
An Overview of
the Bio-Networking Architecture

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu

www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/

Dept. of Information and Computer Science
University of California, Irvine

Overview
• Motivation to and general overview of the Bio-

Networking Architecture

• Design of the Bio-Networking Architecture

• Relationship between the Bio-Networking
Architecture and Super Distributed Objects

• Applications of the Bio-Networking Architecture

Motivation
• Computer network environment is seamlessly

spanning locations engaged in human endeavor.
• Need a self-organizing network that supports

– scalability in terms of # of objects and network nodes,
– adaptability to changes in network conditions,
– availability/survivability from massive failures and attacks,
– simplicity to design and maintain.

• Our solution: apply biological concepts and
mechanisms to network application design
– Biological systems have overcome the above features.

• e.g. bee colony, bird flock, fish school, etc.

• The Bio-Networking Architecture is a new framework
– for developing large-scale, highly distributed,

heterogeneous, and dynamic network applications.

Biological Concepts Applied
• Decentralized system organization

– Biological systems
• consist of autonomous entities (e.g. bees in a bee colony)
• no centralized (leader) entity (e.g. a leader in a bird flock)

– Decentralization increases scalability and survivability of
biological systems.

– The Bio-Networking Architecture
• biological entities = cyber-entities (CEs)

– the smallest component in an application
– provides a functional service related to the application
– autonomous with simple behaviors

» replication, reproduction, migration, death, etc.
» makes its own behavioral decision according to its own policy

• no centralized entity among CEs

• Emergence
– Biological systems

• Useful group behavior (e.g. adaptability and survivability) emerges
from autonomous local interaction of individuals with simple
behaviors.

– i.e. not by direction of a centralized (leader) entity
– e.g. food gathering function

» When a bee colony needs more food, a number of bees will go to
the flower patches to gather nectar.

» When food storage is near its capacity, only a few bees will leave
the hive.

– The Bio-Networking Architecture
• CEs autonomously

– sense local/nearby environment
» e.g. existence of neighboring CEs, existence/movement of users,

workload, availability of resources (e.g. memory space), etc.
– invoke behaviors according to the condition in a local/nearby

environment
– interacts with each other

• Lifecycle
– Biological systems

• Each entity strives to seek and consume food for living.
• Some entities replicate and/or reproduce children with

partners.

– The Bio-Networking Architecture
• Each CE stores and expends energy for living.

– gains energy in exchange for providing its service to other CEs
– expends energy for performing its behaviors, utilizing resources

(e.g. CPU and memory), and invoking another CE’s service.

• Each CE replicates itself and reproduce a child with a
partner.

• Evolution
– Biological system

• adjusts itself for environmental changes through species
diversity and natural selection

– The Bio-Networking Architecture
• CEs evolve by

– generating behavioral diversity among them, and
» CEs with a variety of behavioral policies are created by

human developers manually, or through mutation (during
replication and reproduction) and crossover (during
reproduction)

– executing natural selection.
» death from energy starvation
» tendency to replicate/reproduce from energy abundance

• Social networking
– Biological systems (social systems)

• Any two entities can be linked in a short path through relationships
among entities.

– not through any centralized entity (e.g. directory), rather in a
decentralized manner.

– six decrees of separation

– The Bio-Networking Architecture
• CEs are linked with each other using relationships.

– A relationship contains some properties about other CEs (e.g. unique ID,
name, reference, service type, etc.)

• Relationships are used for a CE to search other CEs.
– Search queries originate from a CE, and travel from CE to CE through

relationships.
• The strength of relationship is used for prioritizing different

relationships in discovery.
– A CE may change its relationship strength based on the degree of

similarity between two CEs.
– The stronger relationship is likely to lead a query to a successful

discovery result.

Devise

Bionet platform

Cyber-entities running
on a bionet platform

Attributes

Body

Behaviors

cyber-entity

users

CE’s Structure and Behaviors

• Behaviors
– Energy exchange and storage

– Communication
– Migration

– Replication and reproduction

– Death
– Relationship establishment

– Social networking (discovery)

– Resource sensing
– State change

• Attributes
– ID

– Relationship list
– Age

– …etc.

• Body
– Executable code

– Non-executable data

Design Strategies of
the Bio-Networking Architecture

• Separate cyber-entity (CE) and Bio-Networking
Platform (bionet platform),
– Cyber-entity (CE)

• mobile object (agent) that provides any service logic

– Bionet platform
• middleware system for deploying and executing cyber-

entities

• Design CE and bionet platform as PIMs in UML,
• Design CE and bionet platform as PSMs in

CORBA IDLs and Java interfaces/classes, and
• Implement CE and bionet platform in Java

Design Strategies of Cyber-entity
• CEs communicate with each other through:

– interface CyberEntity {
oneway void send(in string message);
string metadata(); };

– A subset of FIPA ACL with some extensions is used as a
communication language.

