

 1

Abstract
This paper describes our research effort to design,
implement and deploy an infrastructure that addresses
several key issues in pervasive computing. We have
designed a network application architecture, called the
Bio-Networking Architecture, which models autonomic
agents after several biological concepts and mechanisms,
and implemented a platform software to host the
architecture on networks. The platform aids developing
and executing large-scale, highly distributed and
dynamic network applications, each of which is
composed of the biologically-inspired software agents.
We overview several key features of the agents in our
architecture, and describe the design and
implementation of the proposed platform, showing how
the platform satisfies a set of functional requirements
derived from the features of our agents. We also present
some measurement results to examine scalability and
efficiency of the platform.

1. Introduction

As computing devices and networks become more
pervasive, the computing landscape is evolving into an
environment in which a huge number of networked
computing devices sense, interact with and control the
physical world in such a way that the physical world is
merged and augmented with the virtual world [1, 2]. In
order to make this vision a reality, literatures have
identified several key issues for network applications
and software infrastructures in pervasive computing
environments [3−6]. They address that the software
infrastructures need to allow application components to
move around the network, discover other components
dynamically, adapt to dynamic changes in environment
(e.g. workload and the number of users) and scale well
in terms of, for example, the number of application
components. They also need to make the development
and deployment of application components more
productive (i.e. faster and easier).

This paper describes our research effort to
investigate a software infrastructure that deploys each

* Research supported by the NSF through Grants ANI-0083074 and
ANI-9903427, by DARPA through Grant MDA972-99-1-0007, by
AFOSR through Grant MURI F49620-00-1-0330, and by grants from
the California MICRO program, Hitachi, Hitachi America, Novell,
Nippon Telegraph and Telephone Corporation (NTT), NTT Docomo,
Fujitsu, and NS Solutions Corporation.

pervasive network application as a collection of
autonomous adaptive agents [7, 8], autonomic agents in
short [9], and allows pervasive network applications (i.e.
autonomic agents) to support the above key
requirements; mobility, dynamic discovery, adaptability,
scalability and ease of development and deployment.
We have designed a novel architecture, called the
Bio-Networking Architecture, which models autonomic
agents after several biological concepts and mechanisms
[10, 11]. The architecture is motivated by the
observation that the above requirements to pervasive
network applications have already been realized in
various biological systems.

This paper overviews several key features of the
agents in our architecture and identifies functional
requirements to our software infrastructure, called the
Bio-Networking Platform (or bionet platform). The
bionet platform is a middleware that aids developing
and deploying pervasive network applications (i.e.
agents) by providing reusable software components.
These components abstract low-level operating and
networking details (e.g. I/O and concurrency) and
provide agents a series of high-level runtime services.
We describe the design and implementation of the
bionet platform, showing how the platform satisfies the
functional requirements derived from the features of our
agents. We also present some of the measurement
results to illustrate the efficiency and scalability of the
bionet platform.

This paper is organized as follows: Section 2
presents key features of the agents in our architecture.
Section 3 describes the design and implementation of
the bionet platform. Measurement results are shown in
Section 4. In Sections 5 and 6, we conclude with
comparison with existing work and future work.

2. Assumed Features of Autonomic Agents

In the Bio-Networking Architecture, each autonomic
agent, called cyber-entity, consists of attributes, body
and behaviors [10]. Attributes carry descriptive
information regarding a cyber-entity (e.g. identifier). A
body implements cyber-entity’s functional service(s).
Behaviors implement non-functional biological actions
(e.g. reproduction and migration). Each cyber-entity
lives on a specific bionet platform to execute its service
implemented in its body. A bionet platform runs on each
network node. Through the runtime services of a local

The Bio-Networking Platform: An Autonomic Agent Platform
for Pervasive Networks*

Junichi Suzuki and Tatsuya Suda
{jsuzuki, suda}@ics.uci.edu

School of Information and Computer Science
University of California, Irvine

Irvine, CA 92697

 2

bionet platform, each cyber-entity continuously senses
the current network conditions (e.g. network traffic) and
performs its behavior [10, 11, 12, 13]. Cyber-entities
maintain the following four key features.

