
 1

TinyDDS: An Interoperable and
Configurable Publish/Subscribe
Middleware for Wireless Sensor
Networks

Pruet Boonma and Junichi Suzuki
Department of Computer Science
University of Massachusetts
Boston, MA, 02125, USA
{pruet, jxs}@cs.umb.edu

ABSTRACT

Due to stringent constraints in memory footprint, processing efficiency and power consumption,
traditional wireless sensor networks (WSNs) face two key issues: (1) a lack of interoperability with access
networks and (2) a lack of flexibility to customize non-functional properties such as event filtering, data
aggregation and routing. In order to address these issues, this chapter investigates interoperable
publish/subscribe middleware for WSNs. The proposed middleware, called TinyDDS, enables the
interoperability between WSNs and access networks by providing programming language interoperability
and protocol interoperability based on the standard Data Distribution Service (DDS) specification.
Moreover, TinyDDS provides a pluggable framework that allows WSN applications to have fine-grained
control over application-level and middleware-level non-functional properties. Simulation and empirical
evaluation results demonstrate that TinyDDS is lightweight and efficient on the TinyOS and SunSPOT
platforms. The results also show that TinyDDS simplifies the development of publish/subscribe WSN
applications.

INTRODUCTION

Wireless sensor networks (WSNs) have been used to detect events and/or collect data in various domains
such as environmental observation, structural health monitoring, human health monitoring, inventory
tracking, home/office automation and military surveillance. Due to their deeply-embedded pervasive
nature, WSNs have a potential to revolutionize the way that humans understand and construct complex
natural/physical systems (Estrin et al., 1999).

A WSN application requires per-node embedded software that imposes stringent constraints in
memory footprint, processing efficiency and power consumption. In order to satisfy these constraints,
traditional WSN applications often result in vertically integrated and tightly coupled designs. Vertically
integrated designs make WSN applications less interoperable. For example, most of traditional WSNs
lack interoperability with access networks, which allow human users to connect to WSNs and perform
information retrieval such as data collection and event detection (Henricksen & Robinson, 2006; Romer

 2

et al., 2002; Hadim & Mohamed, 2006). Despite the interoperability can foster the practicality and
production deployment of WSNs, they have been investigated and designed separately from access
networks. As a result, it is often ad-hoc, expensive and error-prone to build a gateway node, which is
responsible for protocol bridging and data conversion between WSNs and access networks. Currently,
gateways need to be rebuilt from scratch when WSNs and access networks use different programming
languages and protocols.

Tightly coupled designs make WSN applications less flexible. In WSN applications, it is hard to
flexibly introduce, reuse, customize and replace various non-functional properties such as event
correlation, event filtering, data aggregation and routing policies. Currently, changes in non-functional
properties require substantial re-designs and re-programming of WSN applications. As a result, the
productivity of WSN application development remains low, and the cost of application maintenance
remains high.

In order to address the aforementioned interoperability and flexibility issues, this chapter investigates
interoperable publish/subscribe communication with TinyDDS, which is open-source

1
, standards-based

and configurable middleware for WSNs. It is designed and implemented generic enough to aid in
developing a wide range of event detection and data collection applications. Compliant with Object
Management Group (OMG)’s standard Data Distribution Service (DDS) specification (Object
Management Group, 2007), TinyDDS provides two types of interoperability: programming language
interoperability and protocol interoperability.

Programming language interoperability is the ability of TinyDDS to interoperate applications written
in different programming languages. TinyDDS implements a set of standard DDS APIs in nesC

2
 (Gay et

al., 2003) and Java Micro Edition (Simon & Cifuentes, 2005) by providing mappings of the OMG
Interface Definition Language (IDL) (Object Management Group, 2007) to the two languages. TinyDDS’
nesC version operates on the TinyOS platform (Levis, et al., 2005), and its Java version operates on the
SunSPOT platform (Simon & Cifuentes, 2005). This allows different applications to use different
languages with the same DDS APIs. For example, an access network application (or end-user application)
may be implemented with Java or JavaScript, while a WSN application may be implemented with nesC or
Java. Application developers do not have to learn/use different APIs for different applications. This can
significantly improve their productivity in application development.

Protocol interoperability is the ability of TinyDDS to interoperate WSNs and access networks built
with different MAC (L2), routing (L3) and transport (L4) protocols. TinyDDS implements a session (L5)
protocol, called TinyGIOP, which is a subset of the OMG General Inter-ORB Protocol (GIOP) (Object
Management Group, 2007). Similar to GIOP, TinyGIOP is independent from underlying L2 to L4
protocols. It transmits data formatted with TinyCDR, which is a subset of the OMG Common Data
Representation (CDR) (Object Management Group, 2007). CDR defines the standard binary
representations of IDL data types. Taking advantage of TinyGIOP and TinyCDR, TinyDDS allows
gateway nodes to be reusable to bridge various WSNs and access networks even if the two networks use
different L2, L3 and L4 protocols. This way, it is intended to reduce the costs (time and labor) to build
and maintain gateways. TinyDDS is the first DDS implementation for the TinyOS and SunSPOT
platforms.

TinyDDS addresses the flexibility issue described earlier by providing a pluggable framework that
decouples various non-functional properties from WSN applications. The framework allows WSN
applications to flexibly reuse and configure non-functional properties according to their requirements. For

1TinyDDS is available at dssg.cs.umb.edu.
2 nesC is a dialect of the C language for WSNs.

 3

example, an event detection application may require in-network event correlation and filtering as its non-
functional properties in order to eliminate false positive sensor data in the network. A data collection
application may require data aggregation as its non-functional property in order to reduce traffic volume
and expand the network’s lifetime. Without breaking the generic architecture of TinyDDS, its pluggable
framework allows WSN applications to have fine-grained control over non-functional properties and
specialize in their own requirements. Currently, TinyDDS supports two types of non-functional
properties: application-level and middleware-level non-functional properties. TinyDDS is the first
middleware for WSN applications to flexibly configure the two types of non-functional properties.
 This chapter describes the design, implementation and performance of TinyDDS. It discusses the
layered architecture of TinyDDS, followed by details of each layer, application development process with
nesC and Java, and a pluggable framework for non-functional properties. This chapter also evaluates
TinyDDS’ performance through blackbox and whitebox measurements in simulation and empirical
experiments. TinyDDS is lightweight and efficient, and simplifies the development of publish/subscribe
WSN applications.

BACKGROUND

This section overviews the publish/subscribe communication scheme and describes the standard DDS
specification.

Publish/Subscribe Communication in WSNs
The publish/subscribe (pub/sub) communication scheme (Banavar et al., 1999; Eugster et al., 2003) is
expected to significantly aid in developing and maintaining WSN applications by decoupling space and
time among event source nodes (publishers) and sink nodes (subscribers) (Hadim & Mohamed, 2006;
Wang et al., 2008; Henricksen & Robinson, 2006). In the pub/sub scheme, a subscriber has the ability to
express its interest in an event or a pattern of events in order to be notified subsequently. Each interest is
subscribed to a publisher(s), and the publisher(s) notifies an event to a subscriber(s) when the event
matches a subscribed interest. Publishers do not need to know the number and locations of subscribers,
and vice versa. Thus, publishers indirectly publish events to subscribers, and subscribers indirectly
subscribe their interests to publishers. Moreover, publishers do not need to know the availability of
subscribers, and vice versa. For example, subscribers may be active, sleeping or dead due to a lack of
battery when a publisher publishes an event to them. Event subscription and publication are
asynchronously transmitted among publishers and subscribers. By decoupling publishers and subscribers
in space and time, the pub/sub scheme can improve scalability in terms of network size and traffic
volume.