• encoded with XML

• Implemented as Java mobile code

���������	��

������

���	�	�	��

���	��
�
�
�

�����������
�������

���	����
���������

����	���

����	���

���	����
�����	����

���������	��

������

���	�	�	��

���	��
�
�
�

�����������
�������

���	����
���������

����	���

����	���

���	����
�����	����

• Each CE uses an individual
thread to continuously
– sense the nearby

environment,
– identify behaviors suitable

for the current environment
condition, and

– invoke the most suitable
behavior

• An autonomous CE
– receives messages from other cyber-entities.
– continuously senses nearby environment and performs its behaviors.
– runs on an individual thread; thus, expends energy continuously for using a

thread (CPU) and memory space.
• An active CE

– is ready for receiving messages from other cyber-entities, but
– does not perform behaviors
– consumes memory; thus expends energy continuously for using memory space.

• An inactive CE
– is in “sleeping” state in which it is externalized into a file
– does not expend energy because it does not consume any resources.

����������

���	
�

	����	
�

���
��	���

������

����������

���	
�

	����	
�

���
��	���

������

Each CE may have 4
states during its lifetime.

It changes its state
voluntarily; any CEs
are not allowed to
change another CE’s
state.

Design Strategies of
the Bio-Networking Platform

• Our approach to develop the bionet platform:
– Identify the common networking, operating and biological

functionalities required to deploy and execute CEs.
• e.g. I/O, concurrency, messaging, network connection management,

reference management, etc.
• e.g. energy management, relationship maintenance, migration,

replication, reproduction, etc.

– Design and implement those platform functionalities as a set
of reusable objects.

– Empirically measures the platform functionalities.

• Status:
– Design phase done, and implementation underway.
– Measurements started.

Architecture of
the Bio-Networking Platform

���������	
����

�������
�����	�

���������������	

��

�����������

��

��
����

����������������	�����	�

A Cyber-entity (CE) is an
autonomous mobile object.
CEs communicate with each
other using FIPA ACL.

A CE context provides
references to available
bionet services.

Bionet services are runtime
services that CEs use
frequently.

Bionet container dispatches
incoming messages to
target CEs.

Bionet class loader loads
byte code of CEs to Java VM.

Bionet message transport
takes care of I/O, low-level
messaging and concurrency.

������������������	

Bionet Message Transport

• Bionet message transport abstracts low-level
operating and networking details such as I/O,
concurrency, messaging, network connection
management.
– Marshaling/unmarshaling of messages issued by a CE

• GIOP/IIOP used currently

– TCP connection setup and management
– Message delivery on a TCP connection

• One-to-one messaging, currently
• One-to-many broadcasting/multicasting (future work)

– Threading (thread pooling) to accept incoming messages

Bionet Container
• Bionet container dispatches incoming

messages to target CEs.
– Demultiplexing incoming messages

– Dispatching incoming messages to target CEs
– Creating CE references

Bionet Services
• CEs use bionet services to invoke their behaviors.

– e.g. bionet lifecycle service when a CE replicates

• Each bionet platform provides 9 bionet services
– Bionet Lifecycle Service

• allows a CE to change its state.
• maintains a thread pool that contains threads assigned to

autonomous CEs
• allows a CE to replicate itself and reproduces a child CE with a

partner.
• allows a CE to reproduce a child CE with a partner
• Mutation and crossover during replication and reproduction

– Bionet Relationship Management Service
• allows a CE to establish, examine, update and eliminate their

relationships with other CEs.

– Bionet Energy Management Service
• keeps track of energy level of the CEs running on a local platform.
• allows a CE to pay energy for

– invoking a service provided by another CE,
– using resources, and

– performing behaviors (i.e. invoking a bionet service).

– Bionet Resource Sensing Service
• allows CEs to sense the type, amount and unit cost of available

resources (CPU and memory).
– CPU availability = Nidle_threads/Nmax_threads

» where Nidle_threads is the number of idle threads in a thread pool
maintained by bionet lifecycle service, and

» Nmax_threads is the max number of threads in the thread pool.

– Memory availability = Mfree/Mmax

» where Mfree is the amount of memory available on Java VM, and
» Mmax is the max size of memory allocated to Java VM.

– Resource unit cost is determined based on resource availability.

– Bionet CE Sensing Service
• allows a CE to discover other CEs running on

neighboring bionet platforms reachable in N hops
(platform-level discovery).

– N = 0; discovery of local CEs running on the same platform.
– N > 0; discovery of remote CEs running on different platforms.

– Bionet Pheromone Emission/Sensing Service
• allows a CE to leave its pheromone (trace) on a local

platform when it migrates to another platform
– so that other CEs can find the CE at a destination platform

• allows a CE to let other CEs know of its existence by
broadcasting its metadata.

