An Overview of the Bio-Networking Architecture

Jun Suzuki, Ph.D.

jsuzuki@ics.uci.edu www.ics.uci.edu/~jsuzuki/ netresearch.ics.uci.edu/bionet/ School of Information and Computer Science University of California, Irvine

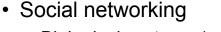
- Computer network environment is seamlessly spanning locations engaged in human endeavor.
- Need a self-organizing network that supports
 - scalability in terms of # of objects and network nodes,
 - adaptability to changes in network conditions,
 - availability/survivability from massive failures and attacks,
 - simplicity to design and maintain.
- Our solution: apply biological concepts and mechanisms to network application design
 - Biological systems have overcome the above features.
 e.g. bee colony, bird flock, fish school, etc.
- The Bio-Networking Architecture is a new framework
 - for developing large-scale, highly distributed,
 - heterogeneous, and dynamic network applications.

Biological Concepts Applied

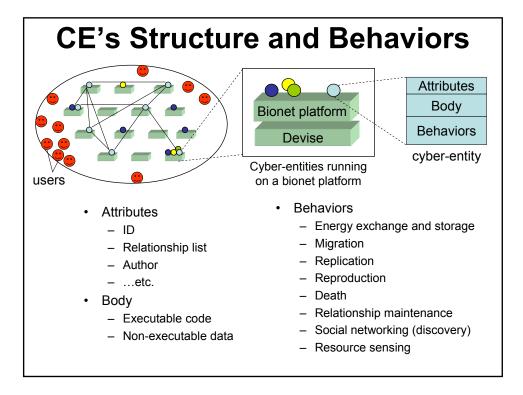
Decentralized system organization

- Biological systems
 - · consist of autonomous entities (e.g. bees in a bee colony)
 - no centralized (leader) entity (e.g. a leader in a bird flock)
 - Decentralization increases scalability and survivability of biological systems.
- The Bio-Networking Architecture
 - biological entities = cyber-entities (CEs)
 - the smallest component in an application
 - provides a functional service related to the application
 - autonomous with simple behaviors
 - » replication, reproduction, migration, death, etc.
 - $\ensuremath{\scriptscriptstyle >}\xspace$ makes its own behavioral decision according to its own policy
 - no centralized entity among CEs

• Emergence


- Biological systems
 - Useful group behavior (e.g. adaptability and survivability) emerges from autonomous local interaction of individuals with simple behaviors.
 - i.e. not by direction of a centralized (leader) entity
 - e.g. food gathering function
 - » When a bee colony needs more food, a number of bees will go to the flower patches to gather nectar.
 - » When food storage is near its capacity, only a few bees will leave the hive.
- The Bio-Networking Architecture
 - · CEs autonomously
 - sense local/nearby environment
 - » e.g. existence of neighboring CEs, existence/movement of users, workload, availability of resources (e.g. memory space), etc.
 - invoke behaviors according to the condition in a local/nearby environment
 - interacts with each other

• Lifecycle


- Biological systems
 - Each entity strives to seek and consume food for living.
 - Some entities replicate and/or reproduce children with partners.
- The Bio-Networking Architecture
 - Each CE stores and expends *energy* for living.
 - gains energy in exchange for providing its service to other CEs
 - expends energy for performing its behaviors, utilizing resources (e.g. CPU and memory), and invoking another CE's service.
 - Each CE replicates itself and reproduce a child with a partner.

Evolution

- Biological system
 - adjusts itself for environmental changes through species diversity and natural selection
- The Bio-Networking Architecture
 - · CEs evolve by
 - generating behavioral diversity among them, and
 - » CEs with a variety of behavioral policies are created by human developers manually, or through mutation (during replication and reproduction) and crossover (during reproduction)
 - executing natural selection.
 - » death from energy starvation
 - » tendency to replicate/reproduce from energy abundance

- Biological systems (social systems)
 - Any two entities can be linked in a short path through relationships among entities.
 - not through any centralized entity (e.g. directory), rather in a decentralized manner.
 - six decrees of separation
- The Bio-Networking Architecture
 - CEs are linked with each other using *relationships*.
 - A relationship contains some properties about other CEs (e.g. unique ID, name, reference, service type, etc.)
 - Relationships are used for a CE to search other CEs.
 - Search queries originate from a CE, and travel from CE to CE through relationships.

Design Strategies of the Bio-Networking Architecture

- Separate cyber-entity (CE) and Bio-Networking Platform (bionet platform),
 - Cyber-entity (CE)
 - mobile object (agent) that provides any service logic
 - Bionet platform
 - middleware system for deploying and executing cyberentities
- Implement CE and bionet platform in Java

Current Status of

the Bio-Networking Architecture Project

- · Our group members have been working on
 - Design and implementation of the bionet platform
 - Distributed (i.e. peer-to-peer) discovery
 - Discovery mechanisms and simulations
 - · Generic framework for various discovery mechanisms
 - Adaptation and evolution mechanisms
 - genetic algorithms
 - Simulations
 - Empirical study
 - Artificial immune system
 - Simulations
 - Dynamic composition of cyber-entities
 - Mathematical stability analysis
 - Standardization effort at the Object Management Group

Applications of the Bio-Networking Architecture

- Content distribution
 - Simulations done
 - now empirical deployment underway
- Web service
 - Simulations underway
- · Peer-to-peer overlay networks
 - Simulations underway
 - empirical deployment underway
- Disaster response networks
 - Just started

Thank you

- All the papers/documents related to the Bio-Networking Architecture are available at:
 - netresearch.ics.uci.edu/bionet/
 - netresearch.ics.uci.edu/bionet/resources/platform/
- Sponsors
 - NSF (National Science Foundation)
 - DARPA (Defense Advanced Research Program Agency)
 - AFOSR (Air Force Office of Science Research)
 - State of California (MICRO program)
 - Hitachi
 - Hitachi America
 - Novell
 - NTT (Nippon Telegraph and Telephone Corporation)
 - NTT Docomo
 - Fujitsu
 - NS Solutions Corporation