
1

Driving MDA with UML:
Principles and Practices

Junichi Suzuki, Ph.D.
jxs@computer.org

http://www.jks.la/jxs/

School of Information and Computer Science
University of California, Irvine

2

Who am I?

• Research fellow, UC Irvine (2000-)

– biologically-inspired software designs for scalable and
adaptable distributed computing

• Ph.D. from Keio U (2001)

• ex- Technical director, Object Management Group
Japan

• ex.ex- Technical director, Soken Planning Co., Ltd.

3

Where is UC Irvine?

• UCI (U of California, Irvine)

– One of eight UC system universities

• Irvine

– in between LA and San Diego

– reported by FBI, as the safest city in the US

– 1 hour to LA downtown

– 10 minutes to Newport Beach

– 20 minutes to Huntington Beach

– 20 minutes to Anaheim Disneyland

– 5 hours to Las Vegas

4

Overview

• MDA (Model Driven Architecture)

– Model transformation and integration

• Patterns and technologies for model transformations

• MDA Practices

– Standardization effort based on MDA principles

• OMG Super Distributed Objects specification

– MDA practice for ubiquitous computing

• Bio-Networking Architecture

5

Traditional Modeling and Development

Traditional
modeling/dev

tools

Domain analysts,
Modelers,
Designers,
Developers

Domain expertise

Platform/technology expertise

Applications

6

MDA-based Modeling and
Development

MDA tools

Platform experts

Domain
expertise

Application developers

Applications

Domain experts

Platform
expertise

Technology (logic impl)
expertise

7

Goals in MDA

• Model continuation

– Maximizing model continuation during software
development process.

• Separation of concerns

– Maximizing separation of concerns

8

Benefits from MDA

• Reduced software development cost

• Reduced software development time

• Rapid and smooth integration of legacy and
emerging technologies

9

Model Transformation
and Integration

• Model transformation

– Domain specialization

– Platform specialization

• Model integration

– Model weaving

MDA tools

Platform
experts

Domain
expertise

Application developers

Applications

Domain
experts

Platform
expertise

Technology (logic impl)
expertise

10

PIM

PSM

Source
code

Configuration
files ・・・

Application

Domain
models

Patterns

model transformations

generates/derives

MOF
XMI

Model maintenance
and exchange

model
transformations

Model
transformations

MDA tools

Platform
experts

Domain
expertise

Application developers

Applications

Domain
experts

Platform
expertise

Technology (logic impl)
expertise

11

Model Transformation

UML
Java/EJB interface
CORBA IDL

ADL/ASL
UML
CWM

PIM

PSM

Source
code

Configuration
files ・・・

Application

Domain
models

Patterns

model transformations

generates/derives

MOF
XMI

Model maintenance
and exchange

model
transformations

Model
transformations

Action Semantics
UML Profile for EJB
UML Profile for CORBA
UML Profile for RT sched

Action Semantics
UML Profile for EJB
UML Profile for CORBA
UML Profile for RT sched

12

Platform Independent Model (PIM)

• Modeled with

– UML

– ADL/ASL

– Conceptual drawings

• may incorporate several software patterns

– Architectural, analysis and design patterns

13

14

15

16

Vehicles Roadside

Centers

D
e
di

c
at

e
d

S
h
o
rt

 R
an

ge
C

o
m

m
u
n
ic

at
io

n
s

Travelers

Wide Area Wireless
(Mobile) Communications

Wireline (Fixed-Point to Fixed-Point) Communications

V
e
h
ic

le
 t

o
 V

e
h
ic

le
 C

o
m

m
u
n
ic

at
io

ns

Vehicle

Transit
Vehicle

Commercial
Vehicle

Emergency
Vehicle

Personal
Information

Access

Remote
Traveler
Support

Commercial
Vehicle

Administration

Planning

Toll
Administration

Emergency
Management

Traffic
Management

Fleet and
Freight

Management

Transit
Management

Information
Service
Provider

Roadway

Toll Collection

Parking
Management

Emissions
Management

Commercial
Vehicle
Check

17

TMC
Network

D7
Sonet

D12
Sonet

D8
T1 Ring

170

8

8

12

12

7 7

11

11

D11
Telco

Hub
CCTV

CMS

170

CCTV

CMS

170

CMS

CCTV

170

CCTV

CMS

mnt.
yd.

