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Introduction

« Computer network environment is seamlessly
spanning locations engaged in human endeavor.

* Need a self-organizing network that supports
— Scalability
* in terms of # of objects and network nodes.
— Adaptability
* to changes in network conditions.
— availability/survivability
+ from massive failures and attacks.
— Simplicity

+ to design and maintain.

Autonomous Adaptive Agents

* One of the promising solution is to
— deploy autonomous adaptive agents, and
— construct network applications with them.

« Autonomous adaptive agent

— a system situated within and a part of an
environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so
as to effect what it senses in the future.

 from “Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents,” (S. Franklin et al.)
— http://www.msci.memphis.edu/~franklin/AgentProg.html




Our Observation and Goal

» A lot of research efforts have
— successfully clarified autonomous adaptive agents,
— showed they work well in many applications.

« However, the number of large-scale agent systems is
currently very limited

— Even in agent simulation systems, the scale of agents
involved is often kept small, except several exceptions.

— The scale of agent systems running on actual networks is
usually much smaller.

* e.g. The claim that Auctionbot is scalable is supported by an experiment with
only 90 agents.

* Qur goal

— use autonomous adaptive agents, beyond simulations, for
Internet-based distributed computing.

Our Approach

» QOur approach
— Design an architecture for autonomous adaptive agents

— Implement an infrastructure to support our architecture and
agents.

 Architecture, the Bio-Networking Architecture

— models autonomous adaptive agents after several biological
concepts and mechanisms.

* Infrastructure, the Bio-Networking Platform

— a middleware platform that aids developing, deploying and
executing our biologically-inspired agents by providing a rich
set of reusable software components.




The Bio-Networking Architecture

The Bio-Networking Architecture

» Approach

— apply biological concepts and mechanisms to the design of
autonomous adaptive agents (network application design)

« motivated by the observation that the desirable
properties in future network applications (e.g.
scalability and adaptability) have already been
realized in various biological systems.

— e.g. bee colony, bird flock, fish school, etc, etc.

» Designed to allow for deploying large-scale, highly
distributed and dynamic network applications using
autonomous adaptive agents.




Biological Concepts Applied

» Decentralized system organization

— Biological systems
« consist of autonomous entities (e.g. bees in a bee colony)

* no centralized (leader) entity (e.g. a leader in a bird flock)
— Decentralization increases scalability and survivability of
biological systems.

— The Bio-Networking Architecture
* biological entities = cyber-entities (CESs)
— the smallest component in an application
— provides a functional service related to the application
— autonomous with simple behaviors
» replication, reproduction, migration, death, etc.
» makes its own behavioral decision according to its own policy

* no centralized entity among CEs

« Emergence

— Biological systems

» Useful group behavior (e.g. adaptability and survivability) emerges
from autonomous local interaction of individuals with simple
behaviors.

— i.e. not by direction of a centralized (leader) entity
— e.g. food gathering function

» When a bee colony needs more food, a number of bees will go to
the flower patches to gather nectar.

» When food storage is near its capacity, only a few bees will leave
the hive.

— The Bio-Networking Architecture

« CEs autonomously
— sense local/nearby environment

» e.g. existence of neighboring CEs, existence/movement of users,
workload, availability of resources (e.g. memory space), etc.
— invoke behaviors according to the condition in a local/nearby
environment
— intaracte with aarh nthar




« Lifecycle

— Biological systems
 Each entity strives to seek and consume food for living.

« Some entities replicate and/or reproduce children with
partners.

— The Bio-Networking Architecture

« Each CE stores and expends energy for living.
— gains energy in exchange for providing its service to other CEs
— expends energy for performing its behaviors, utilizing resources
(e.g. CPU and memory), and invoking another CE’s service.
» Each CE replicates itself and reproduce a child with a
partner.

e Evolution

— Biological system

« adjusts itself for environmental changes through species
diversity and natural selection

— The Bio-Networking Architecture

« CEs evolve by
— generating behavioral diversity among them, and

» CEs with a variety of behavioral policies are created by
human developers manually, or through mutation (during
replication and reproduction) and crossover (during
reproduction)

— executing natural selection.
» death from energy starvation
» tendency to replicate/reproduce from energy abundance




 Social networking

— Biological systems (social systems)

* Any two entities can be linked in a short path through
relationships among entities.

— not through any centralized entity (e.g. directory), rather in a
decentralized manner.

