Toward Adaptable Super Distributed Objects (SDOs): Reconfigurability in the Bio-Networking Architecture

Jun Suzuki, Ph.D.
jsuzuki@ics.uci.edu
www.ics.uci.edu/~jsuzuki/
netresearch.ics.uci.edu/bionet/
Dept. of Information and Computer Science
University of California, Irvine

Overview

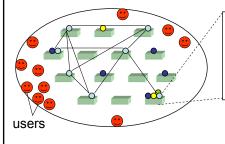
- Introduction
 - Adaptability
 - Reconfiguration
 - Recap of the Bio-Networking Architecture
- Reconfiguration in the Bio-Networking Architecture
 - Reconfiguration of Network Application
 - Reconfiguration of Middleware

Adaptability

- Our focus
 - Dynamic adaptability to changes in network
- Changes in network
 - Resource availability
 - CPU cycle, memory space, disk space, network bandwidth (Ethernet, ATM, wireless, etc.)
 - Runtime application characteristics
 - · Workload, user's access pattern, error pattern

Reconfigurability

- Our approach: adaptation through reconfiguration
 - Monitoring operating/network environment
 - · to detect when adaptation should take place
 - Reconfiguring to adapt to changes in the environment
- Two directions
 - Network-aware reconfigurable applications
 - autonomously reconfigure their behaviors to adapt to dynamic network conditions (e.g. network load)
 - Reconfigurable middleware system
 - reconfigures their internal components to adapt to resource availability (e.g. available memory space, available transport protocols).


Bio-Networking Architecture

- Observation
 - Desirable properties of network applications (e.g. adaptability) have already been realized in various biological systems (e.g. bee colony, bird flock, etc.).
- The Bio-Networking Architecture
 - applies key biological principles and mechanisms for designing network applications.
 - a framework for developing large-scale, highly distributed, heterogeneous, and dynamic network applications.

Biological Concepts Applied

- Decentralized system organization
 - biological entities = cyber-entities (CEs)
 - the smallest component in an application
- Lifecycle
 - Each CE stores and expends energy
 - in exchange for performing service.
 - for using resources.
 - Each CE replicates itself and reproduce a child with a partner.
- Evolution
 - Dynamic reconfiguration of network applications through evolution

Bionet platform

Devise

Attributes Body

Behaviors cyber-entity

Cyber-entities running on a bionet platform

- Attributes
 - ID
 - Relationship list
 - Age
 - ...etc.
- Body
 - Executable code
 - Non-executable data

- Behaviors
 - Communication
 - Migration
 - Replication and reproduction
 - Death
 - Resource sensing
 - State change
 - Energy exchange and storage
 - Relationship establishment
 - Social networking (discovery)

Cyber-Entity's Behavior Policy

Each CE has its own policy for each behavior.

A behavior policy consists of factors (F), weights (W), and a threshold.

– If $\sum F_i \cdot W_i$ > threshold, then migrate.

Example migration factors:

- Migration Cost
 - A higher migration cost (energy consumption) may discourage migration.
- Distance to Energy Sources
 - encourages CEs to migrate toward energy sources (e.g. users).

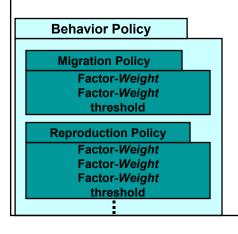
Behavior Policy

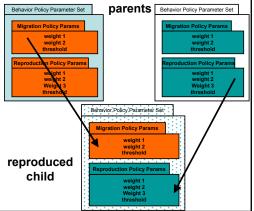
Migration Policy

Factor-Weight
Factor-Weight
threshold

Reproduction Policy

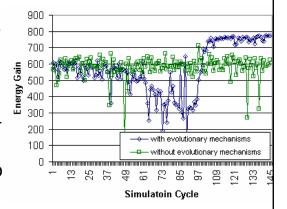
Factor-Weight
Factor-Weight
Factor-Weight
threshold


- Resource Cost
 - encourages CEs to migrate to a network node whose resource cost is cheaper.

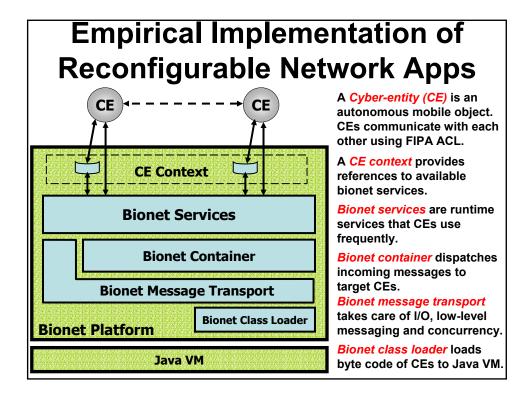

Reconfiguration of **Network Applications**

- Evolution as a means to reconfigure behaviors of network applications.
 - Biological entities adjust themselves for environmental changes through species diversity and natural selection.
 - CEs evolve by
 - · generating behavioral diversity among them, and
 - CEs with a variety of behavioral policies are created
 - » by human developers manually, or
 - » through mutation and crossover (automatically).
 - executing natural selection.
 - death from energy starvation
 - tendency to replicate/reproduce from energy abundance

Mutation and Crossover


- Weight values in each behavior policy change dynamically through mutation. • A child CE inherits different
- Mutation occurs during replication and reproduction.
- Crossover occurs during reproduction.
- behaviors from different parents through crossover.

