
Building a Scalable Infrastructure
for Autonomous Adaptive Agents

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu

www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/

School of Information and Computer Science
University of California, Irvine

Overview
• Motivation to and overview of the Bio-

Networking Architecture

• Design and implementation of the Bio-
Networking platform

• Initial measurement results

• Adaptation through an evolutionary process

• Standardization effort

Introduction
• Computer network environment is seamlessly

spanning locations engaged in human endeavor.

• Need a self-organizing network that supports
– Scalability

• in terms of # of objects and network nodes.

– Adaptability
• to changes in network conditions.

– availability/survivability
• from massive failures and attacks.

– Simplicity
• to design and maintain.

Autonomous Adaptive Agents
• One of the promising solution is to

– deploy autonomous adaptive agents, and

– construct network applications with them.

• Autonomous adaptive agent
– a system situated within and a part of an

environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so
as to effect what it senses in the future.

• from “Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents,” (S. Franklin et al.)

– http://www.msci.memphis.edu/~franklin/AgentProg.html

Our Observation and Goal
• A lot of research efforts have

– successfully clarified autonomous adaptive agents,
– showed they work well in many applications.

• However, the number of large-scale agent systems is
currently very limited
– Even in agent simulation systems, the scale of agents

involved is often kept small, except several exceptions.
– The scale of agent systems running on actual networks is

usually much smaller.
• e.g. The claim that Auctionbot is scalable is supported by an experiment with

only 90 agents.

• Our goal
– use autonomous adaptive agents, beyond simulations, for

Internet-based distributed computing.

Our Approach
• Our approach

– Design an architecture for autonomous adaptive agents

– Implement an infrastructure to support our architecture and
agents.

• Architecture, the Bio-Networking Architecture
– models autonomous adaptive agents after several biological

concepts and mechanisms.

• Infrastructure, the Bio-Networking Platform
– a middleware platform that aids developing, deploying and

executing our biologically-inspired agents by providing a rich
set of reusable software components.

The Bio-Networking Architecture

The Bio-Networking Architecture
• Approach

– apply biological concepts and mechanisms to the design of
autonomous adaptive agents (network application design)

• motivated by the observation that the desirable
properties in future network applications (e.g.
scalability and adaptability) have already been
realized in various biological systems.
– e.g. bee colony, bird flock, fish school, etc, etc.

• Designed to allow for deploying large-scale, highly
distributed and dynamic network applications using
autonomous adaptive agents.

Biological Concepts Applied
• Decentralized system organization

– Biological systems
• consist of autonomous entities (e.g. bees in a bee colony)
• no centralized (leader) entity (e.g. a leader in a bird flock)

– Decentralization increases scalability and survivability of
biological systems.

– The Bio-Networking Architecture
• biological entities = cyber-entities (CEs)

– the smallest component in an application
– provides a functional service related to the application
– autonomous with simple behaviors

» replication, reproduction, migration, death, etc.
» makes its own behavioral decision according to its own policy

• no centralized entity among CEs

• Emergence
– Biological systems

• Useful group behavior (e.g. adaptability and survivability) emerges
from autonomous local interaction of individuals with simple
behaviors.

– i.e. not by direction of a centralized (leader) entity
– e.g. food gathering function

» When a bee colony needs more food, a number of bees will go to
the flower patches to gather nectar.

» When food storage is near its capacity, only a few bees will leave
the hive.

– The Bio-Networking Architecture
• CEs autonomously

– sense local/nearby environment
» e.g. existence of neighboring CEs, existence/movement of users,

workload, availability of resources (e.g. memory space), etc.
– invoke behaviors according to the condition in a local/nearby

environment
– interacts with each other

• Lifecycle
– Biological systems

• Each entity strives to seek and consume food for living.

• Some entities replicate and/or reproduce children with
partners.

– The Bio-Networking Architecture
• Each CE stores and expends energy for living.

– gains energy in exchange for providing its service to other CEs

– expends energy for performing its behaviors, utilizing resources
(e.g. CPU and memory), and invoking another CE’s service.

• Each CE replicates itself and reproduce a child with a
partner.