(1) Decentralized. A network application is modeled as
a decentralized collection of cyber-entities in the
Bio-Networking Architecture. This is analogous to a bee
colony (an application) consisting of multiple bees
(cyber-entities). The advantages of decentralization are
scalability and fault tolerance [14]. Centralized systems
can fail when central entities (e.g. directory server) are
overwhelmed, but decentralized systems can survive by
spreading the load [15]. Decentralization is essential if a
system grows beyond the management of a single
administrative entity. Central entities also suffer from
mobility of agents. They cannot eventually keep track of
agents if they often join and leave the network [16].
Decentralized systems maintain an organizational
advantage as well. Users need no complicated setup
work; they can simply develop and run their
cyber-entities without knowing any central coordination.
This lowers the barrier for users to develop and deploy
agents (i.e. network applications).

(2) Autonomous. Autonomy is the ability of agents to
act without any interventions from their users and other
agents [17]. Autonomous agents are goal-oriented and
control themselves proactively [18]. Cyber-entities are
autonomous in the sense that each of them has its own
goal (e.g. staying close to users and living long), senses
surrounding network conditions, and performs its
behaviors, according to the sensed network conditions,
which will support future goal achievement [11]. Our
previous simulation study has confirmed the desirable
system properties (e.g. adaptability) emerge through
cyber-entities’ autonomous behavior invocations [11].

(3) Adaptive. Adaptability is the ability of agents to
increase their fitness to environment. Cyber-entities
adapt themselves to environmental changes in
short-term and long-term fashions. The short-term
adaptation is achieved by performing behaviors
according to the current network conditions [11, 13].
For example, a cyber-entity may migrate to a
neighboring platform when traffic volume grows or
resource availability becomes scarce. The long-term
adaptation is achieved by applying biological
evolutionary process. Cyber-entities evolve by
generating behavioral diversity and executing natural
selection [12]. Behavioral diversity means that it is
likely different cyber-entities implement different
policies on their behaviors. It is generated through
mutation and crossover, which dynamically modify
behavior policies during replication and reproduction.
Natural selection is executed based on the concept of
energy. Each cyber-entity stores and expends energy for
living, as biological entities naturally strive to gain
energy by seeking and consuming food. Cyber-entities

gain energy in exchange for performing their services,
and expend energy to consume resources such as CPU
cycles and memory space. The abundance and scarcity
of stored energy affects various behaviors and
contributes to the natural selection process. For example,
energy abundance is an indication of higher demand for
the cyber-entity; thus the cyber-entity may be designed
to favor reproduction in response to higher level of
energy. Energy scarcity (an indication of lack of
demands or ineffective behavior policies) may
eventually cause the cyber-entity’s death. Our previous
simulation work has shown our evolutionary process
allows cyber-entities to adapt to dynamic environmental
changes (e.g. changes in workload, users’ location and
resource availability) [12].

(4) Self-descriptive. In order to make agents
autonomous and decentralized, they need to be loosely
coupled with each other. As a result, the agents that an
agent interacts with may not exist when it is developed,
and they may not always be available in the future, for
example, due to their migrations. Therefore, agents
should be able to dynamically discover and interact with
other agents without recompiling or changing any lines
of code. In the Bio-Networking Architecture, each
cyber-entity keeps its own descriptive information as
attributes, and makes it available to other cyber-entities.
It also maintains relationships with other cyber-entities.
A relationship is established between two cyber-entities,
and it contains attributes about a peer cyber-entity. With
relationships and attributes, cyber-entities dynamically
discover others and interact with each other [19].

Through the above four features, the Bio-Networking
Architecture addresses the current issues in pervasive
computing, described in Section 1, mobility, dynamic
discovery, adaptability, scalability and ease of
development and deployment.

3. The Bio-Networking Platform

Given an initial set of successful simulation results [11,
12, 13, 19], we built the bionet platform in order to
implement and evaluate the features of cyber-entities on
real networks. It is implemented in Java, and each

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
x
t
e
r
n
a
l

H
e
l
p
e
r

T
o
o
l
s

Platform
representative

Figure 1. Architecture of the bionet platform

 3

platform runs on a Java virtual machine (JVM) atop a
network node. The bionet platform is an object-oriented
reusable framework on which various applications can
be developed. It consists of six components (Figure 1).