A Simulation Result


- Users (energy sources move around network randomly.
- Evolutionary CEs gain more energy than nonevolutionary ones;
- Evolutionary CEs adap better to dynamic network conditions.
 - by moving closer to users and avoiding network nodes whose resource cost is expensive.

 by increasing weight values of distance-to-user and resource cost factors.

Status and Issues

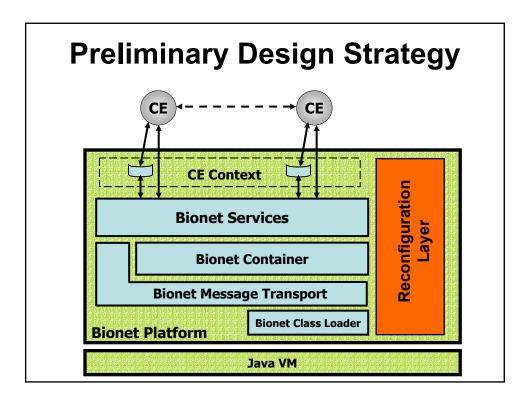
- Through simulations, we have already confirmed
 - Effectiveness of energy concept
 - Effectiveness of mutation and crossover
 - Adaptability of CEs through evolutionary reconfiguration mechanisms in dynamic networks
- Issue
 - Acceleration of evolutionary process
 - by reducing energy loss and time delay.

Bionet Services

- CEs use bionet services to invoke their behaviors.
 - e.g. bionet lifecycle service when a CE replicates
- Each bionet platform provides 9 bionet services
 - Bionet Lifecycle Service
 - Bionet Relationship Management Service
 - Bionet Energy Management Service
 - Bionet Resource Sensing Service
 - Bionet CE Sensing Service
 - Bionet Pheromone Emission/Sensing Service
 - Bionet Topology Sensing Service
 - Bionet Social Networking Service
 - Bionet Migration Service

Status

- Implementation done.
 - Now in the process to document platform functionalities and improve the performance of the functionalities
 - netresearch.ics.uci.edu/bionet/resources/platform/
- Measurement work started.
 - Has confirmed bionet platform performs competitively compared with existing middleware systems and mobile agent platforms.


- The design of CEs and several other constructs is based on a preliminary version of the OMG Super Distributed Objects specification.
 - The model that SDO DSIG discussed at the DC meeting.
- Implementing evolution mechanisms that have been used and evaluated in simulation study.
 - Replication, reproduction, mutation crossover, etc.
- Will evaluate the characteristics of evolutionary reconfiguration on actual network environment.

Applications

- Content distribution
- Web service
- Peer-to-Peer networks
- Disaster response networks

Reconfiguration of Middleware

- Making not only network applications but also underlying middleware systems to be reconfigurable.
- Approach to reconfigure middleware
 - Compose middleware as a set of components.
 - Middleware
 - sense its context such as available resources and systems current configuration.
 - determine a strategy to reconfigure middleware according to the obtained context.
 - execute the determined reconfiguration strategy.

- Insert a reconfiguration layer into the bionet platform
 - Manages and controls middleware components
- Model bionet services and/or major functionalities in a bionet service as middleware components
- Manage middleware components with the Component Configurator Framework (design pattern)

Status

- In early design stage
 - Investigating middleware reconfiguration mechanisms using the components implemented in bionet platform.
- Designing a metaobject protocol to inspect/modify configuration of middleware components.
- MDA-like approach to reconfigure middleware?
- Biologically-inspired way to reconfigure middleware?

Thank you

- All the papers/documents related to the Bio-Networking Architecture are available at:
 - netresearch.ics.uci.edu/bionet/
 - netresearch.ics.uci.edu/bionet/resources/platform/
- Sponsors
 - NSF (National Science Foundation)
 - DARPA (Defense Advanced Research Program Agency)
 - AFOSR (Air Force Office of Science Research)
 - State of California (MICRO program)
 - Hitachi
 - Hitachi America
 - Novell
 - NTT (Nippon Telegraph and Telephone Corporation)
 - NTT Docomo
 - Fujitsu
 - NS Solutions Corporation