OMG DDS Specification
DSS is a specification that OMG standardizes for pub/sub middleware. It provides standard interfaces for
event subscription and publication in Interface Definition Language (IDL). TinyDDS implements them
with nesC and Java for the TinyOS and SunSPOT platforms, respectively. DDS consists of two layers: a
lower-level fundamental layer called Data-Centric Publish-Subscribe (DCPS) and a higher-level optional
layer called Data Local Reconstruction Layer (DLRL). DCPS defines a set of interfaces for event
subscription and publication. Using the interfaces, each event is defined with an associated topic. The
interfaces also allow applications to declare their intents to become publishers and subscribers and
transmit event subscriptions/publications between publishers and subscribers. DLRL automatically

 4

obtains events from a remote publisher and allows a subscriber to access the events as if they were locally
available. Currently, TinyDDS implements DCPS only to minimize its memory footprint and processing
overhead.
 Figure 1 and 2 show key components in DDS. Figures 3 and 4 illustrate how these DDS components
are used in the subscription and publication processes, respectively. Each node operates a single instance
of DomainPartipant for each domain. A domain is a context to which a DDS application is
associated. A DomainPartipant maintains references to all objects associated to the same domain.

 When an event-sink application subscribes to an event(s), it instantiates Subscriber with the local
DomainParticipant (Figure 3). Then, it creates an instance(s) of Topic according to the event(s) it
is interested in. A topic uniquely identifies a particular event’s content type or context. For each topic, the
application instantiates DataReader and SubscriberListener as the access points for reading
event data in the future (Figure 3). An event subscription is transmitted toward an event-source
application(s) via Subscriber.
 Similarly, an event-source application instantiates Publisher with the local
DomainParticipant (Figure 4). It creates an instance(s) of Topic according to the event(s) it
generates. For each topic, the application instantiates DataWriter as the access point for writing out
event data in the future (Figure 4).
 When an event-source application generates an event, it writes out the event to a DataWriter.
Then, the event is transmitted toward an event-sink application(s) via Publisher. At a node where an
event-sink application runs, a Subscriber monitors incoming event messages. If the application has
subscribed to the topic of an incoming event, Subscriber informs the local SubscriberListener
and DataReader that are associated with the event topic (Figure 1). Then, the
SubscriberListener informs the event’s arrival to the application, which in turn reads the event via
DataReader.

Instead of receiving all incoming events of the subscribed topics, an event-sink application can filter
them out with a ContentFilteredTopic, which derives Topic (Figure 2).
ContentFilteredTopic is used to specify a subscription interest in the events whose contents
satisfy certain criteria. For example, an event-sink application can specify an interest in the events whose

Figure 1 DDS Architecture

Publisher

Application
(Event Source)

Subscriber

Subscriber
Listener

Application
(Event Sink)

Topic B

Data ReaderData Writer

Network

DDS DDS

Event flow Data flow

Topic A Topic B

D
o

m
a

in
P

a
rt

ic
ip

a
n

t

D
o

m
a

in
P

a
rt

ic
ip

a
n

t

Event Source Event Sink

 5

Figure 3 Standard DDS Interfaces

enable()
set_qos()
get_qos()
set_listener()
get_listener()

Entity

name: string
QosPolicy

create_publisher()
create_subscriber()
create_topic()
create_contentfilteredtopic()

DomainParticipant

DomainEntity

get_expression_parameters()
set_expression_parameters()

filter_expression : string
ContentFilteredTopic

Topic

create_datawriter()

Publisher

write()

DataWriter

create_datareader()

Subscriber

read()
on_data_available()

DataReader

on_data_on_readers()

SubscriberListener

Data

* 1

*

* *

* *

11

*

0..1

*

Figure 2 Subscription Process

:Application

create_subscriber

Create

:DomainParticipant

:Subscriber
Listener

set_listener

:DataReader

get_datareaders

"data available"

Network

read

:Subscriber

Create

create_datareader

Create

"data available"

on_data_on_readers

"data available"

read

 6

topic is Temperature and whose contents is in between 100 and 150 degrees by defining “Temperature >
100 AND Temperature < 150” as criteria in a ContentFilteredTopic. In DDS, event filtering
expression is described with a subset of SQL syntax.

 Besides a set of standard DDS interfaces, the DDS specification defines no algorithms/protocols for
event publication and subscription; they are left to DDS implementations. TinyDDS implements a
subscription protocol and several publication protocols as subsequent sections discuss.

TINYDDS ARCHITECTURE

In Figure 5, TinyDDS architecture running in each sensor nodes is shown in the figure, with labeled
TinyDDS. Currently, there are two implementations of TinyDDS, one for TinyOS platform, for example,
Mica Z, Mica 2 or iMotes2 sensor nodes. The other is for Sun Microsystem’s SunSPOT platform. The
figure shows the architecture of TinyDDS for TinyOS running on TinyOS, i.e., inside a Mica Z mote, on
the left hand side and the TinyDDS for SunSPOT platform on the right hand side. TinyDDS running on
TinyOS-based sensor nodes is implemented in nesC programming language. On the other hand, TinyDDS
running on SunSPOT platform is implemented on Java programming language and operates on top of
Squawk Virtual Machine inside SunSPOT sensor nodes. With respect to TCP/IP reference model,
TinyDDS operates in transport layer and work on top of any network layer (L3) implementation.
TinyDDS follows Layer design pattern (Buschnmann, Meunier, Rohnert, Sommerland, & Stal, 1996) by
separating different functionalities into different layers.

At the top layer, TinyDDS provides a subset of DDS interfaces to be used by applications. An
application implemented on top of DDS can disseminate events to the network with associated topic and
the events are captured by any subscribers, i.e., base station, who has interest on the topic of the events.
The implementation of those interfaces, as described in the previous section, operates on top of an overlay
network for event routing. Different routing protocols can be used to implement the overlay network by
implementing in the Overlay Event Routing Protocols (OERP) layer. This OERP layer allows application
developer to choose appropriate routing protocol to suit their requirements and constraints. For example,

Figure 4 Publication Process

:Application

create_publisher

Create

create_topic

:DomainParticipant

Create
:Topic

create_datawriter

:DataWriter
Create

write

"data available"
"data available"

Network

write

:Publisher

"data available"
"data available"

 7

in sensor network with very limited memory space sensor nodes, spanning-tree routing protocol may be
used because it needs minimal memory space to maintain routing table. On the other hand, sensor
network, which try to minimize the energy consumption of memory rich sensor nodes, may use DHT-
based (Distributed Hash Table based) routing protocol. Moreover, OERP layer hides all event routing
protocol implementation from developers. For example, if spanning-tree is used in OERP, the spanning-
tree implementation wills forms the tree where the subscriber node is the root of the tree. The routing
information, e.g., tree structure in spanning-tree, is performed when sensor nodes are started up and
maintained automatically by the implementation in OERP layer. By using this OERP layer, TinyDDS
frees developers from the need to manually maintain the event routing between nodes and the limitation
of routing algorithm used in network layer, which generally depends on sensor node platform. The
routing protocol in OERP layer utilizes low-level network layer implementation through a L5 layer called
TinyGIOP. TinyGIOP encapsulates data into transportation messages and interacts with the DDS
Gateway for exchanging data with DDS applications. Only the nodes, i.e., base station, that are physically
connected to the DDS gateway through serial interface can exchange data with the DDS gateway. Beside,
another component in this layer called TinyCDR provides an interchangeable data format, which allows
different implementations of TinyDDS or DDS exchange data. For transmitting/receiving data to/from the
other sensor nodes in the WSN, TinyGIOP utilizes a transport layer interface called TinyDDS L4
Adaption Layer (L4AL). L4AL allows TinyOS to operates with any network (L3) and MAC layer (L2)
protocol, such as AODV and Zigbee (IEEE 802.15.4) respectively.