– Other CEs may come to interact with the CE or establish a
relationship with the CE.

– Bionet Topology Sensing Service
• allows a CE to sense the connectivity among neighboring

bionet platforms reachable N hops.
– proactive sensing
– reactive sensing
– hybrid sensing
– static sensing

– Bionet Social Networking Service
• allows a CE to search other CEs through their

relationships (CE-level discovery).
• uses 4 interfaces defined in the COS trader service

– Lookup, Register, Link, Admin (not Proxy)

– Bionet Migration Service
• allows a CE to migrate to another bionet platform.

Implementation Status

• CE and its surrounding classes (e.g. relationship
objects); done

• CE context; done
• Bionet message transport; done
• Bionet container; done
• Bionet Services

– 4 services (lifecycle, relationship mgt, energy mgt., resource
sensing); done

– CE sensing; partially done
– The other 4 services; implementation underway

• Bionet class loader
– implementation underway

Preliminary Measurement (1)
A sender CE dynamically
selects a receiver CE at
random, and sends an empty
string message to the
selected CE.

Measurements were
conducted within a single
machine with Java 1.4 VM,
Win XP, and 1GHz Pentium 3
CPU. 64 MB heap allocated
to each Java VM

• What we measured
– Latency for message transmission between two CEs

• How long it takes for a CE to send a message to another CE?

• Overhead sources to message transmission
– Marshaling a message issued by a sender CE,
– TCP connection setup,
– message delivery on the connection,
– message dispatching to a receiver CE, and
– unmarshaling of an incoming message.

��

�������

	
��
���
����
����������

��

	
��
�������
�
�

��

�������

	
��
���
����
����������

���� �� ��

sender CE receiver CEs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 100 200 300 400 500 600 700 800 900 1000

of receiver cyber-entities (objects)

La
te

nc
y

(m
se

c) Bionet

JacORB

Java IDL

ZEN

A single sender CE and a
range of receiver CEs (1, 100,
…1000) were deployed.

Bionet platform was
compared with existing
distributed object platforms
implemented in Java.

• Measurement results and observations
– Bionet message transport and container are fairly efficient and comparable with

existing distributed object platforms.
• Message transmission latency was 0.17 msec when 1,000 receiver CEs were

deployed.
– Bionet message transport and container are scalable in terms of the number of

receiver CEs.
• Latency is relatively constant when the number of CEs grows, rather than it increases

linearly (the average of latency was 0.179 msec.).
– In general, increasing the # of receiver CEs increases the effort to establish TCP connections

to receiver CEs (in sender side) and demultiplex/dispatch incoming messages to target CEs
(in receiver side).

• Implementation techniques such as connection sharing and hash-based demultiplexing
work well.

A sender CE selects a
receiver CE at random before
a measurement, and sends
empty string messages to the
selected CE.

Measurements were
conducted within a single
machine with Java 1.4 VM,
Win XP, and 1GHz Pentium 3
CPU. 64 MB heap allocated
to each Java VM

• What we measured
– throughput of a CE

• How many messages a CE can receive and process in a second?

• The throughput is dominantly affected by
– message demultiplexing in bionet container.

��

�������

	
��
���
����
����������

��

	
��
�������
�
�

��

�������

	
��
���
����
����������

���� �� ��

sender CE receiver CEs

Preliminary Measurement (2)

A single sender CE and a
range of receiver CEs (1,
100, …1000) were deployed.

Bionet platform was
compared with existing
distributed object platforms
implemented in Java.0

500

1000

1500

2000

2500

3000

3500

1 100 200 300 400 500 600 700 800 900 1000

of cyber-entities (objects)

T
h

ro
u

g
h

pu
t (

ca
lls

/s
e

c)

Bionet

JacORB

Java IDL

ZEN

• Measurement results and observations
– The throughput of a CE on a bionet platform is competitive with existing

distributed object platforms.
• Throughput was 2279.99 messages/sec when 1,000 receiver CEs were

deployed.
– Bionet container are scalable in terms of the number of receiver CEs.

• Increasing the number of receiver CEs increases the demultiplexing effort.
Throughput remains relatively constant as the number of receiver CEs grows
(2309.27 messages/sec in average), rather than it increases linearly.

• Implementation technique of hash-based demultiplexing works well.

