
An Immunologically-inspired Autonomic
Framework for Self-Organizing and Evolvable
Network Applications

CHONHO LEE and JUNICHI SUZUKI
University of Massachusetts, Boston

Network applications are increasingly required to be autonomous, scalable, adaptive to dynamic

changes in the network and survivable against partial system failures. Based on the observation

that various biological systems have already satisfied these requirements, this paper proposes and
evaluates a biologically-inspired framework that makes network applications to be autonomous,

scalable, adaptive and survivable. With the proposed framework, called iNet, each network ap-
plication is designed as a decentralized group of software agents, analogous to a bee colony (ap-

plication) consisting of multiple bees (agents). Each agent provides a particular functionality of

a network application, and implements biological behaviors such as reproduction, migration, en-
ergy exchange and death. iNet is designed after the mechanisms behind how the immune system

detects antigens (e.g., viruses) and produces specific antibodies to eliminate them. It models a

set of environment conditions (e.g., network traffic and resource availability) as an antigen and an
agent behavior (e.g., migration) as an antibody. iNet allows each agent to autonomously sense its

surrounding environment conditions (an antigen) to evaluate whether it adapts well to the sensed

environment, and if it does not, adaptively perform a behavior (an antibody) suitable for the
environment conditions. In iNet, a configuration of antibodies is encoded as a set of genes, and

antibodies evolve via genetic operations such as crossover and mutation. Empirical measurement

results show that iNet is lightweight enough. Simulation results show that agents adapt to dy-
namic and heterogeneous network environments by evolving their antibodies across generations.

The results also show that iNet allows agents to scale to workload volume and network size and
to survive partial link failures in the network.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed System; H.4.0
[Information Systems Applications]: Communication Applications

General Terms: Design, Management

Additional Key Words and Phrases: Autonomic networking, Biologically-inspired networking,

Artificial immune systems, Evolvable network applications

1. INTRODUCTION

As large-scale network applications such as data center applications and grid computing
applications have been increasing in complexity and scale, they are increasingly required
to address critical challenges such as autonomy–the ability to operate with minimal human
intervention; scalability–the ability to scale to a large number of network hosts and users;
adaptability–the ability to adapt to dynamic changes in network conditions (e.g., network

Author’s address: Department of Computer Science, University of Massachusetts, Boston, 100 Morrissey Blvd.
Boston, MA 02125. {chonho, jxs}@cs.umb.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, M 20YY, Pages 1–25.

2 · C. Lee and J. Suzuki

traffic and resource availability); survivability–the ability to retain operation and perfor-
mance despite partial system failures (e.g., network host/link failures) [Vasilakos et al.
2008; Dini et al. 2004; Sterritt and Bustard 2003; Rolia et al. 2000; Ranjan et al. 2002].

In order to address these requirements, the authors of the paper envision the network
applications that exhibit self-organization1 with inherent support of autonomy, scalability,
adaptability and survivability. As inspiration for a new design paradigm to realize this vi-
sion, the authors observe that various biological systems have developed the mechanisms to
meet the above requirements [Camazin et al. 2003]. For example, bees act autonomously,
influenced by local conditions and local interactions with other bees. A bee colony can
scale to a huge number of bees because all activities of the colony are carried out without
centralized control. A bee colony adapts to dynamic environmental conditions. When the
amount of honey in a hive is low, many bees leave the hive to gather nectar from flowers.
When the hive is full of honey, bees rest in the hive. A bee colony can survive massive
attacks by predators because it does not depend on any single bee, even on the queen bee.
In fact, these desirable characteristics of a bee colony are not present in any single bee.
Rather, they emerge from the collective actions and interactions of bees in the colony.
Based on this observation, the authors of the paper believe that, if network applications are
designed after certain biological principles and mechanisms, they may be able to meet the
above requirements (i.e., autonomy, scalability, adaptability and survivability).

BEYOND2 is an architecture that applies biological concepts and mechanisms to design
network applications. Each network application is designed as a decentralized group of
software agents. This is analogous to a bee colony (an application) consisting of multiple
bees (agents). Each agent implements a functional service and follows biological behaviors
such as reproduction, replication, migration, energy exchange and death.

This paper focuses on a key component in BEYOND: a biologically-inspired adaptation
mechanism for network applications. The proposed mechanism, called iNet, is designed
after the mechanisms behind how the immune system specifically produces antibodies to
eliminate antigens (e.g., viruses) and how it evolves antibodies to react to a massive num-
ber of antigens. iNet models a set of environment conditions (e.g., network traffic and
resource availability) as an antigen and an agent behavior (e.g., migration) as an antibody.
Each agent contains its own immune system, and a configuration of the agent’s antibodies
defines its behavior policy, which determines when to invoke which behavior. iNet allows
each agent to autonomously sense its surrounding environment conditions (an antigen) to
evaluate whether it adapts well to the sensed conditions, and if it does not, adaptively per-
form a behavior (an antibody) suitable for the conditions. For example, agents may invoke
the replication behavior on the network hosts that accept a large number of user requests
for their services. This leads to the adaptation of agent population; agents can improve
their throughput. Also, agents may invoke the migration behavior to move toward the net-
work hosts that receive a large number of user requests for their services. This leads to the
adaptation of agent locations; agents can improve their response time.

In iNet, a configuration of antibodies (i.e., behavior policy) is encoded as a set of genes.
Agents evolve their antibody configurations so that the configurations become fine-tuned

1Self-organization is a process in which a system’s internal components autonomously react to environmental
changes, interact with each other and create an ordered/stable state (equilibrium point) without being guided by
any outside sources [Camazin et al. 2003; Gershenson and Heylighen 2003].
2Biologically-Enhanced sYstem architecture beyond Ordinary Network Designs

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 3

to the current and even unexpected environment conditions. This evolution process occurs
via genetic operations such as mutation and crossover, which alter antibody configurations
(genes) during agent reproduction and replication. Evolution frees agent developers from
anticipating all possible environmental changes and tuning their agents’ antibody config-
urations (behavior policies) to the changes at design time. This can significantly simplify
the implementation of agents.

This paper evaluates iNet through empirical and simulation studies. Empirical evalua-
tion results show that iNet allows agents to efficiently sense their surrounding environment
conditions and select a behavior suitable for the condition. Simulation results show that
iNet allows agents to adapt to dynamic and heterogeneous network environments by evolv-
ing their antibody configurations (behavior policies) across generations. The results also
show that iNet allows agents to scale to workload volume and network size and to survive
partial link failures in the network.

This paper is organized as follows. Section 2 overviews the BEYOND architecture.
Section 3 describes the design and implementation of iNet. Section 4 shows a series of
empirical and simulation results to evaluate iNet. Sections 5 and 6 conclude with some
discussion on related work and future work.

2. THE BEYOND ARCHITECTURE

This section overviews the design principles that BEYOND applies (Section 2.1), and
presents the structure and behaviors of each agent (Section 2.2).

2.1 Design Principles

In BEYOND, agents are designed based on the five principles described below.

(1) Decentralization: In various biological systems (e.g., bee colony), there are no
central leader entities to control or coordinate individual entities in order to increase scala-
bility and survivability. Similarly, in BEYOND, there are no central entities to control and
coordinate agents so that they can be scalable, survivable and simple by avoiding a single
point of performance bottlenecks [Minar et al. 1999] and failures [Albert et al. 2001] and
by avoiding any central coordination in deploying agents [Cabri et al. 2000].

(2) Autonomy: Inspired by biological entities (e.g., bees), agents sense their surround-
ing network conditions, and based on the sensed conditions, they autonomously behave and
interact with each other without any intervention from/to other agents and human users.

(3) Emergence: In biological systems, collective (group) behaviors emerge from lo-
cal interactions of autonomous entities [Camazin et al. 2003]. In BEYOND, agents only
interact with nearby agents. They behave against dynamic changes of environment con-
ditions such as user demands and resource availability. Through collective behaviors and
interactions of individual agents, desirable system characteristics (e.g., load balancing and
resource efficiency) emerge in a swarm of agents.

(4) Lifecycle: Biological entities strive to seek and consume food for living. Similarly,
in BEYOND, agents store and expend energy for living. Each agent gains energy in ex-
change for performing its service to other agents or human users, and expends energy to
use network and computing resources (e.g., network bandwidth and memory space). The
abundance or scarcity of stored energy in agents affects their lifecycle. For example, an
abundance of stored energy indicates higher demand to an agent; thus, the agent may be de-

ACM Journal Name, Vol. V, No. N, M 20YY.

