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Abstract  
This paper describes our research effort to design, 
implement and deploy an infrastructure that addresses 
several key issues in pervasive computing. We have 
designed a network application architecture, called the 
Bio-Networking Architecture, which models autonomic 
agents after several biological concepts and mechanisms, 
and implemented a platform software to host the 
architecture on networks. The platform aids developing 
and executing large-scale, highly distributed and 
dynamic network applications, each of which is 
composed of the biologically-inspired software agents. 
We overview several key features of the agents in our 
architecture, and describe the design and 
implementation of the proposed platform, showing how 
the platform satisfies a set of functional requirements 
derived from the features of our agents. We also present 
some measurement results to examine scalability and 
efficiency of the platform. 
 

1. Introduction 
 
As computing devices and networks become more 
pervasive, the computing landscape is evolving into an 
environment in which a huge number of networked 
computing devices sense, interact with and control the 
physical world in such a way that the physical world is 
merged and augmented with the virtual world [1, 2]. In 
order to make this vision a reality, literatures have 
identified several key issues for network applications 
and software infrastructures in pervasive computing 
environments [3−6]. They address that the software 
infrastructures need to allow application components to 
move around the network, discover other components 
dynamically, adapt to dynamic changes in environment 
(e.g. workload and the number of users) and scale well 
in terms of, for example, the number of application 
components. They also need to make the development 
and deployment of application components more 
productive (i.e. faster and easier). 

This paper describes our research effort to 
investigate a software infrastructure that deploys each 
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pervasive network application as a collection of 
autonomous adaptive agents [7, 8], autonomic agents in 
short [9], and allows pervasive network applications (i.e. 
autonomic agents) to support the above key 
requirements; mobility, dynamic discovery, adaptability, 
scalability and ease of development and deployment. 
We have designed a novel architecture, called the 
Bio-Networking Architecture, which models autonomic 
agents after several biological concepts and mechanisms 
[10, 11]. The architecture is motivated by the 
observation that the above requirements to pervasive 
network applications have already been realized in 
various biological systems. 

This paper overviews several key features of the 
agents in our architecture and identifies functional 
requirements to our software infrastructure, called the 
Bio-Networking Platform (or bionet platform). The 
bionet platform is a middleware that aids developing 
and deploying pervasive network applications (i.e. 
agents) by providing reusable software components. 
These components abstract low-level operating and 
networking details (e.g. I/O and concurrency) and 
provide agents a series of high-level runtime services. 
We describe the design and implementation of the 
bionet platform, showing how the platform satisfies the 
functional requirements derived from the features of our 
agents. We also present some of the measurement 
results to illustrate the efficiency and scalability of the 
bionet platform. 

This paper is organized as follows: Section 2 
presents key features of the agents in our architecture. 
Section 3 describes the design and implementation of 
the bionet platform. Measurement results are shown in 
Section 4. In Sections 5 and 6, we conclude with 
comparison with existing work and future work. 
 

2. Assumed Features of Autonomic Agents 
 
In the Bio-Networking Architecture, each autonomic 
agent, called cyber-entity, consists of attributes, body 
and behaviors [10]. Attributes carry descriptive 
information regarding a cyber-entity (e.g. identifier). A 
body implements cyber-entity’s functional service(s). 
Behaviors implement non-functional biological actions 
(e.g. reproduction and migration). Each cyber-entity 
lives on a specific bionet platform to execute its service 
implemented in its body. A bionet platform runs on each 
network node. Through the runtime services of a local 
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bionet platform, each cyber-entity continuously senses 
the current network conditions (e.g. network traffic) and 
performs its behavior [10, 11, 12, 13]. Cyber-entities 
maintain the following four key features.  
 
