents and platforms spread over both resource rich and poor
hosts to deal with a high service request rate. Then, they seek resource
rich hosts through migration, reproduction and replication, thereby lower-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

30 P. Champrasert and J. Suzuki

ing RUBI. When service request rate drops at 16:30, RUBI spikes because
many agents and platforms die and resource utilization is not evenly dis-
tributed over hosts. However, they decrease RUBI again by preferentially
residing on resource rich hosts. Figure 1.35 shows that the biologically-
inspired mechanisms in SymbioticSphere allows agents and platforms to
adaptively balance their resource utilization over a large number of hetero-
geneous hosts.

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18 20 22 24

Sumulation time (hour)

S
er

vi
ce

 r
eq

ue
st

 r
at

e
(#

 o
f

re
qu

es
ts

/m
in

)

Fig. 1.30. Service Request Rate

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

T
he

 n
um

be
r

of
 a

ge
nt

s
BNA

SymbioticSphere

Fig. 1.31. The Number of Agents

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

T
he

 n
um

be
r

of
 p

la
tf

or
m

s

BNA

SymbioticSphere

Fig. 1.32. The Number of Platforms

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

R
es

po
ns

e
tim

e
(s

ec
)

BNA

SymbioticSphere

Fig. 1.33. Response Time

1.4.5. Evaluation of Survivability

This section evaluates how agents and platforms survive partial system fail-
ures due to, for example, errors by administrators and physical damages in
server farm fabric This simulation study simulates node failures. Service
request rate is constantly 7,200 requests/min, which is the peak in a work-
load trace of the IBM web site in 2001.16 Randomly chosen 60% of hosts
go down at 9:00 for 90 minutes. The size of a server farm is 7x7, 49 hosts,
each of which has 256 MB memory space. At the beginning of a simulation,

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 31

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

T
hr

ou
gh

pu
t (

%
)

BNA

SymbioticSphere

Fig. 1.34. Throughput

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)
R

U
B

I
Fig. 1.35. Resource Utilization Balancing

Index

an agent and a platform are deployed on each host. This simulation study
uses the genes (i.e., behavior policies) obtained after a 10 days simulation
in Section 1.4.3 as the initial genes for each agent and platform.

Figures 1.36 and 1.37 show how the number of agents and the number
of platforms change over time, respectively. When a host goes down, agents
and platforms crash and die on the host. This is why agent and platform
populations drop at 9:00. In SymbioticSphere, after hosts fail, remaining
agents and platforms increase their populations with replication and repro-
duction on available hosts. Around 9:45, agent and platform populations
revert to the populations that agents and platforms had before host fail-
ures. When failed hosts resume, platforms reproduce/replicate offspring
on those hosts. Some of agents migrate to the reproduced/replicated plat-
forms in order to move towards the user and increase their population. The
biologically-inspired mechanisms in SymbioticSphere allow agents and plat-
forms to autonomously survive host failures by adjusting their populations.
Figure 1.36 also demonstrates that agent population recovers faster in Sym-
bioticSphere than BNA. This is because BNA does not consider workload
distribution. All agents migrate towards the user; when hosts fail, most of
them die. SymbioticSphere better considers survivability. In BNA, plat-
forms are not designed as biological entities; the number of platforms is
always equal to the number hosts (Figure 1.37).

Figure 1.38 shows the average response time. At 9:00, response time
increases because all agents and platforms die on failed hosts. How-
ever, response time quickly recovers in SymbioticSphere by increasing
agent and platform populations immediately (Figures 1.36 and 1.37). The
biologically-inspired mechanisms in SymbioticSphere allow agents and plat-
forms to autonomously survive host failures and strive to retain response
time. In BNA, response time recovers when failed hosts resume at 10:30.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

32 P. Champrasert and J. Suzuki

SymbioticSphere is more resilient against host failures than BNA.
Figure 1.39 shows the throughput of agents. Throughput decreases

when hosts fail at 9:00; however, it decreases only by 10% in Symbiotic-
Sphere. Upon host failures, throughput quickly recovers by increasing agent
and platform populations immediately (Figures 1.36 and 1.37). Figure 1.39
demonstrates that the biologically-inspired mechanisms in SymbioticSphere
allow agents and platforms to autonomously retain throughput despite host
failures. In BNA, throughput dramatically drops to 40% and does not re-
cover until failed hosts resume.

