
Extending UML for

Modeling Reective Software Components

Junichi Suzuki and Yoshikazu Yamamoto

Department of Computer Science,
Graduate School of Science and Technology,

Keio University
Yokohama City, 223-8522, Japan.
+81-45-563-3925 (Phone and FAX)
fsuzuki, yamag@yy.cs.keio.ac.jp

http://www.yy.cs.keio.ac.jp/�suzuki/project/uxf/

Abstract. This paper describes our extension of the UML metamodel
for specifying reective software components. Reection is a design prin-
ciple that allows a system to have a representation of itself in the manner
that makes it easy to adapt the system to a changing environment. It has
matured to the point where it is used to address real-world problems in
various areas. We describe how to document reective components in the
framework of UML. Our work allows for recognizing and understanding
reective components in the upper levels of abstraction at an earlier stage
of the development process. It leverages the documentation, learning, vi-
sual modeling, reuse and roundtrip development of metalevel designs.
We also demonstrate the seamless model exchange between di�erent de-
velopment tools and model continuity across development phases with
application-neutral interchange formats.

1 Introduction

The Uni�ed Modeling Language (UML) [1] has been widely accepted as a stan-
dard modeling language in the software engineering community. It de�nes se-
mantics and their notations of model elements required for documenting object
oriented software. It is a single and universal language that can be used with any
design methodology. UML provides nine diagrams with �ne level of abstraction
to specify object models for a given problem. Complex systems can be modeled
through a small set of nearly independent diagrams. UML has been used for rep-
resenting a variety of software models such as real-time systems, hypermedia,
business processes, engineering design and multiagent models.

This paper describes an extension of the UML metamodel for supporting
reective software components, which allows software to be highly con�gurable
and extensible, and how to specify them with UML. Supporting reective com-
ponents in the design level means that we can recognize them in the upper levels
of abstraction at an earlier stage of the development process. We also address
a description language based on XML (eXtensible Markup Language) for de-
scribing reective components as textual representations. It increases the model



continuity across development phases in more precise manner and provides for
the interchangeability of reective model information between di�erent develop-
ment tools.

The remainder of this paper is organized as follows. Section 2 overviews
reective software and its general constructs; it also describes the bene�ts of
capturing reective components in the design phase and expressing them with
XML. Section 3 describes our extension to the UML metamodel and shows some
examples. Section 4 presents some applications using UXF (UML eXchange For-
mat), our XML-based model description language, and XMI (XML Metamodel
Interchange) format. We conclude with our current project status and future
work in Sections 5 and 6.

2 Reective Components in the Design Phase

This section overviews Aspect-Oriented Programming. It then considers some
aspects of reective software and describes our motivation to capture its compo-
nents in UML. We also describe an interchange format for reective components.

2.1 Aspect-Oriented Programming: Separation of Concerns

Today's software is becoming more and more complex, and has to deal with an
greater variety of computing concerns simultaneously, e.g. concurrency, object in-
teraction, persistence, distribution, fault tolerance and realtime constraints. The
notion of separation of concerns is proposed for managing software complexity
well and improving its quality by separating di�erent concerns and introduc-
ing clear and minimal dependencies between them at both the conceptual and
implementation levels [2].

Aspect-oriented Programming (AOP) is a paradigm for facilitating separa-
tion of concerns, which has been proposed by a research group of the Xerox
PARC [3]. AOP introduces a new unit of software modularity, called an aspect,
which represents a computing concern described above. Each aspect provides a
better handle for managing cross-cutting problems. Cross-cutting is a problem
found in many object-oriented software systems; some features of a system, i.e.
aspects in the sense of AOP, tend to a�ect or require the collaboration of groups
of objects. They are naturally spread within a whole system and cross-cut the
primary decomposition of objects. Typically, non-functional concerns make it
diÆcult to understand and evolve the system.