Figure 5 Architectural Components in TinyDDS

DDS Gateway

Base Station

Sensor

Network

DDS Web Clients

DDS Web Client

DDS Web Application

Web Browser

Java VM

JacORB

A DDS Impl. in Java

Access Network

(e.g.,Internet)

TinyOS

Mica Z Sensor Node

DDS Interface

…

TinyDDS

Sensors Comm.
Hardware

Sensor Device

Sensor Reading Comm. Control

Applications

Spanning

-Tree

DHT-

Based

MONSOON
Runtime

TinyDDS L4 Adaptation Layer (L4AL)

OneHop

OERP
Layer

L4 Layer

AODVL3 Layer

TinyCDR TinyGIOPL5 Layer

APIs

Sensor

Network

SunSPOT Sensor Node

DDS Interface

…

TinyDDS

Sensors Comm.
Hardware

Sensor Device

Sensor Reading Comm. Control

Applications

Spanning

-Tree

DHT-

Based

MONSOON
Runtime

TinyDDS L4 Adaptation Layer (L4AL)

OneHop

OERP
Layer

L4 Layer

AODV L3 Layer

TinyCDRTinyGIOP L5 Layer

APIs

DDS Gateway

JacORB

Java VM

A DDS Impl. in Java

TinyOS Adapter

TinyDDS/DDS Bridge

SunSPOT Adapter

Squawk VM

 8

DDS Interfaces
In the top layer, TinyDDS provides an API for application developers. This API provides a subset of DDS
for creating topics, subscribe to events of topics and publish events for particular topics. For each
function, the implementation is provided so application developers do not need to implement that
functionality themselves. The implementation for the DDS interfaces is written in nesC and Java
programming language and optimized for small sensor nodes platform such as TinyOS and SunSPOT,
respectively.

Listing 1 An Example TinyDDS Application with nesC

1 typedef struct {
2 cdr_short temperature;
3 cdr_long time;
4 } TempData_t;
5 Publisher_t publisher;
6 Topic_t topic;
7 DataWriter_t data_writer;
8 TempData_t temp_data;
9 command result_t StdControl.start() {
10 publisher = call DomainParticipant.create_publisher();
11 topic = call DomainParticipant.create_topic("TempSensor");
12 data_writer = call Publisher.create_datawriter(publisher , topic);
13 temp_data.temperature = TempSensor.read();
14 temp_data.time = call Time.getLow32();
15 call DataWriter.write(data_writer, serialize(data),

sizeof(TempData_t));
16 }

Listing 2 An Example TinyDDS Application with Java

1 class TempData extends Data {
2 public short temperature;
3 public int time;
4 }
5 public class Application {
6 Publisher publisher;
7 Topic topic;
8 DataWriter dataWriter;
9 TempData tempData;
10 DomainParticipant domainParticipant;
11 public Application() {
12 domainParticipant = new DomainParticipant();
13 publisher = domainParticipant.create_publisher();
14 topic = domainParticipant.create_topic("TempSensor");
15 dataWriter = publisher.create_datawriter(topic);
16 tempData = new TempData();
17 tempData.temperature = TempSensor.read();
18 tempData.time = (new Date()).getTime();
19 dataWriter.write(data.marshall());
20 }
21 }

 9

Listing 1 and Listing 2 show an example of an event source application implemented on top of
TinyDDS using nesC and Java, respectively. In Listing 1, a user-defined data type is defined at line 1-4.
Then, at line 10, a Publisher is created. Line 11-12, a DataWriter is created associate with topic
"TempSemsor". At line 13 and 14, a sensor reading is captured from temperature sensor and also the
current time is read from a local clock, both data are stored in a variable of the user-define data type.
Finally, at line 15, the data in user-defined data type is serialized into byte stream and published through
DataWriter interface. Listing 2 shows the same application implemented in Java. Because both
applications are developed based on the same API, i.e., TinyDDS, the applications are very similar. Thus,
application developer can easily port an application from one platform to the other platform.

Overlay Event Routing Protocols
The OERP layer provides an overlay network over sensor network’s physical ad-hoc networks. The
overlay network is used for transporting published events, i.e. sensor data, to all nodes that subscribes to
the events. The published event is routed to each subscriber according to the event routing protocols
deployed within OERP layer. Application developers can specify the deployed routing protocols to suit
their need. The OERP layer encapsulates the overlay network algorithm and implementation from DDS
interfaces and the lower level physical network. Routing protocols in OERP layer work with lower-level
network protocol through the L4AL. In the other words, routing protocols can be seen as a non-functional
property of TinyDDS, which can be deployed to meet application developers’ non-functional
requirements. For example, application developers who want to reduce the price and size of sensor nodes
by using small-memory sensor nodes may choose to use spanning-tree routing protocol, which will use
very small memory space. The routing protocols used in this OERP framework are developed by library
developers and can be used in any TinyDDS-based applications in the same platform.

Example of event routing protocols currently implemented for OERP layer are spanning-tree based,
DHT-based and MONSOON. When spanning-tree based event routing protocol is used in OERP layer,
subscriber nodes flood the subscription messages, i.e., the topic of interest, through their neighbors. The
subscription messages have a counter that is increased hop-by-hop. Each node keeps the value of the
counter of each incoming message, and its topic, and also the neighboring node who has lower counter
value. Then, when a sensor node collect an event matched with the topic interested by a subscriber node,
the event message is forwarded from the collecting node to a neighboring node who has lower counter of
that topic. The event message is forwarded toward the subscriber node by climbing up the gradient, i.e.,
the counter value.

DHT-based event routing relies on unique information belongs to each sensor node such as sensor
node ID in MicaZ or MAC address in SunSpot. Then, by using a hash function, a topic can be mapped to
a sensor node ID or MAC address. This node can be called hashed node. Thus, when a sensor node
subscribes to a topic, the subscription and the node information is sent to the hashed node that is
associated with that topic. Similarly, when an event is published, the event is sent to the hashed node
associated with the topic of the event. Consequently, the event is forwarded to subscribed node using
subscribing information maintained by the hashed node.

In MONSOON, a biologically-inspired adaptation routing mechanism, event is delivered by software
agent, from publishers to subscribers (Boonma & Suzuki, 2008a). In contrast with spanning-tree and
DHT-based routing protocol, MONSOON employs a constrained-based evolutionary multiobjective
optimization algorithm which allows agents to adapt to changed network condition and also self-healing
against partial network failure.

 10

TinyCDR
The Common Data Representation (CDR) (Object Management Group, 2007) is the format for exchanged
data in DDS. CDR is the format for exchanging data in DDS standardized by OMG. CDR enables
different parties, i.e., sensor nodes and client applications, which utilizes different programming
languages, such as nesC or Java, to be able to exchange data. CDR defines standard data type with
specific size and endian, which have to be followed by each party in order to guarantee seamlessly data
exchanging. TinyCDR is a subset of CDR, which allows TinyDDS applications to directly exchange data
with DDS applications and TinyDDS in different platform, such as between desktop application using
DDS and sensor node application running in Mica Z and SunSPOT. Table 1 shows the mapping of
primitive data type between CDR version 1.3, TinyCDR for nesC and for Java programming language.
Listing 1 and Listing 2 show how the data type defined in TinyCDR for nesC and for Java, respectively,
is used in application.

In the table, TinyCDR does not support wchar type (wide character, i.e., Unicode characters) because
it is not necessary in WSN environment. Also, TinyCDR for Java does not support unsigned long long
type because there is no Java primitive type that has the same storage size for this data type. Beside
primitive data types, TinyCDR also supports CDR constructed types such as struct, union and array.
TinyCDR serializes constructed data structure into an octet stream, which is compatible with CDR octet
stream. Therefore, TinyDDS applications can exchange data formatted in TinyCDR directly with DDS
applications using CDR data format.

TinyGIOP
TinyGIOP defines message format use for exchanging between TinyDDS/DDS applications, based on
General Inter-ORB Protocol (GIOP) version 1.3 (Object Management Group, 2007). GIOP is an abstract

Table 1 CDR Mappings to nesC and Java

CDR Type TinyCDR Type in nesC TinyCDR Type in Java

char cdr_char byte

wchar N/A N/A

octet cdr_octet byte

short cdr_short short

unsigned short cdr_ushort int

long cdr_long int

unsigned long cdr_ulong long

long long cdr_longlong long

unsigned long long cdr_ulonglong N/A

float cdr_float float

double cdr_double double

long double cdr_longdouble double

boolean cdr_boolean boolean

 11

protocol for communicating between object request brokers (ORBs). There are several concrete
implementation based on GIOP such as Internet Inter-ORB Protocol (IIOP), an implementation of GIOP
over TCP/IP, and HyperText Inter-ORB Protocol (HTIOP), an implementation of GIOP over HTTP.
GIOP consists of three components; CDR, Interoperable Object Reference (IOR), and a set of message
types. In TinyDDS, the CDR part of GIOP is addressed by TinyCDR while the message type is addressed
by TinyGIOP. Given the limited resources of sensor nodes, IOR is not supported by TinyDDS.