• Evolution
– Biological system

• adjusts itself for environmental changes through species
diversity and natural selection

– The Bio-Networking Architecture
• CEs evolve by

– generating behavioral diversity among them, and

» CEs with a variety of behavioral policies are created by
human developers manually, or through mutation (during
replication and reproduction) and crossover (during
reproduction)

– executing natural selection.

» death from energy starvation

» tendency to replicate/reproduce from energy abundance

• Social networking
– Biological systems (social systems)

• Any two entities can be linked in a short path through
relationships among entities.

– not through any centralized entity (e.g. directory), rather in a
decentralized manner.

– six decrees of separation

– The Bio-Networking Architecture
• CEs are linked with each other using relationships.

– A relationship contains some properties about other CEs (e.g.
unique ID, name, reference, service type, etc.)

• Relationships are used for a CE to search other CEs.
– Search queries originate from a CE, and travel from CE to CE

through relationships.

Key Features of Cyber-entities

• Decentralized
– No centralized entity (e.g. directory) on networks

• Autonomous
– No intervention from other cyber-entities

• Adaptive
– through an evolutionary process

• Self-describing
– through a set of descriptive information

Devise

Bionet platform

Cyber-entities running
on a bionet platform

Attributes

Body

Behaviors

cyber-entity

users

CE’s Structure and Behaviors

• Behaviors
– Energy exchange and storage

– Migration

– Replication and reproduction

– Death

– Relationship establishment

– Social networking (discovery)

– Resource sensing

• Attributes
– ID

– Relationship list

– Age

– …etc.

• Body
– Executable code

– Non-executable data

The Design and Implementation
of the Bio-Networking Platform

Design Approach
• Separate cyber-entity (CE) and Bio-Networking

Platform (bionet platform)
– Cyber-entity (CE)

• mobile object (agent) that provides any service logic

– Bionet platform
• middleware system for deploying and executing cyber-

entities

• Identify the common networking, operating and
biological functionalities required to deploy and
execute CEs.
– e.g. I/O, concurrency, messaging, network connection

management, reference management, etc.

– e.g. energy management, relationship maintenance,
migration, replication, reproduction, etc.

• Design and implement those platform functionalities
as a set of reusable objects.

• Implement CE and bionet platform in Java

• Empirically measures the platform functionalities.

Architecture
A Cyber-entity (CE) is an
autonomous mobile object.
CEs communicate with each
other using FIPA ACL.

A CE context provides
references to available
bionet services.

Bionet services are runtime
services that CEs use
frequently.

Bionet container dispatches
incoming messages to
target CEs.

Bionet class loader loads
byte code of CEs to Java VM.

Bionet message transport
takes care of I/O, low-level
messaging and concurrency.

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

Java VM

Bionet Message Transport

CE

Bionet Class Loader

E
xt

er
n

al
 H

el
p

er
 T

o
o

ls

Platform
representative

A platform rep keeps
references to bionet
services and container.

• An example of external tools
– A graphical performance monitoring tool

Status
• Every platform component has been

implemented.
– The current code base

• contains approx. 38,700 semicolons.
• is the work of one full-time research staff and five part-

time undergraduate students.
• was implemented and tested on Windows 2000/XP PCs.
• was ported onto Solaris in under a week of part-time.

– primarily thanks to Java’s portability

• has been open for public use at UC Irvine since 2002.
• will be released soon for researchers who explore the

design space of autonomous adaptive agents and
investigate them on actual networks.

• Started an initial set of measurements

Cyber-entity
• CEs communicate with each other through:

– interface CyberEntity {
oneway void send(in string message);
string metadata(); };

– send()
• used to send a message in an asynchronous (non-blocking) manner.

• Messages are formatted with a subset of FIPA ACL with some
extensions.

– metadata()
• used to obtain cyber-entity’s attributes (self-descriptive information).

• The mandatory attributes
– cyber-entity’s GUID (globally unique ID)

– cyber-entity’s reference

– type of service that the cyber-entity provides, and

– the energy units that the cyber-entity requires to provide its service.

• CEs can specify any additional info as their optional attributes.

• A GUID is a 32-digits string data made from hexadecimal
representations of

– IP address

– JVM identity hash code
» through calling System.identityHashCode()

– the current time in milliseconds, and

– a random number.

• A cyber-entity’s reference is formatted as a stringfied
CORBA IOR.