(1) Decentralized. A network application is modeled as 
a decentralized collection of cyber-entities in the 
Bio-Networking Architecture. This is analogous to a bee 
colony (an application) consisting of multiple bees 
(cyber-entities). The advantages of decentralization are 
scalability and fault tolerance [14]. Centralized systems 
can fail when central entities (e.g. directory server) are 
overwhelmed, but decentralized systems can survive by 
spreading the load [15]. Decentralization is essential if a 
system grows beyond the management of a single 
administrative entity. Central entities also suffer from 
mobility of agents. They cannot eventually keep track of 
agents if they often join and leave the network [16]. 
Decentralized systems maintain an organizational 
advantage as well. Users need no complicated setup 
work; they can simply develop and run their 
cyber-entities without knowing any central coordination. 
This lowers the barrier for users to develop and deploy 
agents (i.e. network applications).  
 
(2) Autonomous. Autonomy is the ability of agents to 
act without any interventions from their users and other 
agents [17]. Autonomous agents are goal-oriented and 
control themselves proactively [18]. Cyber-entities are 
autonomous in the sense that each of them has its own 
goal (e.g. staying close to users and living long), senses 
surrounding network conditions, and performs its 
behaviors, according to the sensed network conditions, 
which will support future goal achievement [11]. Our 
previous simulation study has confirmed the desirable 
system properties (e.g. adaptability) emerge through 
cyber-entities’ autonomous behavior invocations [11]. 
 
(3) Adaptive. Adaptability is the ability of agents to 
increase their fitness to environment. Cyber-entities 
adapt themselves to environmental changes in 
short-term and long-term fashions. The short-term 
adaptation is achieved by performing behaviors 
according to the current network conditions [11, 13]. 
For example, a cyber-entity may migrate to a 
neighboring platform when traffic volume grows or 
resource availability becomes scarce. The long-term 
adaptation is achieved by applying biological 
evolutionary process. Cyber-entities evolve by 
generating behavioral diversity and executing natural 
selection [12]. Behavioral diversity means that it is 
likely different cyber-entities implement different 
policies on their behaviors. It is generated through 
mutation and crossover, which dynamically modify 
behavior policies during replication and reproduction. 
Natural selection is executed based on the concept of 
energy. Each cyber-entity stores and expends energy for 
living, as biological entities naturally strive to gain 
energy by seeking and consuming food. Cyber-entities 

gain energy in exchange for performing their services, 
and expend energy to consume resources such as CPU 
cycles and memory space. The abundance and scarcity 
of stored energy affects various behaviors and 
contributes to the natural selection process. For example, 
energy abundance is an indication of higher demand for 
the cyber-entity; thus the cyber-entity may be designed 
to favor reproduction in response to higher level of 
energy. Energy scarcity (an indication of lack of 
demands or ineffective behavior policies) may 
eventually cause the cyber-entity’s death. Our previous 
simulation work has shown our evolutionary process 
allows cyber-entities to adapt to dynamic environmental 
changes (e.g. changes in workload, users’ location and 
resource availability) [12]. 
 
(4) Self-descriptive. In order to make agents 
autonomous and decentralized, they need to be loosely 
coupled with each other. As a result, the agents that an 
agent interacts with may not exist when it is developed, 
and they may not always be available in the future, for 
example, due to their migrations. Therefore, agents 
should be able to dynamically discover and interact with 
other agents without recompiling or changing any lines 
of code. In the Bio-Networking Architecture, each 
cyber-entity keeps its own descriptive information as 
attributes, and makes it available to other cyber-entities. 
It also maintains relationships with other cyber-entities. 
A relationship is established between two cyber-entities, 
and it contains attributes about a peer cyber-entity. With 
relationships and attributes, cyber-entities dynamically 
discover others and interact with each other [19]. 
 
Through the above four features, the Bio-Networking 
Architecture addresses the current issues in pervasive 
computing, described in Section 1, mobility, dynamic 
discovery, adaptability, scalability and ease of 
development and deployment. 
 

3. The Bio-Networking Platform 
 
Given an initial set of successful simulation results [11, 
12, 13, 19], we built the bionet platform in order to 
implement and evaluate the features of cyber-entities on 
real networks. It is implemented in Java, and each 
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Figure 1. Architecture of the bionet platform 
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platform runs on a Java virtual machine (JVM) atop a 
network node. The bionet platform is an object-oriented 
reusable framework on which various applications can 
be developed. It consists of six components (Figure 1). 