A platform representative is an object that
represents a bionet platform and runs on per-platform
basis. It keeps a table listing all the bionet services and
bionet container (see below) on a local platform with
their names and references. It is initialized when a
bionet platform boots.

A CE context is an entry point for a cyber-entity to
access underlying bionet services. It examines if a
bionet service requested by a cyber-entity is available,
and if it is, the CE context returns a reference to the
service. Each CE context performs this lookup for
bionet services through the local platform representative.
Each cyber-entity has its own CE context. A CE context
is created and associated with a cyber-entity by the
lifecycle service (one of the bionet services), when the
cyber-entity is created, replicated or reproduced.

The bionet services provide a set of runtime
services that cyber-entities use for performing their
behaviors. Each bionet service implements one or more
behaviors of cyber-entities. The behaviors the bionet
services support are energy exchange/storage,
migration, replication and reproduction, relationship
maintenance, discovery of cyber-entities, and resource
sensing.

The bionet message transport abstracts low-level
networking and operating details such as network I/O,
concurrency, messaging and network connection
management. The current bionet platform uses the
CORBA IIOP 1.1 [20] to transmit messages on TCP.

The bionet container maintains references to the
cyber-entities running on a local platform, and
dispatches incoming messages to them. It also monitors
the network traffic by counting the size of received IIOP
packets and the number of message dispatches.

The bionet class loader is a custom class loader
that extends JVM’s system (default) class loader. It is
used to dynamically load a cyber-entity’s class
definition into a JVM when it is newly created or
completes a migration.

External helper tools are the software intended to
improve the productivity of users. They include GUI
tools to visualize cyber-entities’ attributes, relationship
structures and performance measurement results.

The current code base of the bionet platform
contains approximately 29,700 semicolons, and is the
work of one full-time research staff and six part-time
undergraduate students [21].

Out of the above six components in the bionet
platform, the layer of bionet services is a key component
in terms of addressing the issues in pervasive network
applications (see Section 1). The layer consists of eight
bionet services (Table 1). Each bionet service runs on
per-platform basis. Since decentralization is a key
design principle for us (see Section 2), we implemented
all the bionet services in a decentralized manner; no

centralized entities exist. Also, we implemented bionet
services based on five functional requirements derived
from the features and behaviors of cyber-entities. We
describe the design of bionet services along with the
requirements.

(1) Relationship management. As described in Section
2, cyber-entities use their relationships to represent their
acquaintances, discover other cyber-entities and interact
with them. Therefore, the bionet platform provides the
relationship management service, which allows
cyber-entities to establish, examine, update and
eliminate their relationships (Table 1). Each
cyber-entity has a list of relationship objects, each of
which represents a relationship with another
cyber-entity. A relationship object contains the
attributes of a partner cyber-entity. It can contain any
additional information (e.g. keywords describing their
partner cyber-entities).

When a cyber-entity establishes a relationship with
another one, it calls a relationship management service
with its partner’s GUID (global unique identifier) and/or
reference. The service checks if the partner exists, and if
it does, obtains the partner’s attributes and instantiates a
relationship object.

In order to establish an initial set of relationships, a
cyber-entity typically searches for other cyber-entities
running on the same platform by using the CE sensing
service (Table 1).

(2) Dynamic discovery. The autonomy and
decentralization features of cyber-entities produce the
need for a method to locate cyber-entities. Therefore,
the bionet platform provides the social networking
service, which allows cyber-entities to dynamically
discover others with various search criteria in a
decentralized manner (Table 1). The design of this
service is similar to that of peer-to-peer systems [22, 23].
Cyber-entities construct an overlay network with their
relationships for routing discovery queries among them.
A discovery process consists of query initialization,
query matching, query forwarding and query hit
backtracking.