• Attributes are represented as name-value pairs based on
the OMG constraint language.
– GUID=’sti3sdr98rd56fn...’

– ref=’IOR:daforimklcmd...’

– serviceType=’HTTP/1.1’

– serviceCost=100.0

• When a CE receive a message through send(), it put the
message to its message queue.

• Each CE uses 2 threads to:
– (1) fetch and process a message

– (2) behave
• sense the nearby environment,

• identify behaviors suitable for the current environment condition, and

• invoke the most suitable behavior

Cyber-entity

send()

metadata()
Message
queue

Environment
sensing

Behavior
selection

msgs

Behavior
invocation

msgs

fetch and
process

while(true)

run()
run()

Bionet Message Transport
• Bionet message transport abstracts low-level

networking details such as I/O, concurrency,
messaging, network connection management.
– Marshaling/unmarshaling messages issued by a CE

• IIOP version 1.1 used currently

– TCP connection setup and management
– Message delivery on a TCP connection

• One-to-one messaging, currently
• One-to-many broadcasting/multicasting (future work)

– Threading (thread pooling) to accept incoming messages

Bionet Services

Bionet Container

CE Context

Bionet Message Transport
Bionet Class Loader

Bionet Container
• Bionet container

– contains a table listing all the CEs running on the same
platform.

– complies with the interfaces of the CORBA POA to
• demultiplex incoming messages,

• dispatch incoming messages to target CEs,

• create CE references.

– keeps track of the current traffic load by counting
• the size of incoming IIOP messages

• the number of method dispatches.

Bionet Services

Bionet Container

CE Context

Bionet Message Transport
Bionet Class Loader

Bionet Services
• CEs use bionet services to invoke their

behaviors.
– e.g. bionet lifecycle service when a CE replicates

• Each bionet platform provides 8 bionet services

Bionet Services

Bionet Container

CE Context

Bionet Message Transport
Bionet Class Loader

• Bionet Lifecycle Service
– used to initialize a CE.

– maintains a thread pool that contains threads
assigned to autonomous CEs

– allows a CE to replicate itself.

– allows a CE to reproduce a child CE with a partner

– Mutation and crossover during replication and
reproduction

• Bionet Relationship Management Service
– allows a CE to establish, examine, update and

eliminate their relationships with other CEs.

• Bionet Energy Management Service
– keeps track of energy level of the CEs running on a

local platform.
– allows a CE to pay energy amounts for

• invoking a service provided by another CE,
• using resources, and
• performing behaviors (i.e. invoking a bionet service).

• Bionet Resource Sensing Service
– allows CEs to sense the type, amount and unit cost

of available resources.
• CPU cycles and memory space

• Bionet CE Sensing Service
– allows a CE to discover other CEs running on the

same platform.

• Bionet Pheromone Emission/Sensing Service
– allows a CE to leave its pheromone (or trace) on a local

platform when it migrates to another platform
• so that other CEs can find the CE at a destination platform

• Bionet Migration Service
– allows a CE to migrate to another bionet platform.

• Bionet Social Networking Service
– allows a CE to search other CEs through their relationships.

– Search criteria are described with the OMG
constraint language.
•GUID=’sti3sdr98rd56fn...’
•serviceType==’HTTP/1.1’ and
serviceCost<100.0

•serviceType==’HTTP/1.1’ or
serviceType==’HTTP/1.0’

Initial Measurement Results

Measurement (1)
• Bootstrap overhead

– how long does it take to initialize each platform components

• Bootstrap footprint

– how much memory space is consumed for each component

Measurement (2)
• Overhead to initialize and install a CE on a bionet

platform

Measurement (3)
A sender CE dynamically
selects a receiver CE at
random, and sends an empty
string message to the
selected CE.

Measurements were
conducted within a single
machine with Java 1.4 VM,
Win XP, and 1GHz Pentium 3
CPU. 64 MB heap allocated
to each Java VM

• What we measured
– Latency for message transmission between two CEs

• How long it takes for a CE to send a message to another CE?

• Overhead sources to message transmission
– Marshaling a message issued by a sender CE,
– TCP connection setup,
– message delivery on the connection,
– message dispatching to a receiver CE, and
– unmarshaling of an incoming message.