The Bio-Networking Architecture
and SDO PIM/PSM

• SDO resource data model
– The design of CE and surrounding objects is to be

reflected as that of SDO resource data model
• e.g. SDO = CE
• SDO ID = CE ID
• Relationship = Relationship (Organization)
• Relationship strength = Weight of relationship
• CE’s energy level = Weight status of SDO

• The UML classes in SDO PIM were mapped
CORBA IDL interfaces, structs or localized
interface.
– SDO (PIM) -> SDO interface (IDL)
– SDO ID (PIM) -> SDO
– Relationship (PIM)-> localized interface (IDL)
– List of PIM constructs (PIM) -> sequence (IDL)

• A preliminary SDO PIM, which the SDO DSIG
discussed and built a rough consensus on at
the Orlando TC meeting, were implemented
and confirmed to work well.

• SDO discovery
– The interfaces defined in the COS trader service

are used for SDO discovery
• Discovery can be centralized or decentralized.
• In decentralized discovery,

– Each SDO (CE) implements Trader interfaces (Lookup, Register,
Admin and Link).

Current Status of
the Bio-Networking Architecture Project

• We have been working on
– Design and implementation of bionet platform
– Distributed (i.e. peer-to-peer) discovery mechanism
– Adaptation and evolution mechanism

• genetic algorithm/operations
• Immune system

– Service interface description language
– Mathematical stability analysis

• For more details, please see
netresearch.ics.uci.edu/bionet/

Applications of
the Bio-Networking Architecture

• Content distribution
– Simulations done

– now empirical deployment underway

• Web service
– Simulations underway

• Peer-to-Peer networks
– Simulations done
– now empirical deployment underway

• Disaster response networks
– Just started

Our Assumptions
on the Disaster Net Infrastructure
• Ad-hoc networks spontaneously established in

a disaster area to evacuate victims and aid
emergency response crews.

• Various devises participate in the disaster ad-
hoc nets.
– Victims carry their own devices.
– Emergency response crews carry and/or wear

devises.
– Emergency vehicles (e.g. fire truck, ambulance)

carry devices.
– Sensors are densely scattered over a disaster site

(e.g. scattered from helicopters).

Our Assumptions on the
System Characteristics

• Large scale with a number of
– people/organizations
– devices
– software objects

• Objects represent devises, execute devise-specific functions (e.g.
temperature sensing), or carry information (e.g. map, a building’s floor plan
and air contamination).

• Heterogeneous
– processing, memory and networking capabilities of devises
– functionalities of software objects

• Dynamic
– changing network connectivity, density, and traffic

• Connectivity and density change due to movement of users/devises and
additional deployment of devises and software objects.

• Traffic changes depending on the rescue operation stages
– e.g. The traffic among temperature sensors increases while fire occurs.

– intermittent availability of devises and software objects

Goals

• To design an application architecture which
– meets key requirements of applications running on

disaster response networks (i.e. large-scale,
heterogeneous and dynamic networks).

– diminishes the maintenance/administration burden
of disaster response network applications.

The Bio-Networking Architecture
and Disaster Response Networks
• CEs

– represents components involved in disaster response
networks (e.g., victim, rescuer, service, etc.).

– provides service (e.g. temperature sensing, providing
information such as building’s floor plan).

• Bionet platform
– is embedded in each devise that participates in

disaster response networks.

Application Scenario 1: Wildfire
• Disposable sensors are scattered over an affected

area
– e.g. temperature, wind force, oxygen, smoke sensing
– Some of them are broken if they fall into a fire.
– The CEs within sensors do their sensing tasks and maintain

relationships with each other.

• Each fire fighter has devises (e.g. info pad, sensors).
– The CEs within the devises may

• direct the fire fighter to a place to extinguish a flame, even
when visibility is not good, by interacting with scattered
sensor CEs.

– The CEs may suggest a safer (i.e. lower temperature, less air
contaminant) route to the place from multiple options.

• display the current positions of the fire fighter and other
fighters by interacting with other fighters’ CEs and the
CEs that provide map information.

• display the current area affected by fire(s) by interacting
with sensor CEs.

• sense what is happening nearby (e.g. approaching blaze)
by interacting with neighboring sensor CEs, and alert the
crew that.

Application Scenario 2:
Building Collapse

• The CEs within victims’ devises may
– find rescuers through passing advertisement (e.g. “I’m here”

beacon) or asking its relationship partners (they will ask their
partners in turn).

– provide an evacuation path to the victim by interacting with
sensor CEs.

– obtain the first aid treatment information for injured victims
by discovering and inquiring the CEs that provides the
information.

• The CEs within rescuers’ devises may
– locate victims, represented by CEs, through passing advertisement or

asking its relationship partners (they will ask their partners in turn).
– display a street map or building floor plans depending on the rescuer’s

current position.
– examine what is happing near the rescuer (e.g. gas leaking and

approaching blaze) by discovering and inquiring nearby sensor CEs.

• A CE that provides any information may
– adjust its population through replication, reproduction and natural

selection (energy exchange) depending on the demand;
– adjust its location through migration (e.g. toward users) and resource

sensing (e.g. more CEs on the devises that provide more resources).