0

20

40

60

80

100

120

7 8 9 10 11 12 13

Simulation time (hour)

T
he

 n
um

be
r

of
 a

ge
nt

s

BNA
SymbioticSphere

Fig. 1.36. The Number of Agents

0

10

20

30

40

50

60

7 8 9 10 11 12 13

Simulation time (hour)

T
he

 n
um

be
r

of
 p

la
tf

or
m

s

BNA

SymbioticSphere

Fig. 1.37. The Number of Platforms

0

5

10

15

20

25

7 8 9 10 11 12 13

Simulation time (hour)

R
es

po
ns

e
tim

e
(s

ec
)

BNA

SymbioticSphere

Fig. 1.38. Response Time

0%

20%

40%

60%

80%

100%

7 8 9 10 11 12 13

Simulation time (hour)

T
hr

ou
gh

pu
t (

%
)

BNA
SymbioticSphere

Fig. 1.39. Throughput

1.5. Related Work

SymbioticSphere is an extension to the Bio-Networking Architecture
(BNA).9,12,13 In BNA, biologically-inspired agents evolve and perform ser-
vice adaptation in a decentralized manner. However, as demonstrated in
Section 1.4, SymbioticSphere most always outperforms BNA. This is be-
cause the evolutionary process is designed more sophisticated in Symbiotic-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 33

Sphere. For example, mate selection, mutation and crossover are carefully
designed to better address real-value optimization to tune behavior policies.
Also, in BNA, the threshold values of behavior policies are not included in
genes.12 This means that agent designers need to manually configure them
through trial and errors. In contrast, no manual work is necessary to con-
figure thresholds in SymbioticSphere because they are included in genes.
In addition, BNA uses a fitness function to rank agents in mate selection.
It aggregates multiple objectives as a weighted sum. Agent designers need
to manually configure these weight values as well. In SymbioticSphere,
no parameters exist for ranking agents/platforms because of a constraint-
domination ranking mechanism. As a result, SymbioticSphere incurs much
less configuration tasks/costs.

Moreover, BNA does not perform resource adaptation because platforms
are not designed as biological entities. In SymbioticSphere, both agents and
platforms are designed as biological entities; they perform service adapta-
tion and resource adaptation simultaneously.

Jack-in-the-Net (Ja-Net),17,18 NetSphere19 and BEYOND20 are similar
to SymbioticSphere in that they extend BNA. Ja-Net focuses on sponta-
neous creation of network applications, each of which consists of multiple
types of agents. NetSphere and BEYOND propose artificial immune sys-
tems for agents to sense network conditions and adaptively select behaviors
suitable to the conditions. In Ja-Net, NetSphere and BEYOND, platforms
are not designed as biological entities; they do not address power efficiency,
resource efficiency and resource utilization balancing of network systems.

Wakamiya et al. propose the concept of symbiosis between groups of
peers (hosts) in peer-to-peer networks.21 Peer groups symbiotically connect
or disconnect with each other to improve the speed and quality of queries.
A special type of peers implements the symbiotic behaviors for peer group
connection/disconnection. Since the number of the symbiotic peers is stat-
ically fixed, they do not scale to network size and traffic volume. They also
do not address power efficiency, resource efficiency and survivability of net-
work systems. In SymbioticSphere, all agents and platforms are designed to
interact in a symbiotic manner. They scale well to network size and traffic
volume, and achieve power efficiency, resource efficiency and survivability.

The concept of energy in SymbioticSphere is similar to money in econ-
omy. MarketNet22 and WALRAS23 apply the concept of money to address
market-based access control for network applications. Rather than access
control, SymbioticSphere focuses on the adaptability, scalability and sur-
vivability of network systems.

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

34 P. Champrasert and J. Suzuki

Resource Broker is designed to dynamically adjust resource allocation
for server clusters via centralized system monitor.24 Resource Broker in-
spects the stability and resource availability of each host, and adjusts re-
source allocation for applications. In SymbioticSphere, agents and plat-
forms adapt their populations and locations in a decentralized way. Also,
Resource Broker does not consider the power efficiency of server clusters.