4 · C. Lee and J. Suzuki

signed to favor reproduction or replication to increase its availability. A scarcity of stored
energy (i.e., an indication of lack of demand) causes death of the agent.

(5) Evolution: In addition to individual adaptation, in which individual biological enti-
ties behave according to environmental changes, the entities evolve as a species to increase
the fitness to the environment across generations. In BEYOND, as described above, indi-
vidual agents adapt to environmental changes in the network by invoking their behaviors.
In addition, agents collectively evolve their genes (behavior policies) by generating behav-
ioral diversity and executing natural selection. Behavioral diversity means that different
agents possess different behavior policies (genes). This is generated via genetic operations
(e.g., mutation and crossover) during replication and reproduction. Natural selection is
triggered with agents’ energy levels. It retains the agents whose energy levels are high
(i.e., the agents that have beneficial/effective behavior policies, such as moving toward a
user to gain energy) and eliminates the agents whose energy levels are low (i.e., the agents
that have detrimental/ineffective behavior policies, such as moving too often). Through
successive generations, effective behavior policies become abundant in an agent species
while ineffective ones become dormant or extinct. This allows agents to adapt to dynamic
network environments.

2.2 Agent Structure and Behaviors

Each agent consists of attributes, body and behaviors. Attributes carry descriptive infor-
mation regarding an agent, such as agent ID, energy level, the description of a service the
agent provides, and the cost of a service (in energy unit) that the agent provides. Body
implements the functional service that an agent provides. For example, an agent may im-
plement a web service in a data center, while another agent may implement a scientific
simulation model in a grid computing system. Behaviors implement the actions inherent
to all agents. This paper focuses on the four behaviors described below.

(1) Migration: Agents may move from one network host to another. For example,
some agents may move to the hosts near users to gain more energy from them. Others may
move to the hosts whose resource availability is higher, in order to gain more resources.

(2) Replication: Agents may make a copy of themselves. A replicated (child) agent
is placed on the host that its parent agent resides on, and it inherits the parent’s antibody
configuration (i.e., behavior policy) as well as the half amount of the parent’s energy level.
Mutation may occur on the inherited antibody configuration.

(3) Reproduction: Agents may produce their offspring with other agents (mating part-
ners). A reproduced (child) agent is placed on the host that operates a parent that invokes
the reproduction behavior. It inherits antibody configurations (i.e., behavior policies), via
crossover, from its parent agents. Each parent also give a child agent the quarter amount
of its energy level. Mutation may occur on the antibody configuration of a child agent.

(4) Death: Agents die due to energy starvation. If an agent cannot balance its energy
expenditure with its energy gain, the agent cannot pay for the resources it needs; thus,
it dies from lack of energy. When an agent dies, all resources allocated to the agent are
released.

Each agent expends a certain amount of energy to invoke its behaviors except the death
behavior. The behavior cost is constant for all agents.
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 5

3. THE INET ARTIFICIAL IMMUNE SYSTEM

This section overviews how the natural immune system works (Section 3.1) and describes
how iNet is designed after the natural immune system (Section 3.2).

3.1 Natural Immune System

The natural immune system adaptively regulates the body against dynamic environmental
changes such as antigen invasions. Through a number of interactions among various white
blood cells (e.g., macrophages and lymphocytes such as T-cells and B-cells) and molecules
(e.g., antibodies), the immune system evokes two responses to antigens: T-cell activation
and B-cell activation responses.

In the T-cell activation response, the immune system performs self/non-self discrimina-
tion. This response is initiated by macrophages. Macrophages move around the body to
ingest antigens and present them to T-cells. T-cells are produced in thymus though the neg-
ative selection. In the negative selection process, thymus removes the T-cells that strongly
react to the body’s own (self) cells. The remaining T-cells are used as detectors to identify
foreign (non-self) cells. When a T-cell detects a non-self cell presented by a macrophage,
the T-cell secretes chemical signals to induce the B-cell activation response.

In the B-cell activation response, B-cells are activated by T-cells. Some of the activated
B-cells strongly react to an antigen, and they produce the antibodies that specifically kill the
antigen. Antibodies form a network and communicate with each other [Jerne 1984]. This
immune network is structured with stimulation and suppression relationships among anti-
bodies. Through the interactions with these relationships, antibodies dynamically change
their populations, thereby changing immune network structure. Thus, immune response
is offered by multiple types of antibodies, although a single type of antibody (the best
matched with an antigen) may play the dominant role. The immune network also regulates
the quantitative balance of antibodies. For example, the population of specific antibodies
rapidly increases following the detection of an antigen and, after eliminating the antigen,
decreases again.

In order to react a massive number of antigens, the immune system needs to be able to
generate various types of antibodies. A primary repertoire of antibodies is approximately
109 using immune genes. B-cells can increase this repertoire further by mutating and
recombining immune gene segments so that antibodies can bind an unlimited number of
antigens [Berek 2005].

3.2 Design and Implementation of iNet

The iNet artificial immune system consists of the environment evaluation (EE) facility and
behavior selection (BS) facility, which implement the the T-cell activation response and
B-cell activation response, respectively (Figure 1). The EE facility allows an agent to
continuously sense a set of the current environment conditions as an antigen and classify
the antigen to self or non-self. A self antigen indicates that the agent adapts to the current
environment conditions well, and a non-self antigen indicates it does not. When the EE
facility detects a non-self antigen, it activates the BS facility. The BS facility allows an
agent to choose a behavior as an antibody that specifically matches with the detected non-
self antigen.

3.2.1 Environment Evaluation Facility. The EE facility performs two steps: initial-
ization and self/non-self classification. The initialization step produces detectors (T-cells)

ACM Journal Name, Vol. V, No. N, M 20YY.

6 · C. Lee and J. Suzuki A set of environmentconditions (antigen)
Environment Evaluation(T-cell activation)
Behavior Selection(B-cell activation)

Non-self detector(T-cell)Self detector(T-cell)Behavior(antibody)Activation
Behavior policy(immune network)

Fig. 1. iNet Architecture

Randomly generatedenvironment condition (R)
Self Detector (Ds)

User-defined selfenvironment condition (S)
Non-self Detector (Dn)Distance (R, S) > T=< T T: threshold

> T=< TRandomly generatedenvironment condition (R)
Self Detector (Ds)

User-defined selfenvironment condition (S)
Non-self Detector (Dn)Distance (R, S) > T=< T T: threshold

> T=< T

D3 0 (Self)D1 0 (Self)D2 1 (Non-self)….
F1 F2 F3 …. ClassFeatures

Detector Table
Detectors(Vectors)D3 0 (Self)D1 0 (Self)D2 1 (Non-self)….

F1 F2 F3 …. Class
D3 0 (Self)D1 0 (Self)D2 1 (Non-self)….

F1 F2 F3 …. ClassFeatures

Detector Table
Detectors(Vectors)

Fig. 2. Initialization Step in the EE facility

F3F3F3F3
high low

light heavy
light heavy

F2: WorkloadF3: Energy level

Xcurrent is non-self

= (F1: High, F2: Heavy, F3: High, Unknown)Xcurrent = (F1: High, F2: Heavy, F3: High, Unknown)XcurrentF1: Resource utilization

low highlow high
low high

F1
F2

F2
F3

Fig. 3. An Example Decision Tree

that identify self and non-self antigens. Each antigen is represented as a feature vector
X = (F1, F2,, Fn, C), which consists of a set of environment conditions (or features:
Fi) and a class value (C). Each environment condition, Fi, has a value. C indicates whether
a given antigen (i.e., a set of environment conditions) is self (0) or non-self (1). For ex-
ample, an antigen may be represented as Xcurrent = ((Low : Resource Utilization, Low :
Workload), 0), if it senses resource utilization and workload (the number of user requests)
on the local host.

The initialization step in the EE facility is designed after the negative selection process
in the immune system (Figure 2). As the immune system randomly generates T-cells first,
the EE facility generates detectors (feature vectors) randomly. Then, the EE facility sepa-
rates the detectors into self detectors, which closely match with self antigens, and non-self
detectors, which do not closely match with self antigens. This separation is performed via
similarity measurement between randomly generated feature vectors (R) and self antigens
(S) that human administrators supply. Similarity is measured based on the Euclidean dis-
tance between the two feature vectors (R and S). After the vector matching, both self and
non-self detectors are stored in the feature table (Figure 2)3.