In query initialization, a discovery originator (i.e. a
cyber-entity) begins a discovery process by generating a
query with the social networking service. Each query

Name Functionality
Relationship
management

allows cyber-entities to establish, examine, update
and eliminate their relationships.

Social
networking

allows cyber-entities to locate other cyber-entities
through their relationships with their search criteria.

CE sensing allows cyber-entities to locate the cyber-entities
running on the local platform.

Migration allows cyber-entities to move to another platform.
Pheromone
emission

allows cyber-entities to emit their pheromones and
sense pheromones emitted by other cyber-entities.

Lifecycle provides cyber-entities lifecycle operations.
Resource
sensing

allows cyber-entities to sense the type, amount and
unit cost of available resources.

Energy
management

keeps track of energy level of the cyber-entities
running on the local platform.

Table 1. A list of the bionet services

 4

contains its GUID to distinguish it from other queries,
hops-to-live count to determine discovery termination,
and search criteria. Search criteria are described based
on the OMG constraint language [24]. Examples of
search criteria are as follows:

GUID==’sti3sdr98rd56fn...’
serviceType==’HTTP/1.1’ and serviceCost<150.0

The query matching phase is performed when a
query is initialized or a cyber-entity receives a query
from another cyber-entity. The social networking
service provides an evaluator object used to examine if
the received query’s search criteria match a given
cyber-entity. If it does, a query hit is returned to the
discovery originator. Otherwise, the query is forwarded
to other cyber-entities.

In query forwarding, queries are routed from
cyber-entity to cyber-entity through their relationships,
seeking the cyber-entities that satisfy search criteria.
Each cyber-entity uses the social networking service to
forward a query. The service decrements the
hops-to-live value in a received query, and if the value
becomes zero, the query is discarded. It also examines if
the query forms a loop in its forwarding path, and if it
does, the query is discarded. Otherwise, the query is
forwarded to the relationship partners of the cyber-entity
that invoked the social networking service. The service
keeps a record of the query’s GUID, the cyber-entity
from which the query is received, and the cyber-entity to
which the query is forwarded.

The query hit backtracking phase is performed
when a query matches a cyber-entity. A query hit is
generated and returned back to the discovery originator,
following the reverse route of the forwarding path that
led to the cyber-entity being returning the query hit.

In addition to the social networking service, the
bionet platform provides another service, called the CE
sensing service to locate cyber-entities (Table 1). This
service keeps track of the cyber-entities that exist on a
local platform. This service is typically used for
cyber-entities to establish their initial relationships.

(3) Migration. Since cyber-entities move around the
network, the bionet platform provides the migration
service, which allows them to migrate from a platform to
another. This service implements weak migration [25],
in which data state associated with a cyber-entity is
transferred between different bionet platforms.

The migration service is responsible for sending
out a cyber-entity and receiving a migrating cyber-entity.
It transfers a cyber-entity’s class name, class definition
and runtime data state to the migration service running
on a destination platform. The class definition and data
state are serialized at an origin platform and
de-serialized on a destination by using Java serialization
mechanism. The transferred class definition is loaded
into a JVM on a destination platform using the bionet
class loader. After the class definition is loaded and data
state of a cyber-entity is de-serialized, a destination-side
migration service instantiates the cyber-entity.

Since cyber-entities are autonomous, they move
around the network without any intervention from
others. As a result, after a cyber-entity moves, the
relationships (particularly, references contained in the
relationships) associated with the cyber-entity become
invalid. In this case, by using the social networking
service, cyber-entities may locate the missing
cyber-entity or may locate other cyber-entities that
implement the service the missing one provides.

The bionet platform provides another option for
cyber-entities to locate missing cyber-entities through
the pheromone emission service (Table 1). Due to space
limitation, please see [26] for more detailed design.

(4) Lifecycle management. As cyber-entities are
dynamically initialized, replicated or reproduced, the
bionet platform provides the lifecycle service, which
provides several lifecycle operations to them (Table 1).
The service is used to initialize a cyber-entity when it is
newly created or when it completes a migration. The
service accepts a cyber-entity’s instance, creates a CE
context to associate it with the cyber-entity, assigns a
GUID to the cyber-entity, and registers the cyber-entity
to the bionet container.