Shirose et al. propose a generic adaptation framework for grid comput-
ing systems.25 It considers both service adaptation and resource adapta-
tion. In this framework, centralized system components store the current
environment conditions, and decide which adaptation strategy to execute.
In contrast, SymbioticSphere does not assume any centralized system com-
ponents. Each of agents and platforms collects and stores environment
conditions and autonomously decides which behaviors to invoke.

Rainbow26 investigates the adaptability of server clusters. A centralized
system monitor periodically inspects the current environment conditions
(e.g., workload placed on hosts) and performs an adaptation strategy (e.g.,
service migration and platform replication/removal). SymbioticSphere im-
plements a wiser set of adaptation strategies such as agent replication/re-
production (service replication/reproduction) and agent death (service re-
moval). SymbioticSphere also addresses survivability and power efficiency
as well as adaptability with the same set of agent/platform behaviors. Rain-
bow does not consider power efficiency and survivability.

Adam et al. propose a decentralized design for server clusters to guar-
antee response time to users.27 In SymbioticSphere, agents and platforms
evolve to satisfy given QoS constraints including response time; however,
they do not guarantee QoS measures because the dynamic improvement of
those measures is an emergent result from collective behaviors and interac-
tions of agents and platforms. As a result, agents and platforms can adapt
to unexpected environment conditions (e.g. system failures) and survive
them without changing any behaviors and their policies. Moreover, Adam
et al. do not consider to satisfy other QoS constraints such as throughput as
SymbioticSphere does. They also do not consider consider power efficiency
and survivability of network systems as SymbioticSphere does.

1.6. Concluding Remarks

This chapter describes the architectural design of SymbioticSphere and de-
scribes how it implements key biological principles, concepts and mecha-
nisms to design network systems. This chapter also describes how agents

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 35

and platforms interact with each other to collectively exhibit the emergence
of desirable system characteristics such as adaptability, scalability, and sur-
vivability. Simulation results show that agents and platforms scale well
to network size and demand volume and autonomously adapt to dynamic
changes in the network (e.g., user location, network traffic and resource
availability). They also survive partial system failures such as host failures
to retain their availability and performance.

Several extensions to SymbioticSphere are planned. In order to further
explore the impacts of symbiosis between agents and platforms on their per-
formance, it is planned to implement and evaluate new types of behaviors,
called symbiotic behaviors, for agents and platforms. It is also planned to
deploy and empirically evaluate SymbioticSphere on the real network such
as PlanetLabf .

References

1. L. Northrop, R. Kazman, M. Klein, D. Schmidt, et al. Ultra-Large Scale
Systems: The Software Challenge of the Future. Technical report, Software
Engineering Institute.

2. R. Alexander, Energy for Animal Life. (Oxford University Press, 1999).
3. S. Camazine, N. Franks, J. Sneyd, E. Bonabeau, J. Deneubourg, and G. Ther-

aula, Self-Organization in Biological Systems. (Princeton University Press,
2003).

4. R. Albert, H. Jeong, and A. Barabasi, Error and attack tolerance of complex
networks, International Journal of Nature. 406(6794), 378–382, (2000).

5. N. Minar, K. Kramer, and P. Maes, Cooperating Mobile Agents for Dynamic
Network Routing, In ed. A. Hayzelden, Software Agents for Future Commu-
nications Systems, chapter 12. Springer, (1999).

6. S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems.
In Proceedings of the 6th Workshop on Hot Topics in Operating System, pp.
67–72, (1997).

7. P. Stiling, Ecology. theories and applications. (Prentice-Hall, 2002).
8. L. Margulis, Symbiotic Planet: A New Look at Evolution. (Basic Books,

1998).
9. J. Suzuki and T. Suda, A middleware platform for a biologically inspired net-

work architecture supporting autonomous and adaptive applications, IEEE
Journal on Selected Areas in Communications. 23(2), 249–260, (2005).