The second step in the EE facility is self/non-self classification of an antigen (a set of
current environment conditions). It is performed with a decision tree built from detectors
in the feature table. Figure 3 shows an example decision tree that considers three features

3The natural immune system removes non-self detectors during the negative selection process. However, in iNet,
both self and non-self detectors are used to perform self/non-self classification.

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 7

(environment conditions: F1, F2 and F3). Each node in the tree represents a feature.
Based on the feature values in a given antigen (Xcurrent), the EE facility travels through tree
branches from the root, and classifies the antigen to self or non-self according to the leaf
node that the tree traversal reaches. In Figure 3, Xcurrent is classified to non-self as a result
of a tree traversal through F1, F2 and F3. If the EE facility classifies an antigen to non-self,
it activates the BS facility so that an agent can adapt to the current environment conditions
by selecting an appropriate behavior.

The reasons for using a decision tree as an antigen classifier are implementation sim-
plicity and algorithmic efficiency. Decision trees perform classification much faster than
other algorithms such as clustering, support vector machine and Markov model algorithms
[Mitchell 1997]. The efficiency of classification is one of the most important requirements
in iNet because each agent periodically performs self/non-self classification at runtime. A
decision tree is built with the information gain technique [Mitchell 1997] that determines
which features to be located at each layer in a tree while minimizing the tree’s height.

3.2.2 Behavior Selection Facility. The BS facility selects an antibody (i.e., agent’s be-
havior) suitable for a non-self antigen (i.e., environment conditions). Each antibody is
structured as shown in Figure 4. It consists of paratope, a precondition (an environment
condition) under which it is selected; Behavior ID; and idiotope, relationships to other an-
tibodies. Antibodies are linked with each other using stimulation and suppression relation-
ships (see Section 3.1). Each antibody has its own concentration value, which represents its
population. The BS facility identifies candidate antibodies (behaviors) suitable for a given
non-self antigen (environment conditions), prioritizes them based on their concentration
values, and selects the most suitable one from the candidates. When prioritizing antibodies
(behaviors), stimulation relationships between them contribute to increase their concentra-
tion values, and suppression relationships contribute to decrease it. Each relationship has
an affinity value, which indicates the degree of stimulation or suppression.

Relationships to otherantibodies (behaviors)Preconditionunder which thisbehavior is selected AgentBehavior IDBehaviorParatope Idiotope
Fig. 4. An Antibody Structure

Figure 5 shows a generalized immune network of antibodies. The antibody i stimulates
M antibodies and suppresses N antibodies. m ji and mik denote affinity values between
antibody j and i, and between antibody i and k, respectively. mi is an affinity value between
an antigen and antibody i. The concentration of antibody i, denoted by ai, is calculated with
the following equations.

dAi(t)
dt

=

 1
N

N∑
j=1

m ji ·a j(t)−
1
M

M∑
k=1

mik ·ak(t) + mi− k

 ·ai(t) (1)

ai(t) =
1

1 + exp(0.5−Ai(t))
(2)

In Equation (1), the first and second terms in a bracket denote the stimulation and sup-
pression from other antibodies. m ji and mik are positive in between 0 and 1. mi is 1 when
antibody i is stimulated directly by an antigen, otherwise 0. k denotes the dissipation factor

ACM Journal Name, Vol. V, No. N, M 20YY.

8 · C. Lee and J. Suzuki

Antigen

mi1m i1m i1m i1

m iMm iMm iMm iM
m ikm ikm ikm ik

m1im1i

mNimNi
m ji m im im im i ……
stimulation suppression

preconditionprecondition behaviorbehaviorAntibody 1
preconditionprecondition behaviorbehaviorAntibody j
preconditionprecondition behaviorbehaviorAntibody N

precondition behaviorAntibody 1preconditionprecondition behaviorbehaviorAntibody 1
precondition behaviorAntibody Kpreconditionprecondition behaviorbehaviorAntibody K
precondition behaviorAntibody Mpreconditionprecondition behaviorbehaviorAntibody Mprecondition behaviorAntibody ipreconditionprecondition behaviorbehaviorAntibody i

Fig. 5. A Generalized Immune Network

stimulationsuppression
Antibody 2
Antibody 1

low energy level death

heavy workload ona neighboring host replication
high resource utilizationon the local host migrate toa neighboring hostAntibody 3

2
1.5

1.7

Fig. 6. An Example Immune Network

representing the natural death of an antibody. Equation (2) is a sigmoid function used to
squash the Ai(t) value between 0 and 1.

Every antibody’s concentration is calculated 200 times repeatedly. This repeat count is
obtained from a previous simulation experience [Lee and Suzuki 2006]. If no antibody
exceeds a predefined threshold during the 200 calculation steps, the antibody whose con-
centration value is highest is selected (i.e., winner-takes-all selection). If one or more
antibodies’ concentration values exceed the threshold, an antibody is selected based on the
probability proportional to all agents’ concentration values (i.e., roulette-wheel selection).

Figure 6 shows an example immune network. The network contains three antibodies,
which represent the replication, migration and death behaviors. It also contains three rela-
tionships among the three antibodies. Antibody 1 represents the replication behavior and
specifies that the behavior is invoked when workload is heavy on a neighboring host. Anti-
body 1 stimulates antibody 2 and suppresses antibody 3. Now, suppose a (non-self) antigen
indicates that (1) workload is heavy on a neighboring host and (2) energy level is low. This
antigen stimulates antibodies 1 and 3 simultaneously. Their concentration values increase,
and antibody 2’s concentration value becomes the highest because the stimulation affinity
from antibody 1 to 2 is greater than the suppression affinity from antibody 2 to 3. As a
result, the BS facility would select antibody 2; thus, an agent would invoke the migration
behavior to move to a neighboring host.

3.2.3 Evolution of Antibody Configurations. As described in Section 3.1, the natural
immune system diversifies antibodies by mutating immune genes so that antibodies can
react to unanticipated antigens. Similarly, iNet diversifies behavior policies via gene op-
erations (mutation and crossover) so that agents can adapt to unanticipated environment
conditions. In iNet, each agent encodes and possesses its behavior policy as a set of genes.
The genes are represented as a sequence of numbers (genotype), as shown in Figure 7.
When a new agent is born through a replication or reproduction process, it interprets an
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 9

Ab3 Ab4
Ab1 0.2 0.5 2

100 Ab2
Ab3 Ab4
Ab1 0.2 0.5 2

100 Ab2
-0--

Ab3 ---Ab3 120.2
Ab4

0.50Ab4 10Ab2Ab11Ab2Ab1 1 -0--
Ab3 ---Ab3 120.2

Ab4
0.50Ab4 10Ab2Ab11Ab2Ab1 1 1 1 0 1 0 0.2 1 2 0 0.51 1 0 1 0 0.2 1 2 0 0.5

Antibody genes Affinity genes

Phenotype Genotype
Gene crump 1Gene crump 2Gene crump 4 Gene crump 1, 2, …Ab1, 2, …Affinity matrix

Fig. 7. Agent Genes (Genotype and Phenotype)

inherited genotype and form an immune network (behavior policy) as a phenotype. An
affinity matrix is used to map a genotype to phenotype, and vice versa. The agent genotype
consists of the antibody genes, which specify the presence of antibodies, and the affinity
genes, which specify relationships among antibodies and their affinity values.

When an agent invokes the reproduction behavior, it searches mating partner candidates
from its local and neighboring hosts. This search process is performed based on the topo-
logical distance (hop count) from the agent. The agent uses Equation 3 to obtain its mat-
ing partner candidates by randomly selecting M% of the agents running on k-hops-away
neighboring hosts. (γ is a constant.) All (100%) of the agents running on the local (i.e.,
0-hop-away) host are available as mating partner candidates, and the number of available
candidates decreases as k increases. If no candidates are found, an agent performs the
replication behavior instead of the reproduction behavior.