A platform representative is an object that 
represents a bionet platform and runs on per-platform 
basis. It keeps a table listing all the bionet services and 
bionet container (see below) on a local platform with 
their names and references. It is initialized when a 
bionet platform boots. 

A CE context is an entry point for a cyber-entity to 
access underlying bionet services. It examines if a 
bionet service requested by a cyber-entity is available, 
and if it is, the CE context returns a reference to the 
service. Each CE context performs this lookup for 
bionet services through the local platform representative. 
Each cyber-entity has its own CE context. A CE context 
is created and associated with a cyber-entity by the 
lifecycle service (one of the bionet services), when the 
cyber-entity is created, replicated or reproduced. 

The bionet services provide a set of runtime 
services that cyber-entities use for performing their 
behaviors. Each bionet service implements one or more 
behaviors of cyber-entities. The behaviors the bionet 
services support are energy exchange/storage, 
migration, replication and reproduction, relationship 
maintenance, discovery of cyber-entities, and resource 
sensing. 

The bionet message transport abstracts low-level 
networking and operating details such as network I/O, 
concurrency, messaging and network connection 
management. The current bionet platform uses the 
CORBA IIOP 1.1 [20] to transmit messages on TCP. 

The bionet container maintains references to the 
cyber-entities running on a local platform, and 
dispatches incoming messages to them. It also monitors 
the network traffic by counting the size of received IIOP 
packets and the number of message dispatches. 

The bionet class loader is a custom class loader 
that extends JVM’s system (default) class loader. It is 
used to dynamically load a cyber-entity’s class 
definition into a JVM when it is newly created or 
completes a migration. 

External helper tools are the software intended to 
improve the productivity of users. They include GUI 
tools to visualize cyber-entities’ attributes, relationship 
structures and performance measurement results.  

The current code base of the bionet platform 
contains approximately 29,700 semicolons, and is the 
work of one full-time research staff and six part-time 
undergraduate students [21].  

Out of the above six components in the bionet 
platform, the layer of bionet services is a key component 
in terms of addressing the issues in pervasive network 
applications (see Section 1). The layer consists of eight 
bionet services (Table 1). Each bionet service runs on 
per-platform basis. Since decentralization is a key 
design principle for us (see Section 2), we implemented 
all the bionet services in a decentralized manner; no 

centralized entities exist. Also, we implemented bionet 
services based on five functional requirements derived 
from the features and behaviors of cyber-entities. We 
describe the design of bionet services along with the 
requirements. 
 
(1) Relationship management. As described in Section 
2, cyber-entities use their relationships to represent their 
acquaintances, discover other cyber-entities and interact 
with them. Therefore, the bionet platform provides the 
relationship management service, which allows 
cyber-entities to establish, examine, update and 
eliminate their relationships (Table 1). Each 
cyber-entity has a list of relationship objects, each of 
which represents a relationship with another 
cyber-entity. A relationship object contains the 
attributes of a partner cyber-entity. It can contain any 
additional information (e.g. keywords describing their 
partner cyber-entities). 

When a cyber-entity establishes a relationship with 
another one, it calls a relationship management service 
with its partner’s GUID (global unique identifier) and/or 
reference. The service checks if the partner exists, and if 
it does, obtains the partner’s attributes and instantiates a 
relationship object. 

In order to establish an initial set of relationships, a 
cyber-entity typically searches for other cyber-entities 
running on the same platform by using the CE sensing 
service (Table 1).  
 
(2) Dynamic discovery. The autonomy and 
decentralization features of cyber-entities produce the 
need for a method to locate cyber-entities. Therefore, 
the bionet platform provides the social networking 
service, which allows cyber-entities to dynamically 
discover others with various search criteria in a 
decentralized manner (Table 1). The design of this 
service is similar to that of peer-to-peer systems [22, 23]. 
Cyber-entities construct an overlay network with their 
relationships for routing discovery queries among them. 
A discovery process consists of query initialization, 
query matching, query forwarding and query hit 
backtracking. 