CE

Java VM

Bionet Message Transport

OS

Bionet Container

CE

Java VM

Bionet Message Transport

CECE CE CE

sender CE receiver CEs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 100 200 300 400 500 600 700 800 900 1000

of receiver cyber-entities (objects)

La
te

nc
y

(m
se

c) Bionet

JacORB

Java IDL

ZEN

A single sender CE and a
range of receiver CEs (1, 100,
…1000) were deployed.

Bionet platform was
compared with existing
distributed object platforms
implemented in Java.

• Measurement results and observations
– Bionet message transport and container are fairly efficient and comparable with

existing distributed object platforms.
• Message transmission latency was 0.17 msec when 1,000 receiver CEs were

deployed.
– Bionet message transport and container are scalable in terms of the number of

receiver CEs.
• Latency is relatively constant when the number of CEs grows, rather than it increases

linearly (the average of latency was 0.179 msec.).
– In general, increasing the # of receiver CEs increases the effort to establish TCP connections

to receiver CEs (in sender side) and demultiplex/dispatch incoming messages to target CEs
(in receiver side).

• Implementation techniques such as connection sharing and hash-based demultiplexing
work well.

A sender CE selects a
receiver CE at random before
a measurement, and sends
empty string messages to the
selected CE.

Measurements were
conducted within a single
machine with Java 1.4 VM,
Win XP, and 1GHz Pentium 3
CPU. 64 MB heap allocated
to each Java VM

• What we measured
– throughput of a CE

• How many messages a CE can receive and process in a second?

• The throughput is dominantly affected by
– message demultiplexing in bionet container.

CE

Java VM

Bionet Message Transport

OS

Bionet Container

CE

Java VM

Bionet Message Transport

CECE CE CE

sender CE receiver CEs

Measurement (4)

A single sender CE and a
range of receiver CEs (1,
100, …1000) were deployed.

Bionet platform was
compared with existing
distributed object platforms
implemented in Java.0

500

1000

1500

2000

2500

3000

3500

1 100 200 300 400 500 600 700 800 900 1000

of cyber-entities (objects)

T
h

ro
u

g
h

p
u

t (
ca

lls
/s

e
c)

Bionet

JacORB

Java IDL

ZEN

• Measurement results and observations
– The throughput of a CE on a bionet platform is competitive with existing

distributed object platforms.
• Throughput was 2279.99 messages/sec when 1,000 receiver CEs were

deployed.
– Bionet container are scalable in terms of the number of receiver CEs.

• Increasing the number of receiver CEs increases the demultiplexing effort.
Throughput remains relatively constant as the number of receiver CEs grows
(2309.27 messages/sec in average), rather than it increases linearly.

• Implementation technique of hash-based demultiplexing works well.

Measurement (5)
• Overhead in each of a discovery process

Measurement (6)
• Overhead of a migration process

Adaptability of Cyber-entities
through an Evolutionary Process

Adaptability of Cyber-entities
• Evolution as a means to reconfigure behaviors

of cyber-entities
– Biological entities adjust themselves for

environmental changes through behavioral diversity
and natural selection.

– CEs evolve by
• generating behavioral diversity among them, and

– CEs with a variety of behavioral policies are created

» by human developers manually, or

» through mutation and crossover (automatically).

• executing natural selection.
– death from energy starvation

– tendency to replicate/reproduce from energy abundance

Cyber-Entity’s Behavior Policy

Each CE has its own policy for
each behavior.
A behavior policy consists of
factors (F), weights (W), and a
threshold.
– If > threshold, then

migrate.

Example migration factors:
– Migration Cost

• A higher migration cost (energy
consumption) may discourage
migration.

– Distance to Energy Sources
• encourages CEs to migrate toward

energy sources (e.g. users).

∑
i

ii WF .

Behavior Policy

Factor-Weight
Factor-Weight

threshold

Migration Policy

Factor-Weight
Factor-Weight
Factor-Weight

threshold

Reproduction Policy

– Resource Cost
• encourages CEs to migrate

to a network node whose
resource cost is cheaper.

Chromosome and Genes

CE
chromosome Each CE has its own chromosome.

It is given by a human developer or
contributed by its parent(s).