M =
100
kγ

(3)

Among available candidates, a mating partner is selected by ranking them. iNet uses
a domination ranking mechanism [Deb 2001]. Agents are ranked with three objectives:
(1) energy utility, (2) behavior selection efficiency and (3) the number of alive children
(offspring agents). In all of these three objectives, the higher, the better. Energy utility is
the rate of an agent’s total (lifetime) energy gain to its total (lifetime) energy expenditure
(Equation 4). Behavior selection efficiency indicates an agent’s energy gain per behavior
invocation; that is, how an agent effectively invokes a behavior to gain energy. It is updated
as an exponentially-weighted moving average (EWMA) each time an agent invokes a be-
havior (Equation 6). EnergyLevel(t) is the current energy level, and EnergyLevel(t−1) is
the one at the time of the previous behavior invocation. EWMA is used to smooth out short-
term minor oscillations in the data series of ∆EnergyLevel. It places more emphasis on the
long-term transition trend of ∆EnergyLevel; only significant changes in ∆EnergyLevel
have the effects to change O2. The α value is a constant to control the responsiveness of
EWMA against the changes of ∆EnergyLevel. The third objective is the number of alive
children (Equation 6). It indicates how many alive offspring agents still exist (or survive)
out of the ones an agent has ever created through replication and reproduction.

O1(t) =
Total energy gain

Total energy expenditure
(4)

O2(t) = (1−α)∗O2(t−1) +α∗∆EnergyLevel (5)
where ∆EnergyGain = EnergyLevel(t)−EnergyLevel(t−1)

O3(t) = The number o f alive children (t) (6)

ACM Journal Name, Vol. V, No. N, M 20YY.

10 · C. Lee and J. SuzukiEnergy utility

Behavior selection efficiency
of alive childrenC B A Rank 3Rank 1

Rank 2DRank 3

Fig. 8. An Example of Domination Ranking in a Objective Space

Mutation
Child

Crossover
Parent 1
Parent 2 Mutated genes

Fig. 9. An example Genetic Operations

All mating partner candidates are plotted on a three dimensional space whose axises
represent the objectives described above. Then, each candidate is evaluated whether it is
dominated by another candidate. An candidate is considered to be dominated if another
candidate outperforms it in all of three objectives. Figure 8 shows an example of ranking
four different agents (Agent A to D). Agent B dominates all the other agents in all three
objectives; it is called non-dominated and given Rank 1. Agent C is dominated by Agent
B; however, it dominates Agent D; it is given Rank 2. Agents A and D dominate no other
agents; they are given Rank 3. As a result, Agent B (non-dominated agent) is selected as
a mating partner. If multiple non-dominated agents are available, one of them is randomly
selected as a mating partner.

In reproduction, two parents contribute their genes (behavior policies), via crossover, to
a child agent. The amount of their gene contributions follow the ratio of the number of
outperforming objectives. For example, in Figure 9, when Agent 1 outperforms Agent 2
in two objectives and, the ratio of the number of outperforming objectives is 2:1 between
Agent 1 and 2. Thus, Agent 1 contributes 2/3 of its genes to a child agent, and Agent 2
contributes the rest (1/3). In replication, a parent agent contributes its whole genes to a
child agent. Both in reproduction and replication, mutation may occur on a child agent’s
genes in a certain probability (mutation rate).

4. EVALUATION

This section evaluates iNet through empirical experiments (Section 4.1) and simulations
(Sections 4.2 to 4.5).

4.1 Empirical Measurement of the EE and BS Facility

This section empirically evaluates the overhead of the EE and BS facilities. All measure-
ments were conducted with a Windows XP PC that has a 2.0 GHz Intel Celeron CPU and
512MB memory space. Table I shows the overhead of self/non-self classification in the EE
facility (Tclassi f y). It indicates how long it takes for the EE facility to classify an antigen
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 11

(a set of environment conditions) into self or non-self. Each agent incurs this classification
overhead at runtime. However, the overhead is small enough and acceptable for most net-
work applications. Note that seven features are used in each of all subsequent experiments.

Figure 10 shows the overhead of the BS facility (TBS). It indicates how long it takes for
the BS facility to select an antibody (behavior) suitable for a given antigen. The overhead
of the BS facility is larger than that of the EE facility, and it increases exponentially as
the number of antibodies grows. However, the BS facility does not work periodically; it is
activated only when an agent does not adapt well to the current environment conditions.

The Number of Features 3 4 5 6 7 ... 10

Tclassi f y (msec) 1.5 3.0 3.0 3.0 3.0 ... 4.5

Table I. Overhead of Self/Non-self Classification in the EE Facility

02550
75100125150175200

10 20 30 40 50 60 70 80 90# of antibodiesBehavio
r selecti
on over
head (msec) # of antibody = 75TBS = 135.4

02550
75100125150175200

10 20 30 40 50 60 70 80 9002550
75100125150175200

10 20 30 40 50 60 70 80 90# of antibodiesBehavio
r selecti
on over
head (msec) # of antibody = 75TBS = 135.4

Fig. 10. Behavior Selection Overhead

015
3045
60

10 100 200 300 400 500

only non-self only self random

of antigensCumula
tive ove
rhead (s
ec)

015
3045
60

10 100 200 300 400 500015
3045
60

10 100 200 300 400 500

only non-self only self random

of antigensCumula
tive ove
rhead (s
ec)

Fig. 11. Cumulative Overhead

For evaluating the impact of the EE facility on the efficiency of iNet, Figure 11 shows the
cumulative overhead of iNet that repeatedly executes both the EE and BS facilities against
multiple antigens. This overhead is measured with three scenarios described below.

(1) Self environment conditions only: The EE facility receives self environment condi-
tions only. This scenario emulates a static network where its environment conditions
do not dynamically change and agents always adapt well to them.

(2) Non-self environment conditions only: The EE facility receives non-self environ-
ment conditions only. This scenario emulates a dynamic network where its environ-
ment conditions change and agents always need to adapt to them with the BS facility.

(3) Random environment conditions: The EE facility randomly receives self and non-
self environment conditions. It receives self environment conditions at the probability
of 50%. This scenario emulates a dynamic network where its environment conditions
dynamically change and agent need to adapt to them at the probability of 50%.

In Scenario 1, iNet executes only the EE facility for every antigen because all given
antigens are self. It takes 1.5 seconds to execute the EE facility for 500 antigens. In
Scenario 2, iNet always executes both the EE and BS facilities for every antigen because
all given antigens are non-self. It takes approximately 70 seconds to execute both facilities
for 500 antigens. The overhead of the BS facility dominates this total overhead. In Scenario
3, iNet executes the EE facility for self antigens and both the EE and BS facilities for non-
self antigens. Consequently, its overhead result is in between those in Scenarios 1 and 2.
Figure 11 shows that the EE facility effectively avoids executing the BS facility when

ACM Journal Name, Vol. V, No. N, M 20YY.

12 · C. Lee and J. Suzuki

it identifies self antigens, thereby eliminating the unnecessary overhead (and associated
resource consumption) of the BS facility.

4.2 Simulation Configurations

This section shows a series of configurations used in simulations. All simulations were
carried out on the BEYOND simulator4. (See also Appendix A.) In each simulation, iNet
considers seven environment conditions listed in Table II. Also, iNet uses the parameter
values shown in Table III. Figure 12 shows a simulated network consisting of 100 hosts
connected in a 10x10 grid topology. Each agent implements a web service that receives a
service request and returns an HTML file. Service requests travel from users to agents via
user access point (Figure 12). This simulation study assumes that a single (virtual) user
runs on the access point and sends service requests to agents.

Figure 13 shows how the user changes service request rate over time. This follows a
workload trace of the www.ibm.com site [Chase et al. 2001]. The workload peaks 5,500
and 9,000 requests/minute in the morning and the afternoon, respectively. At the beginning
of each simulation, four agents are deployed on randomly-selected hosts, and each agent’s
behavior policy is randomly configured.

4.2.1 Performance Index. To quantify agent performance, this simulation study uses
the following performance index, which is a weighted sum of performance factors (pi):

Per f ormance Index =
∑

wi · pi (7)

This simulation study considers the following four factors. Each factor value is non-
negative between 0 and 1.

(1) Response time (p1): The response time of an agent for a service request from the

4The current code base of the BEYOND simulator contains 16,492 lines of Java code.