10. C. Gunaratne, K. Christensen, and B. Nordman, Managing energy consump-
tion costs in desktop PCs and LAN switches with proxying, split TCP con-
nections, and scaling of link speed, International Journal of Network Man-
agement. 15(5), 297–310, (2005).

fhttp://www.planet-lab.org/

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

36 P. Champrasert and J. Suzuki

11. G. Gibson, Magic Packet Technology, Advanced Micro Devices(AMD).
(1995).

12. T. Nakano and T. Suda, Self-organizing network services with evolution-
ary adaptation, IEEE Transactions on Neural Networks. 16(5), 1269–1278,
(2005).

13. T. Suda, T. Itao, and M. Matsuo. The Bio-Networking Architecture: The
Biologically Inspired Approach to the Design of Scalable, Adaptive, and Sur-
vivable/Available Network Applications. In ed. K. Park, The Internet as a
Large-Scale Complex System. Princeton University Press, (2005).

14. C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Ki-stler, and T. Keller,
Energy Management for Commercial Servers, IEEE Journal on Computer.
36(12), 39–47, (2003).

15. M. Arlitt and T. Jin, A Workload Characterization Study of the 1998 World
Cup Web Site, IEEE Journal on Network. 14(3), 30–37, (2000).

16. J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing en-
ergy and server resources in hosting centers. In Proceedings of the 18th ACM
Symposium on Operating System Principles, pp. 103–116. ACM, (2001).

17. T. Itao, S. Tanaka, T. Suda, and T. Aoyama, A Framework for Adaptive Ubi-
Comp Applications Based on the Jack-in-the-Net Architecture, International
Journal of Wireless Networks. 10(3), 287–299, (2004).

18. T. Itao, T. Nakamura, M. Matsuo, T. Suda, and T. Aoyama. Adaptive
Creation of Network Applications in the Jack-in-the-Net Architecture. In
Proceedings of the 2nd IFIP-TC6 Conference on Networking Technologies,
Services, and Protocols; Performance of Computer and Communication Net-
works; and Mobile and Wireless Communications, pp. 129–140, (2002).

19. J. Suzuki, Biologically-inspired adaptation of autonomic network applica-
tions, International Journal of Parallel, Emergent and Distributed Systems.
20(2), 127–146, (2005).

20. C. Lee, H. Wada, and J. Suzuki. Towards a biologically-inspired architecture
for self-regulatory and evolvable network applications. In eds. F. Dressler and
I. Carreras, Advances in Biologically Inspired Information Systems: Models,
Methods and Tools, chapter 2, pp. 21–45. Springer (August, 2007).

21. N. Wakamiya and M. Murata. Toward Overlay Network Symbiosis. In Pro-
ceedings of the 5th IEEE International Conference on Peer-to-Peer Comput-
ing, pp. 154–155, (2005).

22. Y. Yemini, A. Dailianas, and D. Florissi. Marketnet: A market-based archi-
tecture for survivable large-scale information systems. In Proceedings of the
4th ISSAT International Conference on Reliability and Quality in Design,
pp. 1–6, (1998).

23. M. Wellman, A Market-Oriented Programming Environment and its Appli-
cation to Distributed Multicommodity Flow Problems, Journal of Artificial
Intelligence Research. 1, 1–23, (1993).

24. A. Othman, P. Dew, K. Djemamem, and I. Gourlay. Adaptive grid resource
brokering. In Proceedings of the 5th IEEE International Conference on Clus-
ter Computing, pp. 172–179, (2003).

25. K. Shirose, S. Matsuoka, H. Nakada, and H. Ogawa. Autonomous config-

August 17, 2008 22:20 World Scientific Review Volume - 9in x 6in champrasert-suzuki

A QoS-aware Architecture for Scalable, Adaptive and Survivable Network Systems 37

uration of grid monitoring systems. In Proceedings of the 4th International
Symposium on Applications and the Internet Workshops, pp. 651–657, (2004).

26. D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste, Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure, IEEE
Journal on Computer. 37(10), 46–54, (2004).

27. C. Adam and R. Stadler. Adaptable server clusters with QoS objectives. In
Proceedings of the 9th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 149–162, (2005).