TinyGIOP supports three message formats; Request, Reply and CancelRequest. When a TinyDDS
application wants to communicate with the other TinyDDS application, for example, for subscribing to a
topic, it sends out Request message. The message will be serialized and passed to lower level, i.e. OERP,
or to DDS Gateway for delivering to DDS applications. Reply message is used for answering the request,
e.g., when a TinyDDS application publish an event subscribed by another TinyDDS application, the
publisher sends out Reply message to the subscriber. CancelRequest is used for withdraw request sending
out earlier. Contrast with GIOP, TinyGIOP does not support object location message formats because
there is no notion of object in TinyDDS.

TinyDDS L4 Adaptation Layer
To access to low level physical network, TinyGIOP make use of low-level physical network through a
network abstract layer called TinyDDS L4 Adaptation Layer (L4AL). This L4AL utilize Bridge design
pattern to separate the real low-level physical network implementation from the higher-level overlay
network. Thus, TinyDDS can be portable among different sensor node hardware, which utilize TinyOS,
such as Mica Z , Mica 2 or iMotes2. In particular, L4AL provides an interface to access physical network
functions such as how to get the list of neighboring nodes, how to get the link quality to each neighboring
node and also how to send/receive data to/from particular nodes in the network. These functions are used
by the TinyGIOP and above OERP routing protocol layer and implemented by the Network Layer
implementation. Internally, L4AL contains a set of tables that maintains the information of network, such
as neighbor list and link quality, and a set of event queues. There are two types of event queues, incoming
queues and outgoing queues. The events submitted from OERP for sending out to physical network is put
to the end of outgoing queue while the events collected from physical network are put to the end of
incoming queue, waiting to be processed by the routing protocol in OERP.

Application Development with TinyDDS
Figure 6 shows the development model of a TinyDDS application on TinyOS platform. There are three
main elements of the development model, TinyDDS middleware, TinyDDS Library and the application.
The TinyDDS middleware comprises of two parts, the DDS interfaces definition and the TinyDDS
implementation of the interfaces. The DDS interfaces definition is directly generated from the dds.idl,
which is the official DDS interfaces definition in IDL format from OMG. The dds.idl is first converted
into XML format. Then, IDL2nesc converts the DDS interfaces definition from XML format to TinyDDS
interfaces and Application Configuration. The Application Configuration follows Facade design
pattern(Gamma, Helm, Johnson, & Vlissides, 1995) and describes how to connect each interfaces and
implementation together. IDL2nesc also uses an Application Specification, written in XML, in order to
generate appropriate Application Configuration. In particular, Application Configuration consults
Application Specification how to connect comments together. Thus, developers can customize TinyDDS
by adjusting the configuration in the Application Specification. For example, Application Specification
specifies which routing protocol will be used in OERP layer, then Application Configuration connects the
implementation of the routing protocol into OERP interface. In particular, the event routing protocols

 12

implemented for OERP layer needs to implement a specific nesC interface; therefore, they can be
integrated with DDS implementation on the upper layer and L4AL component on the lower layer.

The second element is the TinyDDS Library. TinyDDS Library consists of two non-function properties
implementation, namely, application-level and middleware-level non-functional properties. The
application-level non-function properties provide a set of services, which can be used by application, such
as data aggregation and event detection. The middleware-level non-function properties provide the
services inside the middleware, for example, routing protocols in OERP layer. Library developer develops
this functionality in the TinyDDS Library and the TinyDDS Library can be used in any application
implemented on the same platform.

Figure 6 Application Development Model on TinyOS

dds.idl
(IDL) IDL2nesc

Intermediate
Interface

Representation
(XML)

TinyDDS
interfaces

(nesC)

Application
Specification

(XML)

Middleware Level
 Non-Functional

Properties (nesC)

Application
Implementation

(nesC)

nesC compiler

Executable
Code

Application
Configuration

(nesC)

TinyDDS

TinyDDS Library Application

Application Level
 Non-Functional

Properties (nesC)

TinyDDS
Implementations

(nesC)

Listing 3 Application Specification

1 <?xml version="1.0" encoding="ISO-8859-1" ?>
2 <configuration platform="micaz" threading="per-event">
3 <includes>
4 <header name="BaseUART" />
5 <header name="DDS_utils" />
6 <component name="DDS_DataAggregrator" />
7 <component name="LedsC" />
8 <component name="SpanningTree" />
9 </includes>
10 <implementations>
11 <implementation component="SpanningTree" interface="OERP" />
12 </implementations>
13 <connections>
14 <connection from="Main.StdControl" to="*" />
15 <connection from="Application.DG" to="DDS_DataAggragation" />
16 <connection from="Application.Leds" to="LedsC" />
17 </connections>
18 </configuration>

 13

The third element is the application. Every application implemented on TinyDDS consists of two
parts, the Application Specification which is used by the IDL2nesc compiler and the Application
Implementation. The Application Implementation is developed by application developer and performs a
certain task such as data collection and event detection. The Application Specification describes the
overview of the application, for example, what is the target platform, or which routing protocol will be
used in OERP layer. Listing 3 shows an example of the Application Specification for TinyOS platform.

The nesC compiler combines the Application Configuration, TinyDDS Interfaces, TinyDDS
Implementations, Application Implementations and the implementation from TinyDDS Library into target
executable code.

Figure 7 shows the application development model in SunSPOT. Similar to the application
development model on TinyOS, there are three main elements, TinyDDS middleware, TinyDDS library
and the application implementation. Contrast with the TinyOS model, Java is used as programming
language instead of nesC. Also, a Java compiler, i.e., javac, is used for combining all parts into a Java
byte code suitable for deploying in a SunSPOT sensor node. Also, Sun Microsystem’s IDLJ is used for
converting DDS’s IDL to Java interfaces and the main class generator program is used for processing
Application Specification and generating the main class used by Java compiler.

DDS Gateway
Figure 5 shows that TinyDDS uses TinyGIOP to communicate with the DDS gateway in order to
exchange data with DDS applications. The DDS gateway is a Java application that interacts with
TinyDDS running in sensor nodes through serial port using TinyOS’ serial adapter and SunSPOT serial
adapter (i.e., Host API) Java class. The DDS gateway uses JacORB (Brose, 1997) and a Java
implementation of DDS (Allaoui, Yehdih, & Donsez, 2005) to communicate with another DDS
application. A TinyDDS/DDS bridge operates on top of DDS implementation and communicates with
TinyGIOP to exchange data between TinyDDS and DDS. When a DDS client subscribes to a topic, the

Figure 7 Application Development Model in SunSPOT

dds.idl
(IDL) IDLJ

TinyDDS
interfaces

(Java)

Application
Specification

(XML)

Middleware Level
 Non-Functional
Properties (Java)

Application
Implementation

(Java)

Java Compiler

Java Byte Code

Application
Main Class

(Java)

TinyDDS

TinyDDS Library Application

Application Level
 Non-Functional
Properties (Java)

TinyDDS
Implementations

(Java)

Main class
generator

 14

subscription information is distributed on the access network over DDS. As a consequence, DDS gateway
can intercept the subscription information and store it in a subscription list. Thus, when a sensor node
publishes an event, the event is distributed in the sensor network and intercepted by DDS gateway. Then,
if the topic of the published event is matched with a topic on the subscription list. This filtering
mechanism in DDS gateway is similar to traditional TCP/IP bridge operation. Moreover, by using DDS as
the backend, the DDS gateway can be deployed in variable configurations, e.g., multiple sensor networks
connect to a single DDS gateway or multiple DDS gateways connect to a sensor network. Each DDS
gateway supports thread-per-connection, thread pooling, connection pooling and Reactor.