Other Corridor
Initiatives

M. Link

Intercity Bus

Ext. USM
Seed Term Server EXTERNAL USERS

11

8

12

7

IMAJINELA/Ventura

Orange

San Bernardino/
Riverside

San Diego

Firewalls Firewalls

Firewall

Local
Fielded
Devices

Local
Ops
Center

SEEDS

Showcase
Network

Regional
Kernels

CT
TMC’s

LAN

CT
FEP’s

WAN

FEP’s
Network

CT
Field

Serial I/O

Corridor
Deployment

18

Publishing
Transportation

Center(s)

Subscribing
Transportation

Center(s)

Showcase
Kernel

Publishes Object

Subscribes to Object

Publishes Object Update

Objects Meeting Subscription Criteria

Filters flow of objects
based on values of
object parameters and
subscription criteria

1

2

3

4

19

ConsumerAdmin_impl
(from Notification Service Admin
P k)

BaseFilterFactory_impl
(from Notification Service Admin
P k)

SCFilterFactory

BaseFilter_impl
(from Notification Service Admin
P k)

creates

SupplierAdmin_impl
(from Notification Service Admin
P k)

SCBaseFIlter_impl

creates

EventChannel_impl
(from Notification Service Admin
P k)

creates

PushConsumer_impl
(from Notification Service
P k)

SCProxyPushSupplier

1

1

1

1

deliver message
1

1

1

1

evaluate criteria

SCSupplierAdmin

SCConsumerAdmin

creates

subscribe and unsubscribe 0..*

1

0..*

1

create, evaluate message

PushSupplier

connect

SCProxyPushConsumer

create

evaluate message deliver message

SCNotifyFilter::SCBaseFilter
<<Interface>>

20

Sale

Sales Line Item

Item

Customer

21

Sale

Sales Line Item

Item

1

Sale

Sales Line Item

Item

1

1..*

1..*

1

0..1

1

0..*

Customer

Customer

22

Model Transformation

• 2 dimensions of model transformation
– Domain specialization

– Platform specialization

• Several forms of model transformation
– Manual transformation

– Automatic transformation

D
o
m

ai
n
 s

pe
c
if
ic

it
y

Platform specificity

23

Technologies for
Model Transformations

• UML profiles

– for EJB

– for CORBA

– for Realtime scheduling

• Action semantics

– allows modelers to embed actions (behaviors) into
model elements.

24

UML Profiles

• A UML profile

– provides a means to specialize UML models to a
specific domain or implementation technology.

– is defined with the UML extension mechanism

• i.e. stereotypes, tag definition/tagged values, and constraints

– may extend the UML standard meta model.

• Virtual meta model

25

UML Profile for EJB

Entity bean《EJBEntityBean》

Session bean《EJBSessionBean》

Implementation class of a bean《EJBImplementation》

Remote interface《EJBRemoteInterface
》

Home interface《EJBHomeInterface》

Java interface《JavaInterface》

• http://jcp.org/jsr/detail/26.jsp

26

EJBHome
Remote

EJBObject

CustomerServerHome

+create():Customer

《Interface》
Customer

+getCustomerEntry(name :String):String
+setCustomerEntry(name :String):void

CustomerServer

+getCustomer (name :String):Customer

import java.rmi.Remote;
import java.rmi.RemoteException;

《Interface》
CustomerServerBean

+ejbPassivate():Void
+ejbActivate():void
+ejbCreate():void
+ejbRemove():void
+setSessionContext(context:SesseionContext):void
+getCustomer (name :String):void

import.javax.ejb.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

Javax.ejb.SessionBean

Javax.ejb.EnterpriseBean

《implements》
《import》

《import》

《extends》

《extends》

《extends》

《extends》

27

Super Distributed Objects (SDOs)

• The goals of the OMG Super Distributed Objects
(SDOs) DSIG (domain SIG) are to
– provide a standard computing infrastructure that

incorporates massive number of objects (SDOs)
including hardware devices and software components

– deploy SDOs in highly-distributed and ubiquitous
environments, and

– allow SDOs to seamlessly interwork with each other in
a less centralized manner.

• SDO is...
– a logical representation of hardware devices and

software components operating on highly-distributed
and ubiquitous networks.

28

• History and status:
– The SDO RFI issued (‘00), and responses gathered (‘01)

• from 10 organizations including UCI
– The SDO white paper published (‘01)

• by Hitachi, GMD Fokus and UCI
– The first RFP published (Jan. 02), which

• solicits the resource data model for SDOs, and interfaces to access and
manipulate resource data model.