The lifecycle service is also used to replicate a
cyber-entity or reproduce a child cyber-entity from two
parent cyber-entities. The service makes a deep copy of
a parent cyber-entity using Java serialization mechanism.
Mutation may happen on a child cyber-entity during
replication and reproduction. For example, inherited set
of relationships and other properties (e.g. behavior
policies) may be randomly modified. Crossover happens
during reproduction to inherit relationships and other
properties from two parents. The evolutionary aspect of
cyber-entities is beyond the scope of this paper. Please
see [9, 10] for more details about this issue.

(5) Environment sensing. Since cyber-entities need to
sense their surrounding network conditions to perform
their behaviors, the bionet platform provides a series of
mechanisms for environment sensing. They allow for
each cyber-entity to sense (1) its current energy level,
(2) resource availability on a local platform, (3) the
current traffic load on a local platform, and (4) the
number of cyber-entities running on a local platform.

The current energy level of a cyber-entity is
available through the energy management service
(Table 1). This service keeps track of the energy level of
every cyber-entity running on a local platform. The
resource sensing service allows cyber-entities to
monitor the type, amount and unit cost of resources
(CPU cycles and memory space) available on a local
platform (Table 1). Due to space limitation, please see
[26] for more details. Cyber-entities can also sense the
current traffic load and the number of cyber-entities on a
local platform. As described earlier, the traffic load is
available through the bionet container, and the number
of local cyber-entities is available through the CE
sensing service (Table 1).

 5

4. Measurement Results

This section describes some of the measurement results
to evaluate the footprint, efficiency and scalability of the
bionet platform.

The measurements were conducted with two bionet
platforms running on different Windows 2000 PCs, each
of which hosts Java 2 SDK (version 1.4.2_01 from Sun
Microsystems) with an Intel Pentium 4 processor (1.8
GHz) and 512 MB RAM. The PCs were connected
through a 100Mbps Ethernet switch.

Table 2 shows the bootstrap overhead and memory
footprint of each platform component. The bootstrap
overhead measures the time for the bionet platform to
initialize each component, and the bootstrap memory
footprint measures the amount of memory space each
component consumes when it is initialized. Table 2
shows that both of the measures are fairly small.

Figure 2 shows the throughput of the bionet
platform per cyber-entity (i.e. how many interactions
two cyber-entities can perform per sec.). In this
measurement, we deployed a single cyber-entity (sender
cyber-entity) on a platform and a range of cyber-entities
(from 1 to 1000 receiver cyber-entities) on the other
platform. The sender randomly chose one of the remote
receivers and sent an empty message to the chosen
receiver. Then, the receiver sends back an empty
message to the sender.

platform component overhead footprint
Bionet message transport 22.98 msec 6.65 KB

Bionet container 127.06 msec 8.88 KB
Bionet class loader 9.11 msec 3.97 KB

Platform representative 82.31 msec 5.23 KB
Relationship mgt service 23.17 msec 4.48 KB
Social networking service 69.85 msec 12.03 KB

CE sensing service 56.43 msec 7.82 KB
Migration service 33.13 msec 4.88 KB

Pheromone emission service 37.79 msec 7.39 KB
Lifecycle service 91.92 msec 44.07 KB

Resource sensing service 64.36 msec 42.12 KB
Energy management service 59.02 msec 8.12 KB

Total 677.13 msec 154.64 KB

Table 2. Bootstrap overhead and memory footprint of
each platform component

0

500

1000

1500

2000

2500

3000

3500

1 100 200 300 400 500 600 700 800 900 1000

of objects (cyber-entities)

T
h
ro

u
g
h
pu

t
(c

a
lls

/
s
e
c
)

Bionet

JacORB

Java IDL

Figure 2. Throughput of message exchanges

As Figure 2 shows, two cyber-entities running on

different platforms can send approximately 2,200

messages (i.e. 1,100 roundtrip interactions) per second
with each other. This result is competitive with
well-known Java-based distributed object platforms
(JacORB1 and Java IDL2), and we believe the bionet
message transport and bionet container are efficient
enough. Figure 2 also shows that the throughput remains
mostly constant as the number of cyber-entities grows
up to 1,000, indicating that the bionet platform scales.