 In particular, when a message is pushed from TinyGIOP in a sensor node to DDS gateway, the
TinyDDS/DDS bridge translate message into DDS format, i.e., encapsulate with GIOP header, and send
out to DDS network. This is called downstream message transmissions because the message is sent from
source (sensor nodes) to sink (client applications). On the other hand, when the DDS gateway receives
messages destine to the sensor network from the DDS network, TinyDDS/DDS bridge translates the
message into TinyDDS format, i.e., encapsulate with TinyGIOP header, and injects the message into
sensor nodes through serial interface. This is called upstream message transmission. Also, the message
from one TinyDDS will be passed to another TinyDDS, for example, TinyDDS on a TinyOS nodes can
pass message through its TinyGIOP to DDS Gateway, which will also pass the message to TinyDDS on
the SunSPOT as well.

To manage the flow control from a WSN to an access network, TinyDDS utilizes the hop-by-hop flow
control mechanisms available at the MAC layer of TinyOS and SunSPOT. In particular, the flow control
mechanisms at the MAC layer allow a sensor node to send out a packet only when it receives
acknowledgment from the destination node; there fore, the source node cannot overwhelm the destination
node. However, TinyDDS does not consider end-to-end flow control. For the flow control from an access
network to a WSN, TinyDDS uses TCP’s end-to-end flow control.

DDS Web Clients
On the lower part of the Figure 5, a DDS web client is shown connected to DDS gateway. Currently, a
DDS web client is implemented as a Java application provides HTTP service to any web browser. The
DDS web client is able to operate on ordinary desktop computers or mobile devices such as Apple’s
iPhone. By using JacORB, the DDS web client can communicate with DDS gateway in order to subscribe
to data published from sensor networks and show the result on the Google map. Figure 8 and Figure 9
show examples of web interface running on a desktop computer and an iPhone respectively. In the
Figures, the small dots show location of each sensor node, bright dots represent sensor nodes, which
report data.

NON-FUNCTIONAL PROPERTIES OF TINYDDS

To ease the application development on sensor nodes, TinyDDS provides non-functional properties both
on application and middleware level collectively as a library, called TinyDDS library in the Figure 6 and
Figure 7. The application-level non-functional properties accelerate the application development process
by providing frequently used non-functional properties such as data aggregation and event detection.
Thus, application developers can focus more on their application functionality, e.g. how to interpret and
process data and event. Moreover, utilizing non-functional properties can reduce the application

 15

complexity and thus improve the maintainability. On the other hand, middleware-level non-functional
properties allows application developers to adjust the behavior of the middleware to suit their need and
constraints, i.e., choosing event routing protocol which suite the application or specify the QoS of each
middleware components. In addition, TinyDDS library is designed to be portable and can be used by
many TinyDDS based application. Therefore, by using both application and middleware-level non-
functional properties, application developers can gain better reusability, maintainability, composability
and performance.

Figure 8 A DDS Web Client on a Desktop Computer

Figure 9 A DDS Web Client on an iPhone

 16

Application-Level Non-Functional Properties
In the application level, non-functional properties in TinyDDS help application developers to rapidly
develop their applications. Application developers can use application-level middleware services such as
data aggregation instead of subscribing/publishing directly to TinyDDS middleware. Data aggregation
collects and process data from sensor network and provides processed data to application. Processing
operators supports by data aggregation are, for example, summation, average, maximum, and minimum.
The data aggregation component is pluggable, application developers can include this in their application
using Application Specification (see section Application Development with TinyDDS). In addition,
library developers can develop any non-functional components, such as network security and persistence
storage, which are reusable and pluggable to all TinyDDS applications.

Listing 4 shows a fragment of an application using data aggregation in nesC. Instead of using
DataReader for collecting data (see Figure 2), this application uses DataAggregrator. Then, when
new data is available, the TinyDDS middleware informs the application using data_available event and
provide aggregated data, in this case, average temperature sensor, to the application. Listing 5 shows the
same application implemented in Java.

From the listing, Java implementation of TinyDDS adopts Observer Design Pattern. So, when an event
is collected, SubscriberListener informs the application by calling eventNotified. Then, the application
can collect aggregated data through an instance of DataAggragation class.

Listing 4 An Example of nesC Application Using Data Aggregation

1 Subscriber_t subscriber;
2 Topic_t ts_topic;
3 DataAggregator_t data_aggregrator;
4 SubscriberListener_t listener;
5 command result_t StdControl.start() {
6 subscriber = call DomainParticipant.create_subscriber();
7 ts_topic = call DomainParticipant.create_topic("TempSensor");
8 listener = call SubscriberListener.create(ts_topic);
9 call Subscriber.set_listener(listener);
10 data_aggregrator = call Subscriber.create_data_aggregrator(ts_topic,

AVERAGE, listener);
11 }
12 event ReturnCode_t SubscriberListener.data_available(Topic_t topic) {
13 Data data;
14 if (topic == ts_topic) {
15 data = call DataAggregator.read(data_aggregrator);
16 // processing aggregated data..
17 }
18 }

 17

Middleware-Level Non-Functional Properties
TinyDDS supports three non-functional properties in the middleware level, the pluggable routing
protocols in OERP layers, concurrency, and the QoS policy. Application developers can specify the
concurrency model used in TinyDDS. In particular, TinyDDS supports three concurrency model, thread-
per-event, thread-per-event-topic and Reactor (Pyarali, Harrison, Schmidt, & Jordan, 1997). In the thread-
per-event model, TinyDDS creates a thread, e.g., a Task in TinyOS or a thread in Java, for each event
submitted from application or collected from the network. This model gives same priority for each event.
In the other words, TinyDDS has only two event queues, one for outgoing events and the other for
incoming events, both of them working in first-come-first-serve fashion. The thread-per-event-topic
allows application developer to specify different priority for each event topic. In particular, TinyDDS
creates two message queues for each event topic, one for incoming events and the other for outgoing
events. Then, TinyDDS processes the event queues based on priority of each event topic; for example,
TinyDDS publishes events with high priority topic more frequent than one with low priority topic. The
concurrency model and its working parameters, e.g. topic priority, can be specified in Application
Specification (see Listing 3). For the Reactor model, it is mapped to single-threaded mode in TinyOS and
SunSPOT.

For the QoS policy, TinyDDS utilizes some of the QoS model of DDS, such as latency budget and
reliability. Latency budget QoS policy specifies the maximum accepted latency from the time the event is
published until the event is available to the destination subscribers. Listing 6 and Listing 7 show fragment
of an application using latency budget QoS policy in nesC and Java, respectively. From the listing, the
application creates a latency budget QoS policy with 100 ms constraint. Then, the QoS policy is applied
to the Topic instance, which imply that the data in this topic should be delivered with less than 100 ms

Listing 5 An Example of Java Application Using Data Aggregation

1 public class Application implement Observer {
2 Subscriber subscriber;
3 Topic topic;
4 DataAggregator dataAggregrator;
5 SubscriberListener listener;
6 DomainParticipant domainParticipant;
7 public Application() {
8 domainParticipant = new DomainParticipant();
9 subscriber = domainParticipant.create_ subscriber();
10 topic = domainParticipant.create_topic("TempSensor");
11 listener = new SubscriberListener(topic, this);
12 subscriber.set_listener(listener);
13 data_aggregrator = subscriber.create_data_aggregrator(topic,

AVERAGE, listener);
14 }
15 public void eventNotified(Object orig, Object event) {
16 TempData data;
17 if(orig == listener) {
18 data = data_aggregrator.read();
19 }
20 }
21 }

 18

latency. TinyDDS uses mechanisms in L4AL to satisfy the QoS policies. For example, to satisfy the
latency budget QoS policy, TinyDDS rearranges the order of event in the event queues such that the event
with has a high chance to break the QoS policy, e.g., event’s actual latency is already very close to the
desired latency, will be published earlier than the event which has the less chance to break the QoS
policy, e.g., event’s actual latency is very far from the desired latency. The reliability QoS policy
indicates the level of data transmission reliability provides by TinyDDS. In particular, TinyDDS supports
two reliability model, RELIABLE and BEST_EFFORT. When reliability QoS policy is set to
RELIABLE, TinyDDS attempts to deliver all events. The missed events are retransmitted until the
number of transmission is greater than a threshold or the transmission is success. On the other hand, when
reliability QoS policy is set to BEST_EFFORT, TinyDDS sends out each event only once and relies on
MAC layer for succeeding the transmission.