Aspects are handled to ful�ll certain application requirements (e.g. persis-
tence, distribution, real-time and fault tolerance) or manage and optimize un-
derlying computational algorithms (e.g. concurrency and object interaction).
Isolating aspects allows them to be:

{ abstracted to a higher level,
{ easier to understand because an aspect's code is not cluttered with the code
of other aspects, and



{ coupled loosely with each other; thereby the exibility and reusability of an
aspect is increased.

The process of combining an aspect with other aspects or other portions of
a system is called aspect weaving. A tool for weaving aspects is called aspect

weaver. An aspect is expressed by encoding the aspect support as a conventional
library, designing a separate language for the aspect, or designing a language
extension for the aspect [4]. Aspect weaving is performed by source code trans-
formation, component composition or reection [4]. For example, AspectJ [5],
an aspect weaver extending Java, represents an aspect by designing a language
extension and weaves aspects by source code transformation. AOP/ST [6], an
aspect weaver extending Smalltalk, represents an aspect by designing a separate
language for the aspect and weaves aspects by reection.

2.2 Reection

We are using the reection mechanism to separate aspects and keep them loosely
coupled. Alternative approaches are adaptive programming [7] and component
composition mechanisms [8, 9].

Reection is a design principle that allows a system to have an explicit rep-
resentation of itself in a manner that makes it easy to adapt the system to a
changing environment [10]. It was originally introduced by 3-Lisp [11]. After that,
it has been studied within various programming languages such as CLOS [12],
Smalltalk [13], C/C++ [14] and Java [15], in order to extend the language syn-
tax and semantics by providing language constructs as self-representations [12].
Recently, it has been applied to more generic system designs such as databases,
concurrent/parallel computing, operating systems, virtual machines, distributed
computing, security and agent-based intelligent systems. Reection has matured
to the point where it is used to address real-world problems. In fact, it is iden-
ti�ed as a pattern of software architecture (POSA) [16].

In object-oriented systems, the base unit of computation is object (or baseob-
ject). Through the interaction among objects, a system computes a certain task.
Reection introduces the notion of object/metaobject separation. A metaobject

(or metalevel object) is an object that contains information about the internal
structure and/or behavior of one or more baseobject. In other words, metaob-
jects can track and control certain aspects (i.e. structure and/or behavior) of
baseobjects. A set of metaobjects is called a metalevel, and a set of baseobjects
is called a baselevel.

Reection is the ability of a program to manipulate as data something that
represents the state of the program [17], and to adjust to changing requirements.
The goal of reection is to allow a baseobject to reect on its own execution state
and eventually alter it to change its meaning. In contrast to reection, rei�ca-
tion [18] is the process of making something accessible that is normally unavail-
able in the baselevel or is hidden from the programmer. For the execution of
a baseobject to be supervised, it must �rst be rei�ed into the corresponding



Metalevel

Baselevel

Reification Reflection

Baseobjects

Metaobjects, or aspects

Fig. 1. Typical reective architecture

metalevel. A set of interfaces through which a baseobject interacts with its met-
alevel is called Metaobject Protocols or MOPs [12]. The relationship among the
constructs described above is illustrated in Figure 1.

In general, a metaobject protocol establishes the following interactions [19]:
(1) attachment of baselevel and metalevel objects, that can be static or dynamic,
and in one-to-one or many metaobjects to one baseobject basis; (2) rei�cation of
structural and/or behavioral features within a baseobject; (3) execution, which
consists of metalevel computation that interferes with the baselevel behavior
transparently through the interception and rei�cation mechanisms; (4) modi-
�cation, which is the capability of the metaobjects of changing behavior and
structure of baseobjects.

There are various approaches to achieve reection, and they can be clas-
si�ed into: compile-time and runtime reection [14], structural and behavioral
reection [13], and introspection and intercession [20].

In our work, a metaobject is considered as an entity representing an aspect
in the sense of AOP. The separation of concerns is performed by separating
metaobjects from baseobjects and keeping metaobjects isolated. Aspects and
metaobjects are called reective components.