Environment Condition (paratope)
Condition Description Value
EnergyLevel Energy level of an agent High, Low
of agents@localHost The number of agents on the local host Large, Small
of agents@neighboringHost The number of agents on a neighboring host Large, Small
Workload@localHost Workload at the local platform Heavy, Light
Workload@neighboringHost Workload at a neighboring platform Heavy, Light
ResourceAvail@localHost Resource availability on the local host High, Low
ResourceAvail@neighboringHost Resource availability on a neighboring platform High, Low

Table II. Environment Conditions considered in Simulations

Parameter Symbol Value
Dissipation factor (Equation 1) k 0.1
Distance factor (Equation 3) γ 1.5
EWMA coefficient (Equation 6) α 0.5
Weight value for each performance factor (Equation 7) wi 0.25
The minimum time for an agent to process a single request (Equation 8) R 0.25
The maximum number of messages an agent can process per minute (Equation 10) Mmax 240

Table III. Parameter Values used in Simulations

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 13

Agent

Service
requests from us

ers
Server Farm(Simulated user)

Useraccess point

Fig. 12. A Simulated Network

02
46
810

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24# of mes
sages /
min K Workload

Fig. 13. Workload

user. R is the minimum time for each agent to process a single service request.

p1 =
R

Response time
(8)

(2) Throughput (p2): This factor indicates how many service requests agents process.

p2 =
o f service requests processed by all agents
Total # o f service requests issued by the user

(9)

(3) Load distribution (p3): This factor indicates how workload is distributed over
agents. m denotes the number of service requests that an agent processes in a unit time. µm
denotes the expected number of service requests that each agent processes. Mmax denotes
the maximum number of service requests that an agent can process in a unit time.

p3 = 1−
abs(m−µm)

Mmax
where µm =

Total # o f service requests issued by the user
Total # o f agents

(10)

(4) Resource utilization balance (p4): This factor indicates how resource utilization
is distributed over hosts. r denotes the resource utilization rate on the local host that an
agent resides on (0 to 1; 0% to 100%). This is measured as the ratio of the amount of
resources consumed by agents on the host to the amount of resources available on the host.
µr denotes the expected resource utilization rate on each of the hosts where agents run.

p4 = 1−abs(r−µr) where µr =
The sum o f resource utilization rate on all hosts

o f hosts that agents reside on
(11)

4.2.2 Mutation Rate and Range. Two parameters, mutation rate (MR) and mutation
range (MG), impact the evolution and adaptation of agents. MR indicates how often genes
(behavior policies) are altered during replication and reproduction. RG is the value range
to alter genes. In order to evaluate the impacts of different MRs on agent evolution, Fig-
ures 14 and 15 show how the average and maximum performance index change over time,
respectively. With a lower MR, agents improve performance index more slowly; however,
the improvement is more stable. With a higher MR, agents improve performance index
more quickly; however, larger fluctuations exist in the improvement.

In order to evaluate how different RGs impact agent performance, Figures 16 and 17
show the transition of average and maximum performance index, respectively. With a
smaller RG, agents improve performance index more slowly; however, the improvement is

ACM Journal Name, Vol. V, No. N, M 20YY.

14 · C. Lee and J. Suzuki

Mutation Rate (MR) Mutation Range (RG)
0 0.01498 1 0.01576

0.3 0.01872 2 0.01872
0.6 0.01913 3 0.02094
1 0.02815 4 0.02698

Table IV. Sum of Squared Errors to a Linear Regression Line

more stable. With a higher RG, agents improve performance index more quickly; however,
larger fluctuations exist in the improvement.

Figure 18 and Table IV focus on the fluctuations in the improvement of performance
index. Figure 18 shows the sum of difference between two consecutive performance index
(
∑

t abs(per f ormance index(t)− per f ormance index(t−1))).
For each line in Figures 14 and 16, linear regression was performed. Table IV depicts the

difference between a regression line and an actual line as the sum of squared errors between
them. Figure 18 and Table IV confirm that fluctuation becomes larger in the improvement
of performance index as MR and RG grow.

For agents (network applications), both speed and stability are important in the improve-
ment of performance index. By balancing this tradeoff, subsequent simulations use MR of
0.3 and RG of 2.

4.3 Agent Adaptability

This section shows a series of simulation results to evaluate agent adaptability. Section
4.3.1 evaluates how an iNet evolution process impacts the adaptability of agents. Section
4.3.2 shows how the EE facility contributes to improve the adaptability of agents.

0.550.6
0.650.7
0.75

MR=0MR=0.3MR=0.6MR=10 3 6 9 12 15 18 21 24Simulation TimePerform
ance Ind
ex

Fig. 14. Average Performance Index with Different Mu-
tation Rates (RG = 2)

0.60.7
0.80.9
1

MR=0MR=0.3MR=0.6MR=10 3 6 9 12 15 18 21 24Simulation TimePerform
ance Ind
ex

Fig. 15. Maximum Performance Index with Different
Mutation Rates (RG = 2)

0.550.60.650.70.75
RG=1RG=2RG=3RG=40 3 6 9 12 15 18 21 24Simulation TimePerform

ance Ind
ex

Fig. 16. Average Performance Index with Different Mu-
tation Ranges (MR = 0.3)

0.60.7
0.80.9
1

RG=1RG=2RG=3RG=40 3 6 9 12 15 18 21 24Simulation TimePerform
ance Ind
ex

Fig. 17. Maximum Performance Index with different
Mutation Ranges (MR = 0.3)

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 15

00.20.4
0.60.81
1.21.4 MR=0MR=0.3MR=0.6MR=1

0 3 6 9 12 15 18 21 24Simulation Time00.20.4
0.60.81
1.21.4 MR=0MR=0.3MR=0.6MR=1

0 3 6 9 12 15 18 21 24Simulation Time 00.20.4
0.60.81
1.21.4 RG=1RG=2RG=3RG=4

0 3 6 9 12 15 18 21 24Simulation Time00.20.4
0.60.81
1.21.4 RG=1RG=2RG=3RG=4

0 3 6 9 12 15 18 21 24Simulation Time
Fig. 18. Sum of Difference between Consecutive Performance Index

4.3.1 Evaluation of iNet Evolution Process. This section presents how iNet evolution
process impacts the adaptability of agents by comparing simulation results with and with-
out evolution in iNet. Figure 19 shows how agents adapt their population to workload
changes depicted in Figure 13. With evolution, iNet allows agents to evolve and adapt
their genes (behavior policies). Thus, as they gain energy by processing service requests,
they properly perform the replication or reproduction behaviors to increase their popula-
tion. They also properly perform the death behavior to decrease their population when
workload decreases. On the other hand, without evolution, agents do not change their
randomly-configured genes throughout a simulation. As a result, they fail to adapt their
population to workload changes.

Figure 20 shows how agents adapt their throughput to workload changes. Evolvable
agents autonomously maintain high throughput by dynamically adjusting their locations
and population with the migration and reproduction behaviors. Without evolution, agents
fail to adapt their throughput because they do not evolve their genes.

Figure 21 shows how agents reduce their response time for the user. At the beginning
of a simulation, response time stays high because only four agents process 2,000 service
requests a minute and the distance between the agents and the user is long. However,
as evolvable agents accumulate enough energy from the user and perform the migration,
replication and reproduction behaviors, they rapidly decrease their response time. When
workload spikes at 3:00, response time increases up to 15 seconds; however, agents de-
crease it to approximately 3 seconds by adapting their locations and population. Since
then, they maintain low response time even when workload spikes again at 6:00, and 12:00
and 15:00. Without evolution, agents cannot maintain low response time.

Figure 22 shows the distance (average number of hops) between agents and the user.
At the beginning of a simulation, four agents are randomly deployed on the network, the
distance tends to be large. However, evolvable agents gradually decrease it by moving
toward the user. As discussed above, this adaptation of agent locations contributes to
decrease response time for the user. Without evolution, agents do not adapt their locations
throughout a simulation.

Figure 23 shows how workload is distributed over agents with the Load Balancing Index
(LBI).

Load Balancing Index =

√∑
(Xi−µ)2

N
(12)

ACM Journal Name, Vol. V, No. N, M 20YY.

16 · C. Lee and J. Suzuki

020
4060
80100 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24
of age
nts

Fig. 19. Agent Population

02
46
810 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24# of mes
sages /
min K

Fig. 20. Agent Throughput

05
1015
2025
30 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Average
 respons
e time (s
ec)

Fig. 21. Average Response Time

01
23
45 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Average
 distanc
e betwe
en

the user
 and age
nts

Fig. 22. Average Distance between Agents and the User

050
100150200250300 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Load Ba
lancing
Index

Fig. 23. Load Balancing Index

0.05
0.1

0.15
0.2 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Resourc
e Utiliza
tion

Balancin
g Index

Fig. 24. Resource Utilization Balancing Index

N denotes the total number of agents. Xi denotes the number of service requests pro-
cessed by agent i. µ denotes the expected X (i.e., the total number of service requests in
the network divided by N). LBI represents the variance of the number of service requests
allocated to agents. A lower LBI indicates higher workload distribution over agents.