Listing 7 Latency Budget QoS Parameters Settings in Java.

1 public class Application {
2 Publisher publisher;
3 Topic topic;
4 DataWriter dataWriter;
5 TempData tempData;
6 DomainParticipant domainParticipant;
7 QosPolicy qos;
8 public Application() {
9 domainParticipant = new DomainParticipant();
10 publisher = domainParticipant.create_publisher();
11 qos = QosPolicy.create_latency_budget_qos(100);
12 topic = domainParticipant.create_topic("TempSensor");
13 topic.set_qos(qos);
14 dataWriter = publisher.create_datawriter(topic);
15 tempData = new TempData();
16 tempData.temperature = TempSensor.read();
17 tempData.time = (new Date()).getTime();
18 dataWriter.write(data.marshall());
19 }
20 }

Listing 6 Latency Budget QoS Parameters Settings in nesC.

1 Publisher_t publisher;
2 Topic_t topic;
3 DataWriter_t data_writer;
4 QosPolicy_t qos;
5 Data data;
6 command result_t StdControl.start() {
7 publisher = call DomainParticipant.create_publisher();
8 qos = call QosPolicy.create_latency_budget_qos(100);
9 topic = call DomainParticipant.create_topic("TempSensor");
10 call Topic.set_qos(topic, qos);
11 data_writer = call Publisher.create_datawriter(publisher , topic);
12 // Get sensor reading, and put to data variable
13 call DataWriter.write(data_writer, data);
14 }

 19

EVALUATION

This section evaluates TinyDDS through simulations and empirical experiments. In all simulations and
experiments, each node runs an application that accepts a one-time event subscription from a subscriber
and publishes subsequent events to the subscriber. It is configured with an application specification
shown in Listing 3. The duration of each simulation/experiment is 120 seconds, and 25 nodes transmit an
event to the base station (i.e., subscriber) every 2 seconds. The TinyOS-based implementation of
TinyDDS is evaluated with 25 nodes simulated on the PowerTOSSIM simulator with the MICA 2 power
consumption model (Shnayder, Hempstead, Chen, Allen, & Welsh, 2004). The SunSPOT-based
implementation of TinyDDS is evaluated with 20 nodes simulated on the Solarium emulator (Goldman,
2008) and 5 nodes deployed on real/physical SunSPOT platforms. Figure 10 shows a screenshot of the
Solarium emulator. 20 light gray SunSPOT icons represent simulated nodes, and 5 dark gray SunSPOT
icons represent real nodes.

On TinyOS, TinyDDS is compared with Surge, which is a simple data collection application bundled

in TinyOS. For a purpose of performance comparison, TinyDDS uses a spanning tree-based protocol as
its OERP as Surge does. On SunSPOT, a Surge-like data collection application is implemented to for the
comparison with TinyDDS. (It uses a spanning tree-based protocol too.)

Figure 10 A Screenshot of the Solarium Emulator showing 25 simulated and real nodes.

 20

Per-Packet Header Overhead
In order to evaluate how much data TinyDDS requires to transmit an event, Table 2 shows the header
overhead at each layer of TinyDDS. Packet size is limited at 48 bytes on TinyOS. Given this limit,
TinyDDS can transmit event data of 16 bytes per packet; packet overhead is 32 bytes (66%) per packet.
Given 16 bytes, TinyDDS can transmit a sequence/array of two unsigned long long values. (Unsigned
long long is the largest fixed-length IDL type; it occupies 8 bytes.) Also, It can contain 16 of the shortest
fixed-length IDL data such as char, octet and Boolean per packet. Surge’s packet overhead is
approximately 11 bytes (40%) per packet. Packet size is limited at 64 bytes on SunSPOT; packet
overhead is 52 bytes (82%) per packet. TinyDDS can transmit event data of 12 bytes per packet. In a
Serge-like data collection application, packet overhead is 32 bytes (66%) per packet.

TinyDDS incurs larger header overhead because it encapsulates more information in each packet; for
example, a timestamp from DDS, routing information from OERP and session information from
TinyGIOP. With these extra information, TinyDDS can perform advanced functionalities that simple data
collection applications do not have. For example, TinyDDS can use timestamp information to calculate
the delay in an event publication and prioritize packets hop by hop. Given this consideration, the authors
of the chapter believe that the measured header overhead is acceptable and small enough for a number of
WSN applications.

Memory Footprint
Table 3 shows the memory footprint of TinyDDS on TinyOS and SunSPOT. Without running
applications on TinyOS, TinyDDS consumes 36,132 bytes of Flash memory and 3,360 bytes of RAM.
Including an application, memory footprint slightly increases to 36,246 bytes in Flash memory and 3,392
bytes of RAM. Surge consumes 34,430 byte of Flash memory and 1,929 byte of RAM. The difference of
memory footprint between TinyDDS and Surge is very small on TinyOS; less than 2 KB on both Flash
memory and RAM.

Without running applications on SunSPOT, TinyDDS consumes 35,832 bytes of Flash memory and
100,268 bytes of RAM. RAM consumption is higher on SunSPOT than TinyOS because SunSPOT
requires to copy every executable code, including the Squawk VM and applications, and execute them in

Table 2 Per-Packet Header Overhead of TinyDDS on TinyOS and SunSPOT

Size (Bytes) TinyOS SunSPOT

Event Data 16 12

DDS Overhead 10 21

OERP (Spanning Tree) Overhead 4 4

L5 Overhead 8 12

L4 Overhead 6 8

L3 (OneHop) Overhead 4 8

Total Overhead 32 52

Total Size 48 64

 21

RAM. Including an application, TinyDDS consumes 37,285 bytes of Flash memory and 104,404 bytes of
RAM. A Surge-like data collection application consumes about 29,519 bytes of Flash memory and 82,739
bytes of RAM. The difference of memory footprint between TinyDDS and a Surge-like application is
small enough on SunSPOT. TinyDDS is implemented lightweight, and it can operate in resource-limited
nodes such as MICA2. Figure 11 shows the breakdown of memory footprint in each layer in TinyDDS.

Table 3 Memory Footprint of TinyDDS on TinyOS and SunSPOT.

TinyOS SunSPOT Memory Footprint

(Bytes) Flash memory RAM Flash memory RAM

Application 1440 34 1453 4136

DDS Implementation 1784 2240 10388 404

OERP (Spanning Tree) 4644 172 4907 3364

L5 5452 175 1352 19800

L4 1827 150 1457 11892

L3 (OneHop) 3905 205 5693 16248

TinyOS/ Squawk VM 18520 418 12035 48560

Figure 11 Memory Footprint of Components on TinyOS and SunSPOT Platform.

 22

Processing and Power Efficiency
When TinyDDS is deployed on TinyOS, the average total latency is 0.79 second to route an event
between source and destination nodes in a single hop. Of this total latency, TinyDDS spends 0.08 second;
0.03 second on a source node and 0.05 second on a destination node. This means TinyDDS occupies
approximately 10% of the total latency.

When TinyDDS is deployed on SunSPOT, the average total latency is 0.675 second to route an event
between source and destination nodes in a single hop. Of this total latency, TinyDDS spends 0.0247
second; 0.0128 second on a source node and 0.0119 second on a destination node. Table 4 shows the
breakdown of the latency on both source and destination nodes. TinyDDS’ latency occupies
approximately 10% of the total latency. When a Serge-like application is used for routing event, the
average total latency is 0.58 second to route an event in a single hop. Thus, latency of event routing in
TinyDDS is about 10% higher than in Surge. This difference is small enough.