In the next measurement, we deployed a bionet
platform on a PC and multiple cyber-entities on the
platform. Each cyber-entity implements a web server
function that processes the HTTP GET request message.
An emulated user was deployed on the same PC, and it
sent GET requests to the cyber-entities. Upon receiving
a request, each cyber-entity locates, reads and returns a
requested file. It keeps five different files whose sizes
are 500B, 5KB, 50KB, 500KB and 5MB. These five
sizes are representative in Webstone [27], a well-known
performance profiling tool for web servers. The request
rate was 10 requests per second.

0

10

20

30

40

50

60

70

80

90

10 50 90 13
0

17
0

21
0

25
0

29
0

31
0

33
0

35
0

of cyber-entities

C
PU

 u
til

iz
at

io
n

(%
) 500 B

5 kB

50 kB

500 kB

5MB

combined

Figure 3. CPU utilization of the cyber-entities that

implement web server functions

File size (bytes) Probability (%)
500 35
5 K 50

50 K 14
500 K 0.9
5 M 0.1

Table 3. Probability to request different sized files

Figure 8 shows the CPU utilization of the web

server cyber-entities and bionet platform. When the
CPU utilization goes around 75%, the total utilization on
the testbed PC reaches 100%; the other 25% is
consumed by the operating system. In the case of 500B
file requests, 350 cyber-entities can be executed under
75% CPU utilization. In 5M file requests, 50
cyber-entities can be executed. A heavy line in Figure 8
shows the CPU utilization in the case that a user requests,
in a single measurement run, different-sized files based
on the probability shown in Table 3, which is defined by
WebStone. In this measurement run, 320 cyber-entities
can work simultaneously before the CPU utilization

1 www.jacorb.org
2 java.sun.com/products/jdk/idl/

 6

reaches 75%. 290 cyber-entities can run under 50%
CPU utilization. Also, the CPU utilization increases
almost linearly as the number of cyber-entities grows.
Given these results, we confirmed the bionet platform is
scalable enough in terms of the number of
cyber-entities.

5. Related Work

The bionet platform is similar to existing mobile agent
platforms, such as Aglets3 and AgentSpace [28], in the
sense that it implements a weak migration mechanism
for agents. However, unlike them, the bionet platform
emphasizes on decentralized organization of agents.
Almost all the existing agent platforms assume the
existence of centralized entities. Hive addresses
decentralization of agents [29], but its implementation
currently depends on a centralized directory (Java RMI
registry). In contrast, the bionet platform allows agents
(i.e. cyber-entities) to form an overlay network among
agents using their relationships and perform distributed
discoveries through the relationships with the social
networking service.

6. Concluding Remarks

This paper described our research effort to develop a
scalable and efficient infrastructure for autonomic
agents running on pervasive networks. We presented the
designs of our platform that addresses the mobility,
dynamic discovery, adaptability, scalability, and ease of
development and deployment in pervasive network
applications. We also showed that those mechanisms
can be implemented scalable, efficient and lightweight
through measurement results.

As future work, we plan an extended set of
measurements. We evaluated scalability and efficiency
of our platform mechanisms in terms of the number of
cyber-entities running on platforms, but the network
size is still small. We will deploy the bionet platforms
and cyber-entities on larger-scale networks to identify
the effects of network size on the platform performance
by comparing the measurement results in this paper.

References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific
American September, 1991.
[2] D. Norman, The Invisible Computer, MIT Press, 1998.
[3] M Satyanarayanan, “Pervasive Computing: Vision and
Challenges,” IEEE Personal Communications, August, 2001.
[4] K. Henricksen, J. Indulska and A. Rakotonirainy, “Infrastructure
for Pervasive Computing: Challenges,” Proc. of Workshop on
Pervasive Computing INFORMATIK 01, 2001.
[5] S. Acharya, “Application and Infrastructure Challenges in
Pervasive Computing,” Proc. of NSF Workshop on Context-Aware
Mobile Database Management, January 2002.
[6] G. Banavar and A. Bernstein, “Software Infrastructure and Design
Challenges for Ubiquitous Computing Applications,” CACM, vol. 45,
no. 12, December 2002.