When workload spikes at 3:00, 6:00 12:00 and 15:00, LBI increases because all requests
are not distributed among agents although they attempt to replicate themselves to process
them evenly. When workload drops at 9:00, 18:00 and 21:00, LBI increases because some
agents become idle and process no requests. Despite these spikes, evolvable agents imme-
diately decrease LBI by adjusting their population. Without evolution, agents fail to yield
low LBI throughout a simulation.

Figure 24 indicates how resource utilization is distributed over hosts with Resource Uti-
lization Balancing Index (RUBI).

Resource Utilization Balancing Index =

√∑
(Rk −µ)2

N
(13)

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 17

0.30.40.50.60.70.80.9 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Perform
ance Ind
ex

Fig. 25. Average Performance Index

0.10.20.30.40.50.6 With evolutionWithout evolutionWith evolutionWithout evolution

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Varianc
e of Per
formanc
e Index

Fig. 26. Variance of Performance Index

00.20.40.60.81

With evolutionWithout evolutionWith evolutionWithout evolutionSimulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24
Entropy

Fig. 27. Entropy: The Degree of Self-Organization

0.05
0.1

0.15
0.2

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24

heterogeneoushomogeneousheterogeneoushomogeneous

Resourc
e Utiliza
tion

Balancin
g Index

Fig. 28. RUBI in Homogeneous and Heterogeneous
Networks

N denotes the number of active hosts, which are the hosts where agents are running.
Rk denotes the resource utilization on host k. µ represents the expected R (the amount of
resources consumed by all agents over the total amount of resources that the active hosts
provide). RUBI represents the variance of resource utilization among active hosts. A lower
RUBI indicates higher distribution of resource utilization.

When agents increase their population according to an an increase in workload, resource
utilization grows on the hosts on which they reside. However, some of them migrate to
neighboring hosts that offer higher resource availability. This means that agents strive
to spread over hosts evenly; therefore, they decrease RUBI immediately after its spikes.
Without evolution, agents fail to distribute resource utilization over hosts.

Figure 25 shows the average performance index of agents. (See also Equation 7.) While
agents do not improve their performance with evolution disabled, they gradually improve it
toward 0.8 with evolution enabled. Together with Figures 19 to 24, Figure 25 demonstrates
that iNet allows agents to successfully evolve and adapt to dynamic network conditions.

Figure 26 shows the variance of performance index among agents. A lower variance
indicates that agents yield performance index results more similarly. While agents do not
decrease their performance index variance with evolution disabled, they converge it to a
very low variance with evolution enabled. Together with Figure 25, Figure 26 demon-
strates that iNet allows all agents to successfully evolve so that they yield similar and high
performance results.

Figure 27 depicts the degree of self-organization of agents with the entropy metric. En-
tropy is measured based on the distribution of agents in the objective space. (See also
Figure 8). It quantifies the disorderliness of agents in the objective space. A lower en-
tropy indicates that agents are more ordered. It is said that agents are self-organizing when

ACM Journal Name, Vol. V, No. N, M 20YY.

18 · C. Lee and J. Suzuki

they autonomously decrease their entropy [Gershenson and Heylighen 2003]. Entropy is
calculated as follows:

Entropy = −
∑

i

pi× log(pi)

The entire objective space is divided to 27 cubes, and pi denotes the probability that
agents exist the i-th cube. The probability is measured as the number of agents in the i-th
cube over the total number of agents.

As Figure 27 shows, entropy increases at the beginning of a simulation because repli-
cated and reproduced agents yield different objective values. However, through evolution
process, agents gradually decrease their entropy. This means that they autonomously yield
similar objective values over time. Together with Figure 25, Figure 27 demonstrates that
iNet allows all agents to successfully self-organize in the objective space through evolution
so that they yield similar objective values and produce high performance results.

iNet allows agents to adapt to different environment on hosts, homogeneity and hetero-
geneity in terms of resource availability (e.g.,memory space). In order to evaluate how
iNet agents effectively work on heterogeneous environment, the simulated network is as-
sumed as a server farm consisting of 50 hosts with 64MB memory space and 50 hosts with
128MB memory space (of 10x10 grid topology). Figure 28 shows the trace of resource
utilization balancing index (RUBI) on both homogeneous and heterogeneous environment.
Agents successfully reduce RUBI to keep balancing the provided resource utilization. In
the heterogeneous environment, RUBI becomes smaller than that of homogeneous envi-
ronment becuase more agents start to invoke high resource migration (i.e., migration to
a neighboring host which has higher resource availability) behavior. More agents run on
hosts with more resources.

4.3.2 Evaluation of the EE Facility. In iNet, evolution process occurs on immune net-
work configurations in the BS facility. The EE facility also contributes to save resource
consumption and execution overhead for behavior selections; in addition, it contributes
to improve the adaptability of agents. Without the EE facility, agents periodically moni-
tors environment conditions and invokes one of behaviors regardless of whether the agent
adapts well or not to the surrounding environment. This results in wasting resources (e.g.,
memory space and CPU cycle) caused by unnecessary behavior selection process. With
the EE facility, agents first evaluate if they adapt to the current environment or not, then
they execute the BS facility only when they do not adapt to the environment.

In order to evaluate the impact of the EE facility, two different types of agents-agents
with and without the EE facility, i.e. EE and BS and Only BS-are compared. Similar to the
previous set of simulation results (Section 4.3.1), the change of agent population, response
time for the user, agent throughput, load balancing index (LBI) and resource utilization
balancing index (RUBI) are measured according to the workload trace (See Figure 13) and
shown in Figure 29, 30, 31, 33, and 34 respectively.

Both type of agents will improve their performance well compared to the agents without
evolution (described in the previous subsection). However, it is shown that agents without
the EE facility unnecessarily invoke some behaviors when they do not have to do. For
example, around 7:00 in Figure 29, about 50 agents with the EE facility processed all
service requests (about 5,500 messages per min) in timely manner. Yet, agents without
the EE facility keep changing their population to about 70 by invoking replication or death
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 19

020
4060
80100120 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24
of age
nts

Fig. 29. Population of Agents

024
6810

1214 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Average
 respon
se time
(sec)

Fig. 30. Average Response Time for the User

02
46
810 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24# of mes
sages /
min K

Fig. 31. Agent Throughput

020
4060
80100120

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24

EE + BS (total 15738)Only BS (total 7541)EE + BS (total 15738)Only BS (total 7541)

of beh
avior inv
ocations

Fig. 32. The Number of Behavior Invocations

050
100150200250 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Load Ba
lancing
Index

Fig. 33. Load Balancing Index

0.05
0.1

0.15
0.2 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Resourc
e Utiliza
tion

Balancin
g Index

Fig. 34. Resource Utilization Balancing Index

0.30.40.50.60.70.8 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Perform
ance Ind
ex

Fig. 35. Average Performance Index of Agents

00.10.20.30.4 EE + BSOnly BSEE + BSOnly BS

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Varianc
e of Per
formanc
e Index

Fig. 36. Variance of Performance Index of Agents

behavior. Then, at 9:00, some of them die as soon as the workload drops because they
are over-replicated and could not gain enough energy from the user. Besides, since agents
without the EE facility cannot adapt their population in timely manner, they also do not
adaptively reduce the response time for the user (shown in Figure 30). They might migrate
to nodes far from the user or die unexpectedly.

Similarly, there are some timelag to improve the performance between two different
ACM Journal Name, Vol. V, No. N, M 20YY.

20 · C. Lee and J. Suzuki

types of agents (i.e. with and without the EE facility). Agents with the EE facility achieves
faster improvement of performance than agents without it; and, the fluctuation in the per-
formance improvement becomes larger without the EE facility. In other words, plots (gray
lines) for agents without the EE facility in Figures 30, 31, 33, and 34 are somehow unstable
and swinging.