2.3 Bene�ts of Capturing Reective Components in the Design

Phase

Reective components can be identi�ed at the design and implementation phases,
though the cross-cutting problem tends to occur at the implementation/coding
phase [4]. When a reective component is identi�ed, or emergent, at the imple-
mentation phase, developers often add it to a system and change existing com-
ponents manually (see Figure 2). Reective components are maintained only at



compiling

Woven code

Aspect design & implementation

Class design & implementation

Executable

weaving / aspect plug-in

Aspect Refactoring
aspect plug-out / adding
or changing aspects

adding or changing aspects

Fig. 2. Typical process of aspect-oriented software development

the source code level. Few methods have been proposed for expressing them at
the design level. Supporting them at the design phase streamlines the process
of reective system development (Figure 2) and increases the productivity of
metalevel designers by facilitating:

{ Documentation and Learning
Supporting reective components as design constructs allows developers to
recognize them in the upper level of abstraction at an earlier stage of the de-
velopment process. Metalevel designers can easily document and understand
reective system design.

{ Visual modeling
Metalevel designers can understand reective components in more intuitive
way by visualizing them using CASE tools or model viewers.

{ Reuse of metalevel design
The above characteristics leverage the reuse of the metalevel design. A
promising example is pattern catalogs that collect well-known and feasible
design of reective components.

{ Roundtrip development
The incremental and roundtrip development of reective software is possible
with the metalevel source code to design model translation, model to met-
alevel source code translation and metalevel refactoring (see also Figure 2).

2.4 Bene�ts of Describing and Interchanging Metalevel Design

Models with XML

In the software design phase, model interchange is a very important capabil-
ity, because there are few application-neutral model exchange formats between
development tools. To solve this problem, we developed the UML eXchange
Format (UXF) [21], which is similar in some respects to the XML Metamodel



Interchange (XMI) format [1], standardized by the Object Management Group.
Both UXF and XMI are based on XML and allow model semantics to be de-
scribed explicitly and transferred precisely. Such application-neutral interchange
format facilitates:

{ Interchangeability and reuse of metalevel descriptions:
Software models change dynamically in the analysis, design, implementation
and maintenance phases. Software tools used in each phase usually employ
their own proprietary formats to describe model information. For exam-
ple, current aspect weavers use their own language to describe aspects. An
application-neutral format allows aspect information to be interchangeable
and reusable between a wide range of di�erent development tools with dif-
ferent strengths, throughout the lifecycle of software development (see also
Figure 2). This seamless tool interoperability increases our productivity for
designing the metalevel.

{ Intercommunication between metalevel designers:
An application-neutral metalevel description format serves as a communi-
cation vehicle for designers. They can communicate their modeling insights,
understandings and intentions on a metalevel design with each other. This
capability simpli�es the circulation of aspect models between aspect design-
ers.

We use UXF basically to describe metalevel design information, because it
preceded XMI at the time when our project began. However, our project is
slowly migrating to use XMI by providing a UXF-XMI converter and extending
XMI. Note that due to space limitations, the basics and bene�ts of using XML
as an interchange format are not covered here. Please see [?] for a more in-depth
discussion.

3 Modeling Reective Components with UML

This section describes our extensions to the UML metamodel for supporting
reective components and how to specify them with UML.

3.1 Aspects

The semantics of an aspect is de�ned as a UML metamodel element derived
from Classifier, which describes behavioral and structural features [1]. As
shown in the left of Figure 3, Classifier is a parent element of Aspect, Class,
Interface, Node and Component.

An aspect can have a set of attributes, operations and relationships because a
classi�er has them. An operation of an aspect is considered as the aspect's weave
declaration. A weave is a program that centralizes the code a�ecting (cross-
cutting) diverse portions in a system. An attribute of an aspect is used by one or
more weaves. Relationships of an aspect include generalization, association and



Fig. 3. Aspect as a metamodel element derived from Classifier (left), and some kinds
of the Relationship metamodel element(right)

dependency (see Figure 3). If an aspect language and weaver supports multiple
kinds of weaves, e.g. introduction and advice weaves in AspectJ [5], they are
speci�ed as stereotypes corresponding to their kinds.