In query initialization, a discovery originator (i.e. a 
cyber-entity) begins a discovery process by generating a 
query with the social networking service. Each query 

Name Functionality 
Relationship 
management  

allows cyber-entities to establish, examine, update 
and eliminate their relationships.  

Social 
networking  

allows cyber-entities to locate other cyber-entities 
through their relationships with their search criteria.

CE sensing allows cyber-entities to locate the cyber-entities 
running on the local platform. 

Migration allows cyber-entities to move to another platform.
Pheromone
emission  

allows cyber-entities to emit their pheromones and 
sense pheromones emitted by other cyber-entities. 

Lifecycle provides cyber-entities lifecycle operations.
Resource
sensing 

allows cyber-entities to sense the type, amount and 
unit cost of available resources.  

Energy
management 

keeps track of energy level of the cyber-entities 
running on the local platform.  

Table 1. A list of the bionet services 
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contains its GUID to distinguish it from other queries, 
hops-to-live count to determine discovery termination, 
and search criteria. Search criteria are described based 
on the OMG constraint language [24]. Examples of 
search criteria are as follows: 

GUID==’sti3sdr98rd56fn...’ 
serviceType==’HTTP/1.1’ and serviceCost<150.0 

The query matching phase is performed when a 
query is initialized or a cyber-entity receives a query 
from another cyber-entity. The social networking 
service provides an evaluator object used to examine if 
the received query’s search criteria match a given 
cyber-entity. If it does, a query hit is returned to the 
discovery originator. Otherwise, the query is forwarded 
to other cyber-entities. 

In query forwarding, queries are routed from 
cyber-entity to cyber-entity through their relationships, 
seeking the cyber-entities that satisfy search criteria. 
Each cyber-entity uses the social networking service to 
forward a query. The service decrements the 
hops-to-live value in a received query, and if the value 
becomes zero, the query is discarded. It also examines if 
the query forms a loop in its forwarding path, and if it 
does, the query is discarded. Otherwise, the query is 
forwarded to the relationship partners of the cyber-entity 
that invoked the social networking service. The service 
keeps a record of the query’s GUID, the cyber-entity 
from which the query is received, and the cyber-entity to 
which the query is forwarded. 

The query hit backtracking phase is performed 
when a query matches a cyber-entity. A query hit is 
generated and returned back to the discovery originator, 
following the reverse route of the forwarding path that 
led to the cyber-entity being returning the query hit. 

In addition to the social networking service, the 
bionet platform provides another service, called the CE 
sensing service to locate cyber-entities (Table 1). This 
service keeps track of the cyber-entities that exist on a 
local platform. This service is typically used for 
cyber-entities to establish their initial relationships. 
 
(3) Migration. Since cyber-entities move around the 
network, the bionet platform provides the migration 
service, which allows them to migrate from a platform to 
another. This service implements weak migration [25], 
in which data state associated with a cyber-entity is 
transferred between different bionet platforms. 

The migration service is responsible for sending 
out a cyber-entity and receiving a migrating cyber-entity. 
It transfers a cyber-entity’s class name, class definition 
and runtime data state to the migration service running 
on a destination platform. The class definition and data 
state are serialized at an origin platform and 
de-serialized on a destination by using Java serialization 
mechanism. The transferred class definition is loaded 
into a JVM on a destination platform using the bionet 
class loader. After the class definition is loaded and data 
state of a cyber-entity is de-serialized, a destination-side 
migration service instantiates the cyber-entity. 

Since cyber-entities are autonomous, they move 
around the network without any intervention from 
others. As a result, after a cyber-entity moves, the 
relationships (particularly, references contained in the 
relationships) associated with the cyber-entity become 
invalid. In this case, by using the social networking 
service, cyber-entities may locate the missing 
cyber-entity or may locate other cyber-entities that 
implement the service the missing one provides. 