Table 5 shows the average and standard deviation (SD) of power consumption from 25 simulated
Mica 2 nodes using TinyDDS on TinyOS platform and from five actual SunSPOT nodes and 20 emulated
nodes running TinyDDS. Without a subscriber, TinyDDS transmits no data; thus, its power consumption
remains small. In contrast, Surge always transmits data to the base station; it consumes much more power
than TinyDDS. With a subscriber, TinyDDS consumes a comparable amount of power compared with
Surge. In SunSPOT, without a subscriber, TinyDDS transmits no data; thus, its power consumption
remains small. In contrast, a simple data collection application always transmits data to the base station; it
consumes much more power than TinyDDS. With a subscriber, TinyDDS consumes a comparable
amount of power compared with the simple data collection application. TinyDDS is implemented power
efficient.

Table 5 Power Consumption in Mica 2 (TinyOS) and SunSPOT

Mica 2 (TinyOS) SunSPOT Power Consumption (mW)

TinyDDS Surge TinyDDS A Data Coll. App.

Average 189.59 3743.0 295.2 5544.4
Without a Subscriber

SD 61.24 76.03 89.5 76.03

Average 3900.9 3924.97 5323.75 5601.3
With a Subscriber

SD 52.55 76.03 83.4 75.4

Table 4 Latency of each layer on SunSPOT.

 Source Node (msec) Destination Node (msec)

DDS 0.1 0.3

OERP (Spanning-Tree) 0.5 0.75

L5 5.5 10.15

L4 4.3 0.3

L3 2.4 0.4

Total 12.8 11.9

 23

Size of Application Source Code
With the TinyOS-based implementation of TinyDDS, only 60 lines of nesC code are required to
implement the same application as Surge. Surge is implemented with 300 lines of nesC code. Moreover, it
takes less than 3 seconds for idl2nesc to nesC source code. With the SunSPOT-based implementation of
TinyDDS, 80 lines of Java code are required for implementing a Surge-like application. On the other
hand, without TinyDDS, more than 350 lines of Java code are required to implement the same application
from scratch. It takes less than 10 seconds for idl2j to generate Java code. These results demonstrate that
TinyDDS effectively simplifies the development of WSN applications.

RELATED WORK

This chapter describes a set of extensions to the authors’ prior work (Boonma & Suzuki, 2008b; Boonma
& Suzuki, 2009b). While the prior work studied TinyDDS on TinyOS, this chapter investigates it on both
TinyOS and SunSPOT. Moreover, this chapter reveals TinyDDS’ performance implications in more
detail. An event routing protocol of TinyDDS, called MONSOON, is investigated in (Boonma & Suzuki,
2008a; Boonma & Suzuki, 2009a), while it is out of scope of this chapter.

There exist several pub/sub middleware for WSNs. TinyCubes, Mires and Runes are similar to
TinyDDS in that they implement pub/sub communication on TinyOS and provide reconfigurable
middleware services to customize application-level non-functional properties (Marrón et al., 2005; Souto,
et al., 2005; Costa et al., 2007; Nam et al., 2008). However, unlike TinyDDS, they do not consider
middleware-level non-functional properties and interoperability between WSNs and access networks.
SMC is pub/sub middleware for body-area sensor networks (Keoh, et al., 2007). It is assumed to operate
on a Java VM atop powerful Linux node; memory footprint and power efficiency are not important issues
in SMC. In contrast, TinyDDS assumes resource-limited nodes as its target platforms. SMC does not
consider middleware-level non-functional properties, programming language interoperability and protocol
interoperability as TinyDDS does. DSWare is pub/sub middleware that makes middleware-level non-
functional properties (e.g., data storage and caching policies) configurable for WSN applications (Li et
al., 2004). However, it does not consider application-level non-functional properties, programming
language interoperability and protocol interoperability as TinyDDS does.

Schönherr et al. (2008) propose a clustered event routing protocol for WSNs. It allows nodes to form
clusters and transmit event data to destinations (subscribers) via cluster head nodes. Costa and Picco
(2005) propose a semi-probabilistic routing protocol in which event data are randomly broadcasted when
intermediate nodes do not know subscribers. TinyDDS does not focus on particular event routing
protocols. Instead, it focuses on its generic and pluggable framework to support a wide range of event
routing protocols.

Li et al. (2004), Yoneki and Bacon (2005) and Sivaharan et al. (2005) propose event subscription
languages for the pub/sub scheme in WSNs. Yoneki and Bacon (2005) extend a traditional subscription
language by introducing the expressiveness for spatial and temporal concerns. Li et al. (2004) investigates
an SQL-like subscription language that supports the notion of confidence in subscription and event
correlation. Sivaharan et al. (2005) propose an extensible subscription language, called Filter Expression
Language (FEL), to define topic, content and context filtering policies for published events. In contrast,
TinyDDS currently does not focus on subscription semantics but reuse the standard subscription language
in the DDS specification.

Several research efforts have focused on the interoperability between WSNs and access networks.
Girod et al. (2004), Pietzuch et al. (2004), Spiess et al. (2006) and Hunkeler et al. (2008) propose

 24

interoperable middleware/frameworks. Adam et al. (2004), Shu et al. (2006) and Schott et al. (2007)
investigate TCP/IP-based and other protocol stacks. These work provide interoperability by unifiying
low-level (L2 to L4) protocols between WSNs and access networks. In contrast, TinyDDS provides
interoperability by introducing an interoperable session (L5) protocol over heterogeneous L2 to L4
protocols. Given the fact that heterogenity have been increasing in WSN platforms, TinyDDS retains the
heterogenity at L2 to L4 rather than unifying them. Moreover, all of these existing work do not provide
programming language interoperability. They also do not consider the pub/sub communication scheme as
a networking/programming abstraction.

CONCLUSION

TinyDDS is pub/sub middleware that allows applications to interoperate regardless of programming
languages and protocols across the boundary of WSNs and access networks. Moreover, it allows WSN
applications to have fine-grained control over application-level and middleware-level non-functional
properties and flexibly specialize in their own requirements. Evaluation results demonstrate that TinyDDS
is lightweight and efficient. They also show that TinyDDS simplifies the development of
publish/subscribe WSN applications.

Several future extensions are planned for TinyDDS. One of them is to investigate an end-to-end flow
control mechanism between WSNs and access networks. Another is to evaluate various I/O and resource
management mechanisms in scalability measurements with varying network sizes and traffic patterns.
Particularly, the authors of the chapter are interested in studying staged event-driven architecture (SEDA)
(Welsh, Culler, & Brewer, 2001) on a gateway node and the Proactor design pattern (Pyarali, Harrison,
Schmidt, & Jordan, 1997) on individual sensor nodes.

REFERENCES

Adam, D., Thiemo, V., & Juan, A. (2004). Making TCP/IP Viable for Wireless Sensor Networks.
European Workshop on Wireless Sensor Networks (p. 4). Berlin, Germany: Springer.

Allaoui, F., Yehdih, A., & Donsez, D. (2005, August 20). Open-source Java-based DDS (Data
Distribution Service) Implementation. Retrieved August 25, 2008, from Open-source Java-based OMG
DDS Implementation: http://www-adele.imag.fr/users/Didier.Donsez/dev/dds/readme.html

Banavar, G., Candra, T. D., Strom, R. E., & Sturman, D. C. (1999). A Case for Message Oriented
Middleware. International Symposium on Distributed Computing (pp. 1-18). Bratislava, Slovak Republic:
Springer.

Boonma, P., & Suzuki, J. (2008). Exploring Self-star Properties in Cognitive Sensor Networking.
International Symposium on Performance Evaluation of Computer and Telecommunication Systems.
Edinburgh, Scottland: IEEE/SCS.

Boonma, P., & Suzuki, J. (2008). Middleware Support for Pluggable Non-Functional Properties in
Wireless Sensor Networks. International Workshop on Methodologies for Non-functional Properties in
Services Computing (pp. 360-367). Honolulu, Hawaii: IEEE.

Boonma, P., & Suzuki, J. (2009). Self-Configurable Publish/Subscribe Middleware for Wireless Sensor
Networks. International Workshop on Personalized Networks. Las Vegas, Nevada: IEEE.