The notation of an aspect is a class rectangle with stereotype �aspect� as
shown in Figure 4. In this �gure, the Singleton aspect represents the Singleton
design pattern. Because the aspect encapsulates the instantiation and instance
management policies, it is possible for a class to vary the policies. The operation
list compartment of the rectangle means the list of weave declarations. Each
weave is displayed as an operation with the stereotype �weave�. A signature
of a weave declaration shows its designator, specifying which model elements
(e.g. classes, methods and variables) are a�ected by the weave.

The Singleton aspect in Figure 4 is de�ned based on the AspectJ lan-
guage. It has two introduction weave declarations speci�ed by the stereotype
�introduction weave�. Singleton introduces a static method GetInstance()

and a private constructor in SingletonClass. A static attribute Instance,
which is stereotyped with�introduction� is also introduced in SingletonClass.

3.2 Aspect-Class Relationship

UML de�nes three primary relationships derived from the Relationship meta-
model element: Association, Generalization and Dependency (Figure 3). The
relationship between an aspect and the classes a�ected by the aspect is a kind
of dependency, because the behavior of a class is constrained by an aspect.
The dependency relationship states that the implementation or functioning of
one or more elements requires the presence of one or more other elements [1].
The derived metamodel elements of Dependency are Abstraction, Binding,
Permission and Usage (Figure 3). The aspect-class relationship is classi�ed as
a kind of the abstraction dependency. The abstraction dependency relates two
elements that are the same concept at di�erent levels of abstraction or from
di�erent viewpoints [1]. UML de�nes three stereotypes for the abstraction de-



Fig. 4. A simple aspect example. The Singleton aspect rei�es the implementation
policies of the Singleton design pattern.

pendency: derivation, realization, re�nement and trace. The aspect-class relation-
ship is best-suited to the abstraction dependency with the stereotype realization,
�realize�. A realization is a relationship between a speci�cation model element
and a model element that implements it. The implementation model element is
required to support the declaration of an speci�cation model element.

UML de�nes the notation for an abstraction dependency with the�realize�
stereotype as a dashed generalization arrow. Figure 4 shows a single aspect-class
relationship between Singleton and SingletonClass.

3.3 Woven Class

Aspect and class code are combined using an aspect weaver, and then a wo-
ven class is generated (Figure 2). The woven class structure depends on the
aspect weaver and programming language used. For example, AspectJ replaces
an original class with the generated woven class. AOP/ST generates a woven
class derived from the original class [6]. There are other alternative composition
strategies, e.g. composition using the Mediator or Decorator design patterns [22].

We introduced the stereotype �woven class� into the Class element in or-
der to represent a woven class. Figure 5 shows two di�erent woven class structures
using di�erent aspect weavers, AspectJ and AOP/ST. In general, application de-
velopers may not use this stereotype because they do not have to recognize how
a woven class is structured. However, since aspect or metalevel designers often
need to know the implementation details of weavers, they can use it especially
when they remove an aspect and modify the aspect and/or classes to debug them
(see also Figure 2).

3.4 Example: Reifying the Observer design pattern in the metalevel

Figure 6 shows an example of an aspect-oriented variant of the Observer de-
sign pattern [22] based on the AspectJ language. Reifying design pattern con-



Fig. 5.An aspect-class structure and two di�erent woven class structures using AspectJ
(upper) and AOP/ST (bottom).

structs to the metalevel allows for centralizing a variety of implementation poli-
cies in a pattern, as proposed in several places [15, 23, 24]. In Figure 6, the aspect
SubjectObserverProtocol rei�es the behavior of the pattern to de�ne the be-
havior between the class Subject and Observer. SubjectObserverProtocol
can be implemented independently of Subject and Observer because it local-
izes a policy of the protocol implementation involving several objects in a single
aspect rather than spreading multiple code fragments throughout them.