• sdo/02-01-04
– The initial proposals submitted (Sept. 02)

• by Hitachi, GMD Fokus and UCI
• sdo/02-09-01, sdo/02-09-02
• 28 organizations on the voting list

– The revised joint proposal was submitted in March 2003.
• by Hitachi, GMD Fokus and UCI
• sdo/02-01-04

– The submission was recommended for adoption.

29

SDO PIM and PSM Specification

• Addresses information and computational aspects
for SDOs

– Information aspect

• Resource data model, used to define the capabilities and
properties of SDOs.

– Computational aspect

• A set of interfaces, used to access and manipulate resource
data model.

• Defines a PIM and PSM for each of the aspects.

– UML used to define PIM.

– CORBA IDL used to define PSM.

30

SDO Resource Data Model

SDOSystemElement

OrganizationProperty

DeviceProfile

Status

Organization

0..*

1

+organizations0..*

+owner1

0..1

1

0..1+properties

1

ServiceProfile

ConfigurationProfile

SDO1

0..1

1+deviceProfile

0..1

0..1

1

+status
0..1

1

0..*

1..*

+organizations
0..*

+members

1..*

0..n

1

+serviceProfile

0..n

1

0..1

1

+configurationProfile 0..1

1

31

DeviceProfile

deviceType : String
m anufacturer : String
m odel : String
version : String
properties : NVList

ServiceProfile

id : String
interfaceType : String
properties : NVList
serviceRef : SDO Service

SDO Entity

O rganizationProperty

properties : NVList

O rganization

direction : boolean

SDO

id : String
sdoType : String

+owner
1

0..1

+organizations0..*0..*

1

+properties 1

0..1

1

+organizations
0..*

+m em bers
1..*

0..*

1..*

32

SDO Interfaces
SDO

getC onfiguration() : C onfiguration
getM onitoring() : M onitoring
getO rganizations() : O rganizationList
getID() : String
getSD O Type() : String
getDeviceProfile() : DeviceProfile
getServiceProfiles() : ServiceProfileList
getServiceProfile(id : String) : ServiceProfile

Configuration

+ setDeviceProfile(dProfile : DeviceProfile) : void
+ addServiceProfile(sProfile : ServiceProfile) : void
+ addOrganization(organization : Organization) : void
+ removeDeviceProfile() : void
+ removeServiceProfile(serviceID : String) : void
+ removeOrganization(organization : Organization) : void
+ getConfigParameter() : ParameterList
+ getParameterValue(name : String) : any
+ setParameterValue(name : String, value : any) : void
+ getConfigurationSets() : ConfigurationSetList
+ addConfigurationSet(configurationSet : ConfigurationSet) : void
+ removeConfigurationSet(configurationSetID : String) : void
+ activateConfigurationSet(configID : String) : void

<<Interface>>

Interfaces:
SDO
Organization
Configuration
Monitoring
Callback

SDO

SDO/application

33

CORBA PSM

• CORBA PSM for SDO resource data model and
interfaces

module SDOPackage {

interface SDO;

interface SDOService;

interface SDOSystemElement;

interface Configuration;

interface Monitoring;

interface Organization;
interface SDO : SDOSystemElement {

UniqueIdentifier get_id()
string get_SDO_type()

34

Scope of SDO PIM/PSM

D
o
m

ai
n
 s

pe
c
if
ic

it
y

Platform specificity

SDO PIM

Echonet
HAVi
UPnP

etc. etc.

SDO PIM/PSM
spec

SDO (CORBA) PIM

Future PSMs

Future domain specialization, or
Implementation specific part

35

The Bio-Networking Architecture:
An Example of SDO Implementations

• Computer network environment is seamlessly spanning
locations engaged in human endeavor.

• Need a self-organizing network that supports
– scalability in terms of # of objects and network nodes,
– adaptability to changes in network conditions,
– availability/survivability from massive failures and attacks,
– simplicity to design and maintain.

• Our solution: apply biological concepts and mechanisms
to network application design
– Biological systems have overcome the above features.

• e.g. bee colony, bird flock, fish school, etc.

• The Bio-Networking Architecture is a new framework
– for developing large-scale, highly distributed, heterogeneous,

and dynamic network applications.

36

Biological Concepts Applied

• Decentralized system organization
– Biological systems

• consist of autonomous entities (e.g. bees in a bee colony)

• no centralized (leader) entity (e.g. a leader in a bird flock)
– Decentralization increases scalability and survivability of biological

systems.