— six decrees of separation

— The Bio-Networking Architecture

» CEs are linked with each other using relationships.
— A relationship contains some properties about other CEs (e.g.
unique ID, name, reference, service type, etc.)
» Relationships are used for a CE to search other CEs.

— Search queries originate from a CE, and travel from CE to CE
through relationships.

Key Features of Cyber-entities

Decentralized
— No centralized entity (e.g. directory) on networks

Autonomous

— No intervention from other cyber-entities
Adaptive

— through an evolutionary process

Self-describing
— through a set of descriptive information




CE’s otructure and Behaviors

* Attributes

- ID
— Relationship list
— Age
— ...etc.
* Body
— Executable code
— Non-executable data

Bionet platforr\r\f\\\

e @ o Attributes

Body

Behaviors

Devise

cyber-entity

Cyber-entities running
on a bionet platform

* Behaviors
— Energy exchange and storage
— Migration
— Replication and reproduction
— Death
— Relationship establishment
— Social networking (discovery)
— Resource sensing

The Design and Implementation
of the Bio-Networking Platform




Design Approach

« Separate cyber-entity (CE) and Bio-Networking
Platform (bionet platform)
— Cyber-entity (CE)
« mobile object (agent) that provides any service logic

— Bionet platform

» middleware system for deploying and executing cyber-
entities

* ldentify the common networking, operating and
biological functionalities required to deploy and
execute CEs.

— e.g. I/O, concurrency, messaging, network connection
management, reference management, etc.

— e.g. energy management, relationship maintenance,
migration, replication, reproduction, etc.

« Design and implement those platform functionalities
as a set of reusable objects.

» Implement CE and bionet platform in Java
« Empirically measures the platform functionalities.




Architecture

Platform CE
representative |

/ I___t_:’l[i

Bionet Services

Bionet Container

Bionet Message Transport

External Helper Tools

Bionet Platform

Bionet Class Loader

Java VM

A Cyber-entity (CE) is an
autonomous mobile object.
CEs communicate with each
other using FIPA ACL.

A platform rep keeps
references to bionet
services and container.

A CE context provides
references to available
bionet services.

Bionet services are runtime
services that CEs use
frequently.

Bionet container dispatches
incoming messages to
target CEs.

Bionet message transport
takes care of 1/0, low-level
messaging and concurrency.
Bionet class loader loads
byte code of CEs to Java VM.

An example of external tools
— A graphical performance monitoring tool
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Status

« Every platform component has been
implemented.

— The current code base
 contains approx. 38,700 semicolons.

* is the work of one full-time research staff and five part-
time undergraduate students.

« was implemented and tested on Windows 2000/XP PCs.

« was ported onto Solaris in under a week of part-time.
— primarily thanks to Java's portability
» has been open for public use at UC Irvine since 2002.

 will be released soon for researchers who explore the
design space of autonomous adaptive agents and
investigate them on actual networks.

o Started an initial set of measurements

Cyber-entity

« CEs communicate with each other through:

— interface CyberEntity ({
oneway void send(in string message) ;
string metadata(); };

- send ()
» used to send a message in an asynchronous (non-blocking) manner.
* Messages are formatted with a subset of FIPA ACL with some
extensions.
- metadata ()
 used to obtain cyber-entity’s attributes (self-descriptive information).
* The mandatory attributes
— cyber-entity’s GUID (globally unique ID)
— cyber-entity’s reference

— type of service that the cyber-entity provides, and
— the energy units that the cyber-entity requires to provide its service.

» CEs can specify any additional info as their optional attributes.




« A GUID is a 32-digits string data made from hexadecimal
representations of
— IP address
— JVM identity hash code
» through calling System.identityHashCode ()
— the current time in milliseconds, and
— a random number.

* A cyber-entity’s reference is formatted as a stringfied
CORBA IOR.

« Attributes are represented as name-value pairs based on
the OMG constraint language.
— GUID='sti3sdr98rd56fn...’
— ref='IOR:daforimklcmd.. .’
- serviceType='HTTP/1.1’
— serviceCost=100.0

« When a CE receive a message through send (), it put the
message to its message queue.