SubjectObserverProtocol de�nes seven introduction weaves and two at-
tributes. The following de�nitions:

#<<introduction>> Observer.subject: Subject=null

+<<introduction weave>> Subject.notify(arg: Object):void

are mapped to the AspectJ aspect de�nition below:

aspect SubjectObserverProtocol{

introduction Observer{

protected Subject subject = null;

...

}

introduction Subject{

public void notify(Object arg){

...

}

...

}



Fig. 6. Aspects reifying the Observer design pattern.

SubjectObserverProtocolhas a sub-aspect, MTSubjectObserverProtocol,
which is a thread-safe aspect. The implementation policy of a design pattern can
be modi�ed by extending an aspect. MTSubjectObserverProtocol is used when
a subject and observers are executed on di�erent threads. It is designed to avoid
a potential deadlock caused when a subject issues a change noti�cation in a
thread while an observer is trying to check the observable's instance variable [25].
MTSubjectObserverProtocol uses an instance of Notifier to issue an event
in a new di�erent thread. Noti�er is created for a single event noti�cation to
an observer. A new thread spawned to execute run() of Notifier does not
possess the synchronization lock on a MTSubjectObserverProtocol. Note that
MTObserver and MTSubject are not subclasses of Observer and Subject. They
can support any other arbitrary implementation and/or interfaces.

3.5 Example: An Aspect-Oriented Web Server

The next example shows an aspect layer (i.e. metalevel) in our adaptive web
server named OpenWebServer [26]. OpenWebServer contains a metalevel that
supports a wide range of aspects of web servers to allow itself to continu-
ously evolve beyond the static and monolithic servers of today. It has a col-
lection of aspects including Concurrency, Cache, Protocol, RequestHandler,



Fig. 7. Aspects in OpenWebServer

ContentFinder, Logger, Redirector (see Figure 7). Each aspect has one or
more implementation policies. OpenWebServer can change its behavior at run-
time corresponding to a given situation and/or requirement. The system adapta-
tion is achieved with the reection mechanism. In our project, project members
are using the semantics and their notations described above to specify aspects
and keep them loosely coupled in both conceptual and implementation levels.

3.6 Metalevel, Baselevel and Metaclasses

All of metalevel, baselevel, metaclasses and baseclasses can be represented using
the prede�ned UML model constructs.

The metalevel and baselevel are expressed with the Package element. A met-
alevel is described with a package with the stereotype �metamodel�. A class
stereotyped with�metaclass� represents a metaclass. The relationship between
a class and its metaclass is described with the InstanceOf relationship.

Figure 8 shows an example of a reective implementation of the proxy de-
sign pattern, described in [27]. This model de�nes a proxy object [22] that hides
the reference to an object and plays the role of its placeholder to control access
it. This pattern is generic enough to provide various kinds of proxies includ-
ing virtual proxy, cache proxy, remote proxy, protection proxy, synchronization
proxy, counting proxy and �rewall proxy [28]. Figure 8 de�nes local and remote
proxies (ProxyForX and ProxyForY) for original (or target) objects (X and Y).
Both proxies accept a method invocation and redispatch it to corresponding



Fig. 8. A reective implementation of the proxy design pattern

target objects. A remote proxy creates the illusion that the remote object is
a local one. Redispatched provides this redispatching capability by placing a
redispatch stub in each method table entry with its redispatch(). Therefore,
the metaclass for proxies, ProxyFor, is a subclass of Redispatched. The method
redispatch() must be overridden in base proxy classes, ProxyForObject and
ProxyForRemoteObject, for implementing redispatch stubs according to the
kinds of proxies. Object is a base class for all classes and Class is a base class
for all metaclasses. Note that, as in the example in Figure 6, X is not a parent
of ProxyForX; instead ProxyForX merely has to support the interface of X [27].

The notation of the InstanceOf relationship is a dashed arrow with its tail on
a class and its head on a metaclass. The arrow has the keyword�instanceOf�.
We introduced alternative notations for the relationship between a class and its
metaclass, �reect� and �reify�. �reect� is a directed association with
its tail on a metaclass and its head on a class.�reify� is a directed association
with its tail on a class and its head on a metaclass. These associations are useful
when a programming language does not support metaclasses directly as language
constructs.