– The Bio-Networking Architecture
• biological entities = cyber-entities (CEs)

– the smallest component in an application

– provides a functional service related to the application

– autonomous with simple behaviors

» replication, reproduction, migration, death, etc.

» makes its own behavioral decision according to its own policy

• no centralized entity among CEs

37

• Emergence
– Biological systems

• Useful group behavior (e.g. adaptability and survivability) emerges from
autonomous local interaction of individuals with simple behaviors.

– i.e. not by direction of a centralized (leader) entity

– e.g. food gathering function

» When a bee colony needs more food, a number of bees will go to the
flower patches to gather nectar.

» When food storage is near its capacity, only a few bees will leave the
hive.

– The Bio-Networking Architecture
• CEs autonomously

– sense local/nearby environment

» e.g. existence of neighboring CEs, existence/movement of users,
workload, availability of resources (e.g. memory space), etc.

– invoke behaviors according to the condition in a local/nearby environment

– interacts with each other

38

• Lifecycle

– Biological systems

• Each entity strives to seek and consume food for living.

• Some entities replicate and/or reproduce children with
partners.

– The Bio-Networking Architecture

• Each CE stores and expends energy for living.
– gains energy in exchange for providing its service to other CEs

– expends energy for performing its behaviors, utilizing resources (e.g.
CPU and memory), and invoking another CE’s service.

• Each CE replicates itself and reproduce a child with a
partner.

39

• Evolution

– Biological system

• adjusts itself for environmental changes through species
diversity and natural selection

– The Bio-Networking Architecture

• CEs evolve by
– generating behavioral diversity among them, and

» CEs with a variety of behavioral policies are created by human
developers manually, or through mutation (during replication and
reproduction) and crossover (during reproduction)

– executing natural selection.

» death from energy starvation

» tendency to replicate/reproduce from energy abundance

40

• Social networking
– Biological systems (social systems)

• Any two entities can be linked in a short path through relationships
among entities.

– not through any centralized entity (e.g. directory), rather in a decentralized
manner.

– six decrees of separation

– The Bio-Networking Architecture
• CEs are linked with each other using relationships.

– A relationship contains some properties about other CEs (e.g. unique ID,
name, reference, service type, etc.)

• Relationships are used for a CE to search other CEs.
– Search queries originate from a CE, and travel from CE to CE through

relationships.

• The strength of relationship is used for prioritizing different relationships
in discovery.

– A CE may change its relationship strength based on the degree of similarity
between two CEs.

– The stronger relationship is likely to lead a query to a successful discovery
result.

41

Devise

Bionet platform

Cyber-entities running
on a bionet platform

Attributes
Body

Behaviors

cyber-entity

users

CE’s Structure and Behaviors

• Behaviors

– Energy exchange and storage

– Communication

– Migration

– Replication and reproduction

– Death

– Relationship establishment

– Social networking (discovery)

– Resource sensing

– State change

• Attributes

– ID

– Relationship list

– Age

– …etc.

• Body

– Executable code

– Non-executable data

42

Design Strategies of
the Bio-Networking Architecture

• Separate cyber-entity (CE) and Bio-Networking Platform
(bionet platform),

– Cyber-entity (CE)
• mobile object (agent) that provides any service logic

– Bionet platform
• middleware system for deploying and executing cyber-entities

• Model CE and bionet platform with UML

– Using SDO PIM

• Implement CE and bionet platform in Java and CORBA

– Using SDO CORBA PSM

43

Architecture of
the Bio-Networking Platform

Bionet Services

Bionet Platform

Bionet Container

CE

CE Context

CE

Java VM

Bionet Message Transport

A Cyber-entity (CE) is an
autonomous mobile object. CEs
communicate with each other
using FIPA ACL.

A CE context provides
references to available bionet
services.

Bionet services are runtime
services that CEs use frequently.

Bionet container dispatches
incoming messages to target
CEs.

Bionet class loader loads byte
code of CEs to Java VM.

Bionet message transport takes
care of I/O, low-level messaging
and concurrency.

Bionet Class Loader

44

Scope of Bionet Implementation

D
o
m

ai
n
 s

pe
c
if
ic

it
y

Platform specificity

SDO PIM

Bionet domain
model

SDO PIM/PSM
spec

SDO (CORBA) PIM

Bionet implementation

45

SDO CORBA PSM
Java interface
CORBA IDL

UML

PIM

PSM

Source
code

Configuration
files ・・・

Application

SDO PIM

Patterns

model transformation

generates/derives

model
transformations

Model
transformations

Bionet domain model