The bionet platform provides another option for 
cyber-entities to locate missing cyber-entities through 
the pheromone emission service (Table 1). Due to space 
limitation, please see [26] for more detailed design. 
 
(4) Lifecycle management. As cyber-entities are 
dynamically initialized, replicated or reproduced, the 
bionet platform provides the lifecycle service, which 
provides several lifecycle operations to them (Table 1). 
The service is used to initialize a cyber-entity when it is 
newly created or when it completes a migration. The 
service accepts a cyber-entity’s instance, creates a CE 
context to associate it with the cyber-entity, assigns a 
GUID to the cyber-entity, and registers the cyber-entity 
to the bionet container. 

The lifecycle service is also used to replicate a 
cyber-entity or reproduce a child cyber-entity from two 
parent cyber-entities. The service makes a deep copy of 
a parent cyber-entity using Java serialization mechanism. 
Mutation may happen on a child cyber-entity during 
replication and reproduction. For example, inherited set 
of relationships and other properties (e.g. behavior 
policies) may be randomly modified. Crossover happens 
during reproduction to inherit relationships and other 
properties from two parents. The evolutionary aspect of 
cyber-entities is beyond the scope of this paper. Please 
see [9, 10] for more details about this issue. 

 
(5) Environment sensing. Since cyber-entities need to 
sense their surrounding network conditions to perform 
their behaviors, the bionet platform provides a series of 
mechanisms for environment sensing. They allow for 
each cyber-entity to sense (1) its current energy level, 
(2) resource availability on a local platform, (3) the 
current traffic load on a local platform, and (4) the 
number of cyber-entities running on a local platform.  

The current energy level of a cyber-entity is 
available through the energy management service 
(Table 1). This service keeps track of the energy level of 
every cyber-entity running on a local platform. The 
resource sensing service allows cyber-entities to 
monitor the type, amount and unit cost of resources 
(CPU cycles and memory space) available on a local 
platform (Table 1). Due to space limitation, please see 
[26] for more details. Cyber-entities can also sense the 
current traffic load and the number of cyber-entities on a 
local platform. As described earlier, the traffic load is 
available through the bionet container, and the number 
of local cyber-entities is available through the CE 
sensing service (Table 1). 
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4. Measurement Results 
 
This section describes some of the measurement results 
to evaluate the footprint, efficiency and scalability of the 
bionet platform. 

The measurements were conducted with two bionet 
platforms running on different Windows 2000 PCs, each 
of which hosts Java 2 SDK (version 1.4.2_01 from Sun 
Microsystems) with an Intel Pentium 4 processor (1.8 
GHz) and 512 MB RAM. The PCs were connected 
through a 100Mbps Ethernet switch. 

Table 2 shows the bootstrap overhead and memory 
footprint of each platform component. The bootstrap 
overhead measures the time for the bionet platform to 
initialize each component, and the bootstrap memory 
footprint measures the amount of memory space each 
component consumes when it is initialized. Table 2 
shows that both of the measures are fairly small. 

Figure 2 shows the throughput of the bionet 
platform per cyber-entity (i.e. how many interactions 
two cyber-entities can perform per sec.). In this 
measurement, we deployed a single cyber-entity (sender 
cyber-entity) on a platform and a range of cyber-entities 
(from 1 to 1000 receiver cyber-entities) on the other 
platform. The sender randomly chose one of the remote 
receivers and sent an empty message to the chosen 
receiver. Then, the receiver sends back an empty 
message to the sender.   
 

platform component overhead footprint 
Bionet message transport 22.98 msec 6.65 KB

Bionet container 127.06 msec 8.88 KB
Bionet class loader 9.11 msec 3.97 KB

Platform representative 82.31 msec 5.23 KB
Relationship mgt service 23.17 msec 4.48 KB
Social networking service 69.85 msec 12.03 KB

CE sensing service 56.43 msec 7.82 KB
Migration service 33.13 msec 4.88 KB

Pheromone emission service 37.79 msec 7.39 KB
Lifecycle service 91.92 msec 44.07 KB