« Each CE uses 2 threads to:
— (1) fetch and process a message
— (2) behave
* sense the nearby environment,
+ identify behaviors suitable for the current environment condition, and
* invoke the most suitable behavior

Cyber-entity
Send()/ (€ run() ) /? Environment \\
msgs ——| | while(true) | |zun () sensing
fetch and Behavior
metadata () selection
Message| Process
mMsgs — queue Behavior

\ \ ) \_ invocation /J )
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Bionet Message Transport

* Bionet message transport abstracts low-level
networking details such as I/O, concurrency,
messaging, network connection management.

— Marshaling/unmarshaling messages issued by a CE
* IIOP version 1.1 used currently

— TCP connection setup and management

— Message delivery on a TCP connection
» One-to-one messaging, currently
* One-to-many broadcasting/multicasting (future work)

— Threading (thread pooling) to accept incoming messages

Bionet Services

| Bionet Container |

Bionet Message Transport
Bionet Class Loader | |




Bionet Container

* Bionet container

— contains a table listing all the CEs running on the same
platform.

— complies with the interfaces of the CORBA POA to
» demultiplex incoming messages,
« dispatch incoming messages to target CEs,
+ create CE references.

— keeps track of the current traffic load by counting
* the size of incoming IIOP messages
» the number of method dispatches.

Bionet Services

l | Bionet Container |

Bionet Message Transport |
Bionet Class Loader

Bionet Services

 CEs use bionet services to invoke their
behaviors.

— e.g. bionet lifecycle service when a CE replicates
« Each bionet platform provides 8 bionet services

Bionet Services

| Bionet Container |

Bionet Message Transport

Bionet Class Loader




 Bionet Lifecycle Service
— used to initialize a CE.

— maintains a thread pool that contains threads
assigned to autonomous CEs

— allows a CE to replicate itself.
— allows a CE to reproduce a child CE with a partner

— Mutation and crossover during replication and
reproduction

Bionet Relationship Management Service

— allows a CE to establish, examine, update and
eliminate their relationships with other CEs.

Bionet Energy Management Service

— keeps track of energy level of the CEs running on a
local platform.
— allows a CE to pay energy amounts for
* invoking a service provided by another CE,
* using resources, and
« performing behaviors (i.e. invoking a bionet service).

Bionet Resource Sensing Service

— allows CEs to sense the type, amount and unit cost
of available resources.
« CPU cycles and memory space

Bionet CE Sensing Service

— allows a CE to discover other CEs running on the
came blatform




» Bionet Pheromone Emission/Sensing Service

— allows a CE to leave its pheromone (or trace) on a local
platform when it migrates to another platform
+ so that other CEs can find the CE at a destination platform

« Bionet Migration Service
— allows a CE to migrate to another bionet platform.

» Bionet Social Networking Service
— allows a CE to search other CEs through their relationships.
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— Search criteria are described with the OMG
constraint language.
* GUID='sti3sdr98rd56fn.. .’
» serviceType=='HTTP/1.1’ and
serviceCost<100.0
* serviceType=='HTTP/1.1’ or
serviceType=='HTTP/1.0’




Initial Measurement Results

Measurement (1)

» Bootstrap overhead

— how long does it take to initialize each platform components
« Bootstrap footprint

— how much memory space is consumed for each component

platform component overhead footprint
Bionet messaze transport 22 mseg 063 KB
Bionet container 102 msec B EE KB
Bionet class loader 12 msec 39TkKB
Platform representative 72 msec 523 KB
Relationship mot service 23 msec 348 KB
ocial networking service 79 msec 1203 KB
CE sensing service 46 mseg 782 KB
Migration service 51 msec 4 ®E KRB
Pheromone emission service 37 mseg 3309 KB
Lifecycle service 19217 msec 43 07 KB
Resource sensing service Bd msec 42 12 KB
Energy management service 49 msec 512 KB
b (- | | | LS T avmnem~ 0 17 A0 &4 L LY




Measurement (2)

 QOverhead to initialize and install a CE on a bionet

platform

activity overhead
Class loading [ msec
. created by a developer 0 msec
Instantiation - - -
Replicated by a parent cvber-entity 649 msec
[nitialized throush the lifecycle service I8 msec

Discovers 10 cyD

er-entities running on the same

— ) 11 msec
plattorm using the CE sensing service
Establishes (initial) relationships with the
! k
discovered 10 cyber-entities using the relationship 10 msec
management service
Total created by a developer 30 msec
(§F: — -
through replication |28 msec

Measurement (3)

sender CE

¢

receiver CEs A sender CE dynamically

I iver CE
@ @ @ @ @ f:nzcgr??;ﬁgi\éi:js anactampty

string message to the
selected CE.