Fig. 9. A sample screen display of MagicDraw showing an aspect model information
generated from a UXF description (The graphical positions of the icons are changed
manually).

4 Describing and Interchanging Reective Components

with UXF and XMI

As described in Section 2.4, we are using UXF basically to describe metalevel
model information. We developed a UXF DTD (Document Type De�nition) for
metalevel description and then merged it with existing UXF DTDs.

We have developed a translator that converts an aspect source code of As-
pectJ into a UXF description and vice versa. For translating an aspect code to
a UXF description, the translator parses AspectJ code using the Doclet toolkit
included in Java Development Kit. For translating a UXF description to an as-
pect code, the translator parses UXF code with an XML parser and generates
AspectJ code. The aspect model interchange can be performed at the aspect
design/coding, class design/coding and woven class veri�cation phases (see Fig-
ure 2). It helps the forward/reverse engineering in roundtrip aspect development.

We have also developed a tool to convert a UXF description into native for-
mats of Rational Rose 1 and MagicDraw 2, which are popular commercial CASE
tools. Figure 9 is a screen display of MagicDraw showing an aspect model gener-
ated from the UXF description, which is in turn translated from an AspectJ code
(see also Section 3.4 and Figure 6). This example shows the tool interoperabil-
ity and aspect model interchangeability between an aspect weaver and a CASE

1 http://www.rational.com/rose/
2 http://www.nomagic.com/



Fig. 10. A sample screen display of Argo/UML showing an aspect model informa-
tion generated from our UXF-XMI converter (The graphical positions of the icons are
changed manually).

tool. In addition, we are developing a UXF-XMI converter for XMI-enabled tools
to use UXF descriptions. Figure 10 is a screen display of Argo/UML 3, which
is an XMI-enabled CASE tool, showing an XMI formatted model description
converted from UXF. This example shows the tool interoperability and model
interchangeability between di�erent CASE tools.

5 Current Project Status and Future Work

Our project is using AspectJ as an aspect language and Java as a programming
language.We are now evaluating the interoperability of aspect model information
between weavers.

3 http://www.ics.uci.edu/pub/arch/uml/



For the purpose of interchanging the semantics of aspect models, we are
investigating an alternative approach that deals with aspect constructs in a
separate metamodels based on the Meta Object Facility (MOF) [29].

As for our UXF-XMI converter, it supports only the conversion from UXF's
class diagram descriptions into XMI's class diagram descriptions. We plan to
support the conversion for all the model constructs.

For the smooth transition in the lifecycle of aspect-oriented development,
we started to develop an aspect refactoring tool, which supports common refac-
toring operations automatically, instead of manually by programmers. Typical
transformation in the aspect refactoring includes dividing an aspect into two
aspects (e.g. new sub-aspect, super-aspect, abstract aspect) and merging one or
more aspects into an aspect.

6 Conclusion

This paper describes how to represent reective architectures in the framework
of UML. Our work allows us for recognizing and understanding reective com-
ponents in the upper levels of abstraction at an earlier stage of the development
process. It leverages the documentation, learning, visual modeling, reuse and
roundtrip development of metalevel designs. We also demonstrate the seamless
model exchange between di�erent development tools and model continuity across
development phases with application-neutral interchange formats.

7 Acknowledgements

We sincerely thank Eduardo B. Fernandez and and UML'99 referees for improv-
ing this paper with their careful reading and invaluable comments.

References

1. Object Management Group. Uni�ed Modeling Language Speci�cation version 1.3.
OMG document number: ad/99-06-08, 1999.

2. W. L. Hursch and C. V. Lopes. Separation of Concerns. Technical report, NU-
CCS-95-03, Northeastern University, 1995.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Proceedings of ECOOP'97. Springer
LNCS 1241, 1997.