Resource sensing service 64.36 msec 42.12 KB
Energy management service 59.02 msec 8.12 KB

Total 677.13 msec 154.64 KB

Table 2. Bootstrap overhead and memory footprint of 
each platform component 
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Figure 2. Throughput of message exchanges 

 
As Figure 2 shows, two cyber-entities running on 

different platforms can send approximately 2,200 

messages (i.e. 1,100 roundtrip interactions) per second 
with each other. This result is competitive with 
well-known Java-based distributed object platforms 
(JacORB1 and Java IDL2), and we believe the bionet 
message transport and bionet container are efficient 
enough. Figure 2 also shows that the throughput remains 
mostly constant as the number of cyber-entities grows 
up to 1,000, indicating that the bionet platform scales. 

In the next measurement, we deployed a bionet 
platform on a PC and multiple cyber-entities on the 
platform. Each cyber-entity implements a web server 
function that processes the HTTP GET request message. 
An emulated user was deployed on the same PC, and it 
sent GET requests to the cyber-entities. Upon receiving 
a request, each cyber-entity locates, reads and returns a 
requested file. It keeps five different files whose sizes 
are 500B, 5KB, 50KB, 500KB and 5MB. These five 
sizes are representative in Webstone [27], a well-known 
performance profiling tool for web servers. The request 
rate was 10 requests per second. 
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Figure 3. CPU utilization of the cyber-entities that 

implement web server functions 
 

File size (bytes) Probability (%) 
500 35 
5 K 50 

50 K 14 
500 K 0.9 
5 M 0.1 

Table 3. Probability to request different sized files 
 
Figure 8 shows the CPU utilization of the web 

server cyber-entities and bionet platform. When the 
CPU utilization goes around 75%, the total utilization on 
the testbed PC reaches 100%; the other 25% is 
consumed by the operating system. In the case of 500B 
file requests, 350 cyber-entities can be executed under 
75% CPU utilization. In 5M file requests, 50 
cyber-entities can be executed. A heavy line in Figure 8 
shows the CPU utilization in the case that a user requests, 
in a single measurement run, different-sized files based 
on the probability shown in Table 3, which is defined by 
WebStone. In this measurement run, 320 cyber-entities 
can work simultaneously before the CPU utilization 

 
1 www.jacorb.org 
2 java.sun.com/products/jdk/idl/ 
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reaches 75%. 290 cyber-entities can run under 50% 
CPU utilization. Also, the CPU utilization increases 
almost linearly as the number of cyber-entities grows. 
Given these results, we confirmed the bionet platform is 
scalable enough in terms of the number of 
cyber-entities. 
 

5. Related Work 
 
The bionet platform is similar to existing mobile agent 
platforms, such as Aglets3 and AgentSpace [28], in the 
sense that it implements a weak migration mechanism 
for agents. However, unlike them, the bionet platform 
emphasizes on decentralized organization of agents. 
Almost all the existing agent platforms assume the 
existence of centralized entities. Hive addresses 
decentralization of agents [29], but its implementation 
currently depends on a centralized directory (Java RMI 
registry). In contrast, the bionet platform allows agents 
(i.e. cyber-entities) to form an overlay network among 
agents using their relationships and perform distributed 
discoveries through the relationships with the social 
networking service. 
 

6. Concluding Remarks 
 
This paper described our research effort to develop a 
scalable and efficient infrastructure for autonomic 
agents running on pervasive networks. We presented the 
designs of our platform that addresses the mobility, 
dynamic discovery, adaptability, scalability, and ease of 
development and deployment in pervasive network 
applications. We also showed that those mechanisms 
can be implemented scalable, efficient and lightweight 
through measurement results. 

As future work, we plan an extended set of 
measurements. We evaluated scalability and efficiency 
of our platform mechanisms in terms of the number of 
cyber-entities running on platforms, but the network 
size is still small. We will deploy the bionet platforms 
and cyber-entities on larger-scale networks to identify 
the effects of network size on the platform performance 
by comparing the measurement results in this paper.  
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