Because of the unnecessary behavior invocations, agents without the EE facility waste
resources and spend additional execution overhead. Figure 32 shows the total number of
behavior invocations of running agents during each simulation cycle, i.e., how many times
agents invoke their behaviors. For agents without the EE facility, the number of behavior
invocations is the exactly same as the number of agents because they monitor environment
conditions and invoke one of behaviors each simulation cycle. Agents with the EE facility
are likely to perform behaviors when the workload changes. In total, agents with the EE
facility executes the BS facility 7541 times while agents without the EE facility executes
the BS facility 15738 times during a simulation. Agents with the EE facility will save
almost 47.9% of behavior invocation frequency.

Even though agents with the EE facility performs less behavior selections, they effec-
tively improve their performance index. Figure 35 shows that the average performance
index of agents without the EE facility is unstable, i.e. swinging, and Figure 36 shows
that the variance for agents without the EE facility has not converged well. It follows that
the optimal iNet configuration (genes) is successfully spread out to other surviving agents;
thus, the EE facility also contribute for agents to adapt to the environment conditions well
through generations.

4.4 Agent Scalability

This section shows how agents scale in different size of network in terms of the number
hosts in a server cluster and the workload volume (i.e., the number of service requests per
min). To evaluate the agents scalability, following two cases are compared as described in
Figure 37. (i) 9K requests per min at peak in 100 (10x10) hosts, and (ii) 5K requests per
min at peak in 9 (3x3) hosts. The workload trace follows one thirds of daily request rate at
the www.ibm.com site in February, 2001 [Chase et al. 2001].

Figure 38 to 42 show the comparison results how agents adapt their population, improve
their throughput, reduce the response time for the user, LBI, RUBI respectively to different
scale of workload. Figure 43 and 44 show that agents gradually improve their performance
index and the variance of performance index among alive agents by spreading out the
configuration of immune network (i.e. genes).

Similar to the results in Section 4.3.1, agents successfully adapt their population and
location according to workload changes in order to improve their throughput and response
time for the user, etc. Because agents do not involve in any interventions from/to other
controlling agents, agents are running in decentralized manner regardless of the size of
network and workload volume.

4.5 Agent Survivability

This section presents the agents’ survivability against link failures in server clusters. The
Internet data center should not degrade its performance (e.g., response time for the user
and throughput) and be able to recover from the any types of failures (e.g., unexpected link
failures due to disasters) immediately. The simulation results show that agents with iNet
adapt their population and location against link failures and contribute to improve response
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 21

02
46
810

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24# of mes
sages /
min 10x103x310x103x3K

Fig. 37. Workload (10x10 and 3x3)

020
4060
80100

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24
of age
nts

10x103x310x103x3

Fig. 38. Agent Population

02
46
810

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24# of mes
sages /
min 10x103x310x103x3

Fig. 39. Agent Throughput

02
46
810

12

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Average
 respons
e time (s
ec) 10x103x310x103x3

Fig. 40. Average Response Time for the User

01020
304050
607080

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24

10x103x310x103x3
Load Ba
lancing
Index

Fig. 41. Load Balancing Index

00.050.10.150.2

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Resourc
e Utiliza
tion

Balancin
g Index

10x103x310x103x3

Fig. 42. Resource Utilization Balancing Index

0.30.40.50.60.70.80.91

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Perform
ance Ind
ex 10x103x310x103x3

Fig. 43. Average Performance Index of Agents

00.050.10.150.20.250.30.350.4

Simulation Time0 3 6 9 12 15 18 21 24Simulation Time0 3 6 9 12 15 18 21 24Varianc
e of Per
formanc
e Index 10x103x310x103x3

Fig. 44. Variance of Performance Index

time, throughput, and network lifetime.
In this simulation study, the simulated network is assumed as the Internet data center

containing two server clusters (of a 7x7 grid each) as described in Figure 45. In the middle
of simulation, the link between cluster 1 and a switch is broken at 15:30. Thus, the agents
in cluster 1 are no longer accessible for the user. Then, it takes 90 min to be recovered
(at 17:00). Figure 46 shows how agents adapt their population against link failures in each
cluster 1 and 2. The number of agents in cluster 1 dramatically decreases at 15:30 because

ACM Journal Name, Vol. V, No. N, M 20YY.

22 · C. Lee and J. Suzuki

(Simulated user)
Service requestsfrom usersThe link fails at 15:30

Server clusters in a data center
Cluster 1 Cluster 2

Fig. 45. Simulated Network

030
6090

120 Cluster 1Cluster 2

14:30 15:30 16:30 17:30 18:30
of age
nts

Fig. 46. Agent Population

56
78
910

14:30 15:30 16:30 17:30 18:30# of mes
sages /
min

WorkloadThroughputWorkloadThroughput

K

Fig. 47. Agent Throughput

00.511.522.533.54

14:30 15:30 16:30 17:30 18:30Average
 respons
e time (s
ec)

Fig. 48. Average Response Time for the User

the agents cannot get any service requests from the user and lose their energy. However,
agents in cluster 2 start replicate themselves to process more service requests instead of the
agents in cluster 1. When the link failure is fixed at 17:00, agents in cluster 1 (assume that
one agent is manually invoked after cluster 1 is recovered) increase their population again.

Figure 47 shows how agents improve throughput against link failure. When the link fail-
ure occurs, the throughput will drop because the agents in cluster 1 are dying. However,
the agents quickly improve their throughput even before cluster 1 is recovered by replicat-
ing them in cluster 2. Figure 48 shows how agents reduce the response time for the user
against the link failure. At 15:30, the response time increases because not enough agents
are running in the network to process all service requests. However, by increasing agent
population in cluster 2, agents successfully reduce their response time for the user before
cluster 1 is recovered. Agents autonomously and dynamically adapt their population to
keep high throughput and low response time even during the link failure (15:30 to 17:00).

5. RELATED WORK

This paper describes a set of extensions to the authors’ prior work [Lee and Suzuki 2005;
2006; 2007]. A preliminary design of iNet was reported in [Lee and Suzuki 2005; 2006];
however, it investigated no evolutionary mechanisms. While the iNet evolutionary mech-
anism was reported in [Lee and Suzuki 2007], this paper describes an enhanced version
of the mechanism and reveals extended simulation studies on agent adaptability as well as
new simulation results on scalability, survivability and self-organization.

Artificial immune systems have been proposed and used in various application domains
such as anomaly detection in network hosts [Gonzalez and Dasgupta 2003], pattern recog-
nition in images [de Castro and Timmis 2002], peer-to-peer content discovery [Ganguly
ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 23

et al. 2004] and product recommendation [Chen and Aickelin 2004]. The negative selec-
tion process is applied in [Gonzalez and Dasgupta 2003]. The B-cell activation responses
are applied in [de Castro and Timmis 2002; Ganguly et al. 2004; Chen and Aickelin 2004].
iNet applies both T-cell and B-cell activation responses so that they complement each other.
To the best of the authors’ knowledge, this work is the first attempt to apply an artificial
immune system to the area of self-organizing and evolvable network applications.

The BEYOND architecture is similar to the Bio-Networking Architecture (BNA) [Nakano
and Suda 2005] in that both have biologically-inspired agents evolve and adapt to dynamic
network environments in a decentralized manner. However, they employ different adap-
tation mechanisms for agents. BEYOND investigates an artificial immune system (i.e.,
iNet) while BNA investigates a traditional genetic algorithm (GA). BNA does not have a
mechanism equivalent to the iNet EE facility; thus, agents periodically invoke behaviors
even when they have adapted to the current environment conditions. This can result in
wasting resources caused by unnecessary behavior invocations. In BEYOND, the EE fa-
cility examines whether each agent adapts well to the current environment conditions, and
activates the BS facility only when it does not. As discussed in Section 4, the EE facility
stabilizes agent performance by avoiding unnecessary resource consumption and execu-
tion overhead. Moreover, a GA used in BNA employs a fitness function to rank agents
in mating partner selection. The function contains a threshold value as well as a weight
value for each objective. Agent designers need to manually configure these values through
trial-and-errors. In iNet, no parameters exist for ranking agents because of a domination
ranking mechanism. iNet requires much less configuration costs for agent designers.

Bionets allows each application to encode its information (e.g., its location and user pro-
files) as a set of genes and evolve it with a GA in order to improve user satisfaction [Car-
reras et al. 2006]. Similar to BNA, this GA uses a fitness function to rank agents, and the
function contains a threshold value as well as a weight value for each objective. Therefore,
agent designers incur manual configuration of the fitness function. iNet requires much less
configuration costs for agent designers because no parameters exist for ranking agents.