Bionet ;ontainer

Measurements were

ionet Message Transport

Bionet Message Transport conducted within a single

¥

machine with Java 1.4 VM,

" v

Java VM ] Win XP, and 1GHz Pentium 3

| \‘ Java VM | |

I e oc

] CPU. 64 MB heap allocated

 What we measured

to each Java VM

— Latency for message transmission between two CEs
* How long it takes for a CE to send a message to another CE?
» Overhead sources to message transmission
— Marshaling a message issued by a sender CE,

— TCP connection setup,

— message delivery on the connection,
— message dispatching to a receiver CE, and
— unmarshaling of an incoming message.




0.35 A single sender CE and a

002: :7 range of receiver CEs (1, 100,
F msonet | ...1000) were deployed.
£ 024 0 JacORB
8 015 | mJavaDL| _,
5 001? wzen | BiOnet platfo.rm was

compared with existing
%1 distributed object platforms
0 implemented in Java.

1 100 200 300 400 500 600 700 800 900 1000

# of receiver cyber-entities (objects)

« Measurement results and observations

— Bionet message transport and container are fairly efficient and comparable with
existing distributed object platforms.
* Message transmission latency was 0.17 msec when 1,000 receiver CEs were
deployed.
— Bionet message transport and container are scalable in terms of the number of
receiver CEs.
» Latency is relatively constant when the number of CEs grows, rather than it increases
linearly (the average of latency was 0.179 msec.).
— In general, increasing the # of receiver CEs increases the effort to establish TCP connections
to receiver CEs (in sender side) and demultiplex/dispatch incoming messages to target CEs
(in receiver side).
* Implementation techniques such as connection sharing and hash-based demultiplexing
work well.

Measurement (4)

sender CE receiver CEs A sepder CE selects a
receiver CE at random before
@ @ @ @ @ @ a measurement, and sends
empty string messages to the
selected CE.

Bionet ;ontainer

Measurements were

ionet Message Transport Bionet Message Transport conducted within a Single

x 3 machine with Java 1.4 VM,
| ‘\ Java VM | | Java VM ] Win XP, and 1GHz Pentium 3
| o o5 S | CPU. 64 MB heap allocated

to each Java VM

*  What we measured
— throughput of a CE
* How many messages a CE can receive and process in a second?
* The throughput is dominantly affected by
— message demultiplexing in bionet container.




A single sender CE and a

O range of receiver CEs (1,
a5 100, ...1000) were deployed.
Bl InN I "1 |mJacORB
I I ez | Bionet platform was
£ . compared with existing
00T distributed object platforms
0

implemented in Java.

1 100 200 300 400 500 600 700 800 900 1000

# of cyber-entities (objects)

Measurement results and observations
— The throughput of a CE on a bionet platform is competitive with existing
distributed object platforms.
* Throughput was 2279.99 messages/sec when 1,000 receiver CEs were
deployed.
— Bionet container are scalable in terms of the number of receiver CEs.

* Increasing the number of receiver CEs increases the demultiplexing effort.
Throughput remains relatively constant as the number of receiver CEs grows
(2309.27 messages/sec in average), rather than it increases linearly.

* Implementation technique of hash-based demultiplexing works well.

Measurement (5)

» Overhead in each of a discovery process

Phase in a discovery process overhead
Relationship establishment between 2 cvber-entities 2 msec
Cuery initialization 7 msec
Cuery forwarding 240 msec
Cuery matching il 1D matching i msec
(on a discovery responder) Complex matching [ msec
uery hit backiracking 24 msec




Measurement (6)

» Overhead of a migration process

Frigration cuarkaad | me
g & 8 B

i 1000 2000 3000 000 5000 G000 Y00 EOOD SO0
size of mokile code (K yies)

Adaptability of Cyber-entities
through an Evolutionary Process




Adaptability of Cyber-entities

« Evolution as a means to reconfigure behaviors
of cyber-entities

— Biological entities adjust themselves for
environmental changes through behavioral diversity
and natural selection.

— CEs evolve by
* generating behavioral diversity among them, and
— CEs with a variety of behavioral policies are created
» by human developers manually, or
» through mutation and crossover (automatically).
 executing natural selection.

— death from energy starvation
— tendency to replicate/reproduce from energy abundance

Cyber-Entity’s Behavior Policy

Behavior Policy

Each CE has its own policy for
each behavior.