3 http://sourceforge.net/projects/aglets/

[7] P. Maes, “Modeling Autonomous Adaptive Agents,” Artificial
Life, I (1&2)9, 1994.
[8] S. Franklin and A. Graesser, “Is it an agent or just a program?: A
Taxonomy for Autonomous Agents,” Proc. of ATAL’96, 1996.
[9] A. G. Ganek and T. A. Corbi, “The dawning of the Autonomic
Computing Era,” IBM System Journal, vol. 42, no. 1, 2003.
[10] T. Suda, T. Itao and M Matsuo, “The Bio-Networking
Architecture: The Biologically Inspired Approach to the Design of
Scalable, Adaptive, and Survivable/Available Network Applications,”
In K. Park (ed.) The Internet as a Large-Scale Complex System,
Princeton University Press, 2002
[11] M. Wang and T. Suda, “The Bio-Networking Architecture: A
Biologically Inspired Approach to the Design of Scalable, Adaptive,
and Survivable/Available Network Applications,” Proc. of the 1st
IEEE SAINT conference, 2001.
[12] J. Suzuki, T. Nakano, K. Fujii, N. Ikeda and T. Suda, “Dynamic
Reconfiguration of Network Applications and Middleware Systems in
the Bio-Networking Architecture,” Proc. of IEEE LARTES, 2002.
[13] J. Suzuki and T. Suda, “Adaptive Behavior Selection of
Autonomous Objects in the Bio-Networking Architecture,” Proc. of
AINS, 2002.
[14] T. Hong, “Performance,” Peer-to-Peer, A. Oram (ed.), Chapter 14,
Wiley, 2001.
[15] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mobile
Agents for Dynamic Network Routing,” Software Agents for Future
Communications Systems, 1999.
[16] G Cabri, L. Leonardi and F Zambonelli, “Mobile-Agent
Coordination Models for Internet Applications,” Computer
33(2):82-89, February 2000.
[17] C. Castelfranchi, “Guarantees for Autonomy in Cognitive Agent
Architecture,” Proc. of ECAI-94 Workshop on Agents Theories,
Architectures, and Languages, Springer, 1995.
[18] M. Luck and M. P. D’Inverno, “A Formal Framework for Agency
and Autonomy,” Proc. of MAS”95, 1995.
[19] T. Itao, T. Nakamura, M. Matsuo, T. Suda and T. Aoyama, “The
Model and Design of Cooperative Interaction for Service
Composition,” Proc. of the DICOMO, 2001.
[20] OMG, The CORBA Specification, version 3.0, 2002.
[21] http://netresearch.ics.uci.edu/bionet/resources/platform/
[22] I. Clarke et al., “Freenet: A Distributed Anonymous Information
Storage and Retrieval System in Designing Privacy Enhancing
Technologies,” Proc. International Workshop on Design Issues in
Anonymity and Unobservability, LNCS 2009, Springer, 2001.
[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” Proc. of ACM SIGCOMM 2001, 2001.
[24] OMG, The Trading Object Service, 2000.
[25] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code
Mobility,”. IEEE Trans. on Software Engineering, 24(5), May 1998.
[26] J. Suzuki and T. Suda, “Design and Implementation of an Scalable
Infrastructure for Autonomous Adaptive Agents,” Proc. of the 15th
IASTED International Conference on Parallel and Distributed
Computing and Systems, November 2003.
[27] G. Trent and M Sake, ”WebStone: The First Generation in HTTP
Server Benchmarking,” Mindcraft, Inc., 1995.
[28] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T.
Brazier, “Supporting Internet-Scale Multi-Agent Systems,” Data
Knowledge Engineering (4)2-3, 2002.
[29] N. Minar, M. Gray, O. Roup, R. Krikorian and P. Maes, “Hive:
Distributed Agents for Networking Things,” Proc. of ASA99, 1999.