Organic Grid is a decentralized task scheduling mechanism for grid applications [Chakravarti
et al. 2005]. A computational task is assigned to a set of mobile agents, and they au-
tonomously find and migrate to the hosts that provide enough resources to execute a sub-
task. iNet is similar to Organic Grid in that both allow agents to adapt their locations.
However, iNet-enabled agents can perform many other types of adaptation as well such as
the adaptation of response time, throughput and workload distribution. iNet also considers
scalability and survivability, which are beyond of Organic Grid’s scope.

In traditional rule-based adaptation mechanisms [Bouchenak et al. 2006; Hagimont et al.
2006; Terfloth et al. 2006; Bugajska and Schultz 2002], application developers need to
anticipate all possible environment conditions and manually predefine a set of feasible
adaptation rules against them. When the number of environment conditions grows, the
number of rules often increases dramatically. Thus, manual configuration of rules can
be complicated and error-prone. In contrast, iNet requires no manual configurations of
antibodies (rules); it allows agents to autonomously evolve and tune their antibodies.

There are several structural similarities between the iNet BS facility and neural net-
works. Each neural network consists of neurons, which are connected with each other
through synapses [Stergiou and Siganos 1996; Lee 2003]. The iNet BS facility consists
of antibodies connected with each other with stimulation/suppression relationships. iNet

ACM Journal Name, Vol. V, No. N, M 20YY.

24 · C. Lee and J. Suzuki

considers each antibody’s concentration (i.e., an internal state of an antibody), while most
neural networks do not consider each neuron’s internal state. When iNet receives an in-
put (i.e., a set of environment conditions), it selects an antibody as an output based on the
concentration of each antibody. It memorizes the output as the selected antibody’s concen-
tration and uses the memory to efficiently select an antibody when it encounters the same
input in the near future. Most neural networks do not provide this memory function.

6. CONCLUSION

This paper describes and evaluates an immunologically-inspired adaptation mechanism,
called iNet, which allows network applications to be autonomous, scalable against work-
load volume and network size, adaptive to dynamic and heterogeneous network environ-
ments and survivable against link failures in the network. Inspired by the mechanisms
behind how the immune system works, iNet allows each application component (agent) to
autonomously sense its surrounding environment conditions and adaptively invoke a be-
havior suitable for the conditions. A configuration of antibodies is encoded as a gene, and
antibodies evolve via genetic operations such as mutation and crossover.

Several extensions to iNet are planned. For example, the EE facility will be enhanced
to implement evolutionary process and improve the quality of self/non-self classification.
An extended set of empirical experiments is also planned to deploy and evaluate iNet on a
large-scale experimental networks such as PlanetLab (www.planet-lab.org).

REFERENCES

A, R., J, H., B, A. 2001. Error and attack tolerance of complex networks. Nature 406,
378–382.

B, C. 2005. Somatic hypermutation and b-cell receptor selection as regulators of the immune response.
Transfusion Medicine and Hemotherapy 32, 6, 333–338.

B, S., P, N. D., H, D., T, C. 2006. Autonomic management of clustered applica-
tions. In Proc. of IEEE Int’l Conference on Cluster Computing.

B, M. D. S, A. C. 2002. Coevolution of form and function in the design of micro air vehicles.
In Proc. of NASA/DoD Conference on Evolvable Hardware.

C, G., L, L., Z, F. 2000. Mobile-agent coordination models for internet applications.
IEEE Computer 33, 2, 82–89.

C, S., D, J. L., F, N. R., S, J., T, G., B, E. 2003. Self Organiza-
tion in Biological Systems. Princeton University Press.

C, I., C, I., P, F. D., M, D. 2006. Bionets: Bio-inspired networking for
pervasive communication environments. IEEE Trans. on Vehicular Technology 56, 1, 218–229.

C, A., B, G., L, M. 2005. The organic grid: Self-organizing computation on a
peer-to-peer network. IEEE Trans. on Systems, Man, and Cybernetics 35, 3, 373–384.

C, J., A, D., T, P., V, A., D, R. 2001. Managing energy and server resources in
hosting centers. In Proc. of the Eighteenth ACM Symposium on Operating Systems Principles.

C, Q. A, U. 2004. Movie recommendation systems using an artificial immune system. In Proc. of
the Sixth Int’l Conference in Adaptive Computing in Design and Manufacture.
 C, L. N. T, J. I. 2002. Artificial immune systems: A novel paradigm to pattern recognition. In

Artificial Neural Networks in Pattern Recognition, M. Corchado, L. Alonso, and C. Fyfe, Eds. Univ. of Paisley.
D, K. 2001. Multi-Objective Optimization using Evolutionary Algorithms. Wiley.
D, P., G, W., P, M., C, A., Y, M., P, A. 2004. Internet, grid, self-adaptability

and beyond: Are we ready? In Proc. of IEEE Int’l Workshop on Self-Adaptable and Autonomic Comp. Sys.
G, N., C, G., D, A. 2004. Design of an efficient search algorithm for p2p networks using

concepts from natural immune systems. In Proc. of Int’l Conf. on Parallel Problem Solving from Nature.

ACM Journal Name, Vol. V, No. N, M 20YY.

Self-organizing and Evolvable Network Applications · 25

G, C. H, F. 2003. When can we call a system self-organizing? In Proc. of the Seventh
European Conference on Artificial Life.

G, F. A. D, D. 2003. Anomaly detection using real-valued negative selection. Genetic
Programming and Evolvable Machines 4, 4, 383–404.

H, D., B, S., P, N., T, C. 2006. Self-sizing of clustered databases. In Proc. of the
Seventh Int’l Symposium on World of Wireless, Mobile and Multimedia Networks.

J, N. K. 1984. Idiotypic networks and other preconceived ideas. Immunological Review 79, 5–24.
L, C. S, J. 2005. Autonomic adaptation of network applications with the inet artificial immune

system. In Proc. of the Fourh IASTED Int’l Conf. on Communications, Internet and Information Technology.
L, C. S, J. 2006. Biologically-inspired design of autonomous and adaptive grid services. In Proc. of

the Second IEEE Int’l Conference on Autonomic and Autonomous Systems.
L, C. S, J. 2007. An immunologically-inspired adaptation mechanism for evolvable network appli-

cations. In Proc. of the Fourth IEEE Consumer Communications and Networking Conference.
L, M. 2003. Evolution of behaviors in autonomous robot using artificial neural network and genetic algorithm.

Information Sciences 155, 1, 43–60.
M, N., K, K. H., M, P. 1999. Cooperating mobile agents for dynamic network routing. In

Software Agents for Future Communications Systems, A. Hayzelden and J. Bigham, Eds. Springer.
M, T. 1997. Machine Learning. McGraw-Hill.
N, T. S, T. 2005. Self-organizing network services with evolutionary adaptation. IEEE Trans. on

Neural Networks 16, 5, 1269–78.
R, S., R, J., K, E., F, H. 2002. Qos-driven server migration for internet data centers. In

Proc. of the Tenth IEEE Int’l Workshop on Quality of Service.
R, J., S, S., F, R. 2000. Adaptive internet data centers. In Proc. of Int’l Conference on

Advances in Infrastructure for Electronic Business, Science, and Education on the Internet.
S, C. S, D. 1996. Neural network. Surveys and Presentations in Info. Systems Engineering 4.
S, R. B, D. 2003. Towards an autonomic computing environment. In Proc. of the Fourteenth

IEEE Int’l Workshop on Database and Expert Systems Applications.
T, K., W, G., S, J. 2006. Facts - a rule-based middleware architecture for wireless

sensor networks. In Proc. of the First IEEE Int’l Conf. on Communication System Software and Middleware.
V, A., P, M., S.K, W.P. 2008. Autonomic Communication. Springer.

A. APPENDIX

The BEYOND simulator allows agent designers to visually configure iNet and run their
agents on arbitrary network topologies (Figures 49 and 50).

Fig. 49. The BEYOND Simulator (1). A GUI to Config-
ure a Simulated Network.

Fig. 50. The BEYOND Simulator (2). A GUI to Config-
ure the iNet EE facility.

ACM Journal Name, Vol. V, No. N, M 20YY.

26 · C. Lee and J. Suzuki

ACM Journal Name, Vol. V, No. N, M 20YY.