4. K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineering based on Automated Con�guration and Fragment-based Component
Models. Ph.D. Thesis, Technische Universitat Ilmenau, Germany, 1998.

5. Xerox PARC AOP research group. The AspectJ Primer. available at
www.parc.xerox.com/spl/projects/aop/aspectj/primer.

6. K. Bollert. Implementing an Aspect Weaver in Smalltalk. In Proceedings of
STJA'98, 1998, available at www.germany.net/teilnehmer/101,199268/.

7. K. J. Lieberherr. The Art of Growing Adaptive Object-Oriented Software. PWS
Publishing Company, 1995.



8. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting
object-interactions using composition-�lters. In R. Guerraoui O. Nierstrasz and
M. Riveill, editors, Object-based Distributed Processing. Springer LNCS, 1993.

9. Y. Ichisugi and Y. Roudier. The Extensible Java Preprocessor Kit and a Tiny
Data Parallel Java. In Proceedings of ISCOPE'97. Springer LNCS 1343, 1997.

10. S. Sonntag, H. Haertig, O. Kowalski, W. Kuehnhauser, and W. Lux. Adaptability
using Reection. In Proceedings of 27th. Annual Hawaii Int. Conf. on Sys. Sci.,
pages 383{392. Springer LNCS 1616, 1994.

11. B. C. Smith. Reection and Semantics in Lisp. In Proceedings of ACM POPL '84,
pages 23{35, 1984.

12. G. Kiczales, J. Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, 1991.

13. J. McA�er. Engineering the Meta Level. In Proceedings of Reection `96, 1996.
14. S. Chiba. A Metaobject Protocol for C++. In Proceedings of OOPSLA'95, 1995.
15. M. Tatsubori and S. Chiba. Programming Support of Design Patterns with

Compile-time Reection. In Proceedings of Reective Programming in C++ and
Java Workshop at OOPSLA'98, 1998.

16. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of
Patterns: Pattern-Oriented Software Architecture. WILEY, 1996.

17. P. Maes. Concepts and Experiments in Computational Reection. In Proceedings
of OOPSLA '87, pages 147{155, 1987.

18. D. P. Friedman and M. Wand. Rei�cation: Reection without Metaphysics. In
Symposium on LISP and Functional Programming, 1984.

19. M.L.B Lisboa. A New Trend on the Development of Fault-Tolerant Applications:
Software Meta-Level Architectures. In Proceedings of Internetional Workshop on
Dependable Computing and its Applications (IFIP'98), 1998.

20. D. Bobrow, R. Gabriel, and J. White. CLOS in Context -The Shape of the Design
Space. In A. Paepcke, editor, Object-Oriented Programming- The CLOS Perspec-
tive, page Chapter 2. MIT Press, 1993.

21. J. Suzuki and Y. Yamamoto. Making UML Models Interoperable with UXF. In
J. Bezivin and P-A. Muller, editors, �UML�'98: Beyond the Notation. Springer
LNCS 1618, 1999.

22. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

23. C. Maros, M. Campo, and A. Pirotte. Reifying Design Patterns as Metalevel
Constructs. In Journal of the Argentine Society for Informatics and Operations
Research. August 1999.

24. L. L. Ferreira and C. M. F. Rubira. The Reective State Pattern. In Proceedings
of PLoP'98, 1998.

25. D. Lea. Concurrent Programming in Java: Design Principle and Patterns.
Addison-Wesley, 1997.

26. J. Suzuki and Y. Yamamoto. OpenWebServer: an Adaptive Web Server Using
Software Patterns. In IEEE Communications Magazine, Vol.37, No.4, April 1999.

27. I. R. Forman and S. H. Danforth. Putting Metaclasses to Work. Addison-Wesley,
1998.

28. H. Rohnert. The Proxy Design Pattern Revisited. In J. Vlissides J. Coplien and
N. Kerth, editors, Pattern Languages of Program Design 2. Addison-Wesley, 1996.

29. Object Management Group. Meta Object Facility. OMG document number: ad/97-
08-14, November 1997.