A behavior policy consists of
factors (F), weights (W), and a
threshold.

—1f 2.F.-W. > threshold, then
migrate.

Example migration factors:
— Migration Cost

A higher migration cost (energy

consumption) may discourage — Resource Cost
. migration. » encourages CEs to migrate
— Distance to Energy Sources to a network node whose
+ encourages CEs to migrate toward resource cost is cheaper.

energy sources (e.g. users).




Chromosome and Genes

chromosome

Each CE has its own chromosome.
| | | | | | | | | | | | | | It is given by a human developer or
contributed by its parent(s).

gene strand :

Migration | ...... Replication A chromosome consists of gene strands.
. Each gene strand corresponds to
a behavior.
gene | factor_name |weight value A gene strand consists of genes.

Each gene encodes factor name,
_ and weight value.
gene | factor_name |weight value Weight values are mutable.

gene | factor_name |weight value

Mutation and Crossover

« Weight values in each » Crossover occurs during
behavior policy change reproduction.

dynamically through mutation. * A child CE inherits different
- Mutation occurs during behaviors from different

replication and reproduction. parents through crossover.

Behavior Policy Parameter Set ] parents Behavior Policy Parameter Set |

Behavior Policy

Behavior Policy Parameter Set |

\:

reproduced |
child




A Simulation Result

400

« Users (energy sources g
move around network 7@ 1
randomly. iiﬁﬁ L —

« Evolutionary CEs gain £ 4@ %ﬁf 1K I
more energy than non- = . YR §
evolutionary ones; 100 B

» Evolutionary CEs adap T Mg R D Mm@ oo omE
better to dynamic SmulawinCydle
network conditions.

_ by moving closer to users — by increasing weight values

of distance-to-user and

and avoiding network resource cost factors.

nodes whose resource
cost is expensive.

Status

* Through simulations, we have already
confirmed
— Effectiveness of energy concept
— Effectiveness of mutation and crossover

— Adaptability of CEs through evolutionary
reconfiguration mechanisms in dynamic networks

* Now, we are implementing evolutionary
mechanisms within CEs.

« We will soon start adaptation experiments on
actual networks.




Standardization effort

Standardization Effort at OMG

* The goals of the OMG Super Distributed
Objects (SDOs) working group are to
— provide a standard computing infrastructure that
incorporates massive numbers of objects (SDOs)

including hardware devices and software
components

— deploy them in a highly-distributed and ubiquitous
environment, and

— allow them to seamlessly interwork with each other.




Status

 The SDO RFl issued (‘00), and responses gathered
(01)
— from 10 organizations including UCI

» The SDO white paper published (‘01)
— by Hitachi, GMD Fokus and UCI

» The first RFP published (Jan. 02).

— sg[)licits resource data model for SDOs, discovery interfaces,
etc.
« The initial proposals submitted (Sept. 02)
— by Hitachi, GMD Fokus and UCI
28 organizations on the voting list
* The revised joint proposal was submitted and adopted
(through a vote-to-vote process) in March 2003.
— by Hitachi, GMD Fokus and UCI
— “PIM and PSM of SDOs” dtc/03-04-02

Bionet Platform as an
Implementation of the SDO Spec
* The current bionet platform supports the

PIM (UML model) and CORBA PSM
(CORBA interfaces) in the SDO spec.

—an SDO as a CE
—organization as relationship between CEs




Future Work

Extended set of measurements for the bionet platform
Adaptation experiments on actual networks
Reconfigurability of bionet platform comonents

Deployment of the bionet platform on PDAs and/or cell
phones

Efficient algorithms for decentralized discovery of CEs

Dynamic composition of CEs to provide a collective
application
Model-driven development for agents (CEs)

— to automatically (or semi-automatically) source code
skeleton for a CE from models

Finalization of the SDO spec

Thank you

All the papers/documents related to the Bio-Networking
Architecture are available at:

— netresearch.ics.uci.edu/bionet/

— netresearch.ics.uci.edu/bionet/resources/platform/

Sponsors

— NSF (National Science Foundation)

— DARPA (Defense Advanced Research Program Agency)
— AFOSR (Air Force Office of Science Research)

— State of California (MICRO program)

— Hitachi

— Hitachi America

— Novell

— NTT (Nippon Telegraph and Telephone Corporation)
— NTT Docomo

— Fujitsu

— NS Solutions Corporation