Migration Replication…… A chromosome consists of gene strands.
Each gene strand corresponds to
a behavior.

gene strand

factor_name weight valuegene

factor_name weight value

factor_name weight value

… …

A gene strand consists of genes.
Each gene encodes factor name,
and weight value.
Weight values are mutable.

gene

gene

Mutation and Crossover
• Weight values in each

behavior policy change
dynamically through mutation.

• Mutation occurs during
replication and reproduction.

Behavior Policy

Factor-Weight
Factor-Weight

threshold

Migration Policy

Factor-Weight
Factor-Weight
Factor-Weight

threshold

Reproduction Policy

...

• Crossover occurs during
reproduction.

• A child CE inherits different
behaviors from different
parents through crossover.

Behavior Policy Parameter Set

weight 1
weight 2

threshold

Migration Policy Params

weight 1
weight 2
Weight 3
threshold

Reproduction Policy Params

Behavior Policy Parameter Set

weight 1
weight 2
threshold

Migration Policy Params

weight 1
weight 2
Weight 3
threshold

Reproduction Policy Params

Behavior Policy Parameter Set

weight 1
weight 2

threshold

Migration Policy Params

weight 1
weight 2
Weight 3
threshold

Reproduction Policy Params

parents

reproduced
child

A Simulation Result

• Users (energy sources)
move around network
randomly.

• Evolutionary CEs gain
more energy than non-
evolutionary ones;

• Evolutionary CEs adapt
better to dynamic
network conditions.
– by moving closer to users

and avoiding network
nodes whose resource
cost is expensive.

– by increasing weight values
of distance-to-user and
resource cost factors.

Status
• Through simulations, we have already

confirmed
– Effectiveness of energy concept

– Effectiveness of mutation and crossover

– Adaptability of CEs through evolutionary
reconfiguration mechanisms in dynamic networks

• Now, we are implementing evolutionary
mechanisms within CEs.

• We will soon start adaptation experiments on
actual networks.

Standardization effort

Standardization Effort at OMG

• The goals of the OMG Super Distributed
Objects (SDOs) working group are to
– provide a standard computing infrastructure that

incorporates massive numbers of objects (SDOs)
including hardware devices and software
components

– deploy them in a highly-distributed and ubiquitous
environment, and

– allow them to seamlessly interwork with each other.

Status
• The SDO RFI issued (‘00), and responses gathered

(‘01)
– from 10 organizations including UCI

• The SDO white paper published (‘01)
– by Hitachi, GMD Fokus and UCI

• The first RFP published (Jan. 02).
– solicits resource data model for SDOs, discovery interfaces,

etc.
• The initial proposals submitted (Sept. 02)

– by Hitachi, GMD Fokus and UCI
• 28 organizations on the voting list

• The revised joint proposal was submitted and adopted
(through a vote-to-vote process) in March 2003.
– by Hitachi, GMD Fokus and UCI
– “PIM and PSM of SDOs” dtc/03-04-02

Bionet Platform as an
Implementation of the SDO Spec

• The current bionet platform supports the
PIM (UML model) and CORBA PSM
(CORBA interfaces) in the SDO spec.
– an SDO as a CE

– organization as relationship between CEs

Future Work
• Extended set of measurements for the bionet platform

• Adaptation experiments on actual networks

• Reconfigurability of bionet platform comonents

• Deployment of the bionet platform on PDAs and/or cell
phones

• Efficient algorithms for decentralized discovery of CEs

• Dynamic composition of CEs to provide a collective
application

• Model-driven development for agents (CEs)
– to automatically (or semi-automatically) source code

skeleton for a CE from models

• Finalization of the SDO spec

Thank you
• All the papers/documents related to the Bio-Networking

Architecture are available at:
– netresearch.ics.uci.edu/bionet/
– netresearch.ics.uci.edu/bionet/resources/platform/

• Sponsors
– NSF (National Science Foundation)
– DARPA (Defense Advanced Research Program Agency)
– AFOSR (Air Force Office of Science Research)
– State of California (MICRO program)
– Hitachi
– Hitachi America
– Novell
– NTT (Nippon Telegraph and Telephone Corporation)
– NTT Docomo
– Fujitsu

– NS Solutions Corporation