 25

Boonma, P., & Suzuki, J. (2009). Toward Interoperable Publish/Subscribe Communication between
Wireless Sensor Networks and Access Networks. International Workshop on Information Retrieval in
Sensor Networks. Las Vegas, Nevada: IEEE.

Brose, G. (1997). JacORB: Implementation and Design of a Java ORB. International Working
Conference on Distributed Aplications and Interoperable Systems (pp. 143-154). Cottbus, Germany:
Chapman & Hall.

Buschnmann, F., Meunier, R., Rohnert, H., Sommerland, P., & Stal, M. (1996). Pattern-Oriented
Software Architecture - A: System of Patterns. Wiley and Sons.

Costa, P., & Picco, G. P. (2005). Publish-Subscribe on Sensor Networks: A Semi-Probabilistic Approach.
International Conference on Mobile Adhoc and Sensor Systems (p. 332). Washington DC: IEEE.

Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G. P., & Zachariadis, S. (2007). A
Reconfigurable Component-based Middleware for Networked Embedded Systems. Springer Journal of
Wireless Information Networks , 14 (2), 149-162.

Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next Century Challenges: Scalable
Coordination in Sensor Networks. International Conference on Mobile Computing and Networks (pp.
263-270). Seattle, Washington: ACM.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The Many Faces of
Publish/Subscribe. ACM Computing Surveys , 35 (2), 114-131.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional.

Gay, D., Levis, P., Behren, R. v., Welsh, M., Brewer, E., & Culler, D. (2003). The nesC Language: A
Holistic Approach to Networked Embedded Systems. Programming Language Design and
Implementation (pp. 1-11). San Diego, California: ACM.

Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., & Estrin, D. (2004). Emstar: A
Software Environment for Developing and Deploying Wireless Sensor Network. USENIX Technical
Conference (pp. 24-38). Boston, Massachusetts: USENIX.

Goldman, R. (2008, June 1). Using the SPOT Emulator in Solarium. Retrieved December 24, 2008, from
SunSPOTWorld: http://www.sunspotworld.com/docs/Blue/SunSPOT-Emulator.pdf

Hadim, S., & Mohamed, N. (2006). Middleware Challenges and Approaches for Wireless Sensor
Networks. IEEE Distributed Systems Online , 7 (3), 1.

Hadim, S., & Mohamed, N. (2006). Middleware for Wireless Sensor Networks: A Survey. International
Conference on Communication System Software and Middleware, (pp. 1-7). New Delhi, India.

Henricksen, K., & Robinson, R. (2006). A Survey of Middleware for Sensor Networks: State-of-the-art
and Future Directions. International Workshop on Middleware for Sensor Networks (pp. 60-65).
Melbourne, Australia: ACM.

Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008). MQTT-S — A Publish/Subscribe Protocol for
Wireless Sensor Networks. Communication Systems Software and Middleware and Workshops (pp. 791-
798). Dublin, Ireland: ICST.

 26

Keoh, S. L., Dulay, N., Lupu, E., Twidle, K., Schaeffer-Filho, A. E., Sloman, M., et al. (2007). Self-
Managed Cell: A Middleware for Managing Body-Sensor Networks. International Conference on Mobile
and Ubiquitous Systems (pp. 1-5). Philadelphia, Pennsylvania: IEEE.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., et al. (2005). TinyOS: An
Operating System for Sensor Networks. In W. Weber, J. Rabaey, & E. Aarts, Ambient Intelligence (pp.
115-148). Berlin, Germany: Springer.

Li, S., Lin, Y., Son, S. H., Stankovic, J. A., & Wei, Y. (2004). Event Detection Services Using Data
Service Middleware in Distributed Sensor Networks. Springer Telecommunication Systems , 26 (2-4),
351-368.

Marchiori, A., & Han, Q. (2008). A Foundation for Interoperable Sensor Networks with Internet
Bridging. Workshop on Embedded Networked Sensor. Charlottesville, Virginia: ACM.

Marrón, P. J., Lachenmann, A., Minder, D., Gauger, M., Saukh, O., & Rothermel, K. (2005).
Management and Configuration Issues for Sensor Networks. Wiley International Journal of Network
Management , 15 (4), 235-253.

Nam, C.-S., Jeong, H.-J., & Shin, D.-R. (2008). Design and Implementation of the Publish/Subscribe
Middleware for Wireless Sensor Networks. International Conference Networked Computing and
Advanced Information Management (pp. 270-273). Gyeongju, South Korea: IEEE.

Object Management Group. (2007). Common Object Request Broker Architecture (CORBA)
Specification, Version 3.1; Part 2: CORBA Interoperability. Retrieved August 25, 2008

Object Management Group. (2007). Data Distribution Service (DDS) for real-time systems, v1.2.
Retrieved August 25, 2008

Pietzuch, P., Ledlie, J., Shneidman, P., Roussopoulos, M., Welsh, M., & Seltzer, M. (2004). Network-
Aware Operator Placement for Stream-Processing Systems. International Conference on Data
Engineering (p. 49). Atlanta, Georgia: IEEE.

Pyarali, I., Harrison, T., Schmidt, D. C., & Jordan, T. D. (1997). Proactor -- An Object Behavioral Pattern
for Demultiplexing and Dispatching Handlers for Asynchronous Events. Pattern Languages of
Programming Conference. Monticello, Illinois: Washington University.

Romer, K., Kasten, O., & Mattern, F. (2002). Middleware Challenges for Wireless Sensor Networks.
ACM Mobile Computing and Communications Review , 6 (4), 59-61.

Schönherr, J. H., Parzyjegla, H., & Mühl, G. (2008). Clustered Publish/Subscribe in Wireless Actuator
and Sensor Networks. International Workshop on Middleware for Pervasive and Ad-Hoc Computing (pp.
60-65). Leuven, Belgium: ACM.

Schott, W., Gluhak, A., Presser, M., Hunkeler, U., & Tafazolli, R. (2007). e-SENSE Protocol Stack
Architecture for Wireless Sensor Networks. Mobile and Wireless Communications Summit (pp. 1-5).
Budapest, Hungary: IST.

Shnayder, V., Hempstead, M., Chen, B.-r., Allen, G., & Welsh, M. (2004). Simulating the Power
Consumption of Large-Scale Sensor Network Applications. International Conference on Embedded
Networked Sensor Systems (pp. 188-200). Baltimore, Maryland: ACM.

 27

Shu, L., Wang, J., Xu, H., Jinsung, C., & Sungyoung, L. (2006). Connecting Sensor Networks with
TCP/IP Network. International Workshop on Sensor Networks (pp. 330-334). Harbin, China: Springer.

Simon, D., & Cifuentes, C. (2005). The Squawk Virtual Machine: Java™ on the Bare Metal. Conference
on Object Oriented Programming Systems Languages and Applications (pp. 150-151). San Diego,
California: ACM.

Sivaharan, T., Blair, G., & Coulson, G. (2005). GREEN: A Configurable and Re-configurable Publish-
Subscribe Middleware for Pervasive Computing. On the Move to Meaningful Internet Systems (pp. 732-
749). Agia Napa, Cyprus: Springer.

Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Nelson, R., Ferraz, C., et al. (2005). Mires: A
Publish/Subscribe Middleware for Sensor Networks. Springer Personal Ubiquitous Computing , 10 (1),
37-44.

Spiess, P., Vogt, H., & Jütting, J. (2006). Integrating Sensor Networks With Business Processes. Real-
World Sensor Networks Workshop. Uppsala, Sweden: ACM.

Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for Wireless Sensor Networks: A
Survey. Springer Journal of Computer Science , 23 (3), 305-326.

Welsh, M., Culler, D., & Brewer, E. (2001). SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services. Symposium on Operating Systems Principles (pp. 230-243). Banff, Canada: ACM.

Yoneki, E., & Bacon, J. (2005). Unified Semantics for Event Correlation over Time and Space in Hybrid
Network Environments. International Conference on Cooperative Information Systems (pp. 366-384).
Agia Napa, Cyprus: IFIP.

