Design and Implementation of the Bio-Networking Architecture

Jun Suzuki, Tadashi Nakano and Tatsuya Suda {jsuzuki, tnakano, suda}@ics.uci.edu http://netresearch.ics.uci.edu/bionet/

Dept. of Information and Computer Science University of California, Irvine

Overview

- Introduction to the Bio-Networking Architecture
 - Motivations
 - Biological concepts applied
 - General design of the Bio-Networking Architecture
- Simulation Study of
 - Static adaptation scenarios
 - Dynamic adaptation scenarios
- Empirical implementation of the Bio-Networking Architecture
 - Design, implementation and measurements of the Bio-Networking platform
 - On-going work

Introduction to the Bio-Networking Architecture

Motivation

- Computer network environment is becoming larger and more complex.
- Need a self-organizing network that supports
 - *scalability* in terms of # of objects and network nodes,
 - adaptability to changes in network conditions,
 - availability/survivability from massive failures and attacks,
 - simplicity to design and maintain.
- Our solution: apply biological concepts and mechanisms to network application design
 - Biological systems have overcome the above features.
 - e.g. bee colony, bird flock, fish school, etc.
- The Bio-Networking Architecture is a new framework
 - for developing large-scale, highly distributed, heterogeneous, and dynamic network applications.

Biological Concepts Applied

• Decentralized system organization

- Biological systems
 - consist of autonomous entities (e.g. bees in a bee colony)
 - no centralized (leader) entity (e.g. a leader in a bird flock)
 - Decentralization increases scalability and survivability of biological systems.

- The Bio-Networking Architecture

- biological entities = cyber-entities (CEs)
 - the smallest component in an application
 - provides a functional service related to the application
 - autonomous with simple behaviors
 - » replication, reproduction, migration, death, etc.
 - » makes its own behavioral decision according to its own policy
- no centralized entity among CEs

• Emergence

- Biological systems
 - Useful group behavior (e.g. adaptability and survivability) emerges from autonomous local interaction of individuals with simple behaviors.
 - i.e. not by direction of a centralized (leader) entity
 - e.g. food gathering function
 - » When a bee colony needs more food, a number of bees will go to the flower patches to gather nectar.
 - » When food storage is near its capacity, only a few bees will leave the hive.

- The Bio-Networking Architecture

- CEs autonomously
 - sense local/nearby environment
 - » e.g. existence of neighboring CEs, existence/movement of users, workload, availability of resources (e.g. memory space), etc.
 - invoke behaviors according to the condition in a local/nearby environment
 - interacts with each other

• Lifecycle

- Biological systems
 - Each entity strives to seek and consume food for living.
 - Some entities replicate and/or reproduce children with partners.

- The Bio-Networking Architecture

- Each CE stores and expends *energy* for living.
 - gains energy in exchange for providing its service to other CEs
 - expends energy for performing its behaviors, utilizing resources (e.g. CPU and memory), and invoking another CE's service.
- Each CE replicates itself and reproduce a child with a partner.

• Evolution

- Biological system
 - adjusts itself for environmental changes through species diversity and natural selection
- The Bio-Networking Architecture
 - CEs evolve by
 - generating behavioral diversity among them, and
 - » CEs with a variety of behavioral policies are created by human developers manually, or through mutation (during replication and reproduction) and crossover (during reproduction)
 - executing natural selection.
 - » death from energy starvation
 - » tendency to replicate/reproduce from energy abundance

Social networking

- Biological systems (social systems)
 - Any two entities can be linked in a short path through relationships among entities.
 - not through any centralized entity (e.g. directory), rather in a decentralized manner.
 - six decrees of separation
- The Bio-Networking Architecture
 - CEs are linked with each other using *relationships*.
 - A relationship contains some properties about other CEs (e.g. unique ID, name, reference, service type, etc.)
 - Relationships are used for a CE to search other CEs.
 - Search queries originate from a CE, and travel from CE to CE through relationships.
 - The *strength* of relationship is used for prioritizing different relationships in discovery.
 - A CE may change its relationship strength based on the degree of similarity between two CEs.
 - The stronger relationship is likely to lead a query to a successful discovery result.

Design Strategy of the Bio-Networking Architecture

- Separate cyber-entity (CE) and Bio-Networking Platform (bionet platform),
 - Cyber-entity (CE)
 - mobile object (agent) that provides any service
 - Bionet platform
 - middleware system for deploying and executing CEs
- Implement CE and bionet platform in Java

Simulation Study: Adaptation and Evolution

Introduction

13

14

- Goal:
 - To optimize the behaviors of cyber-entities (replication and migration) in order to make a network application more efficient

• Approach:

 Applying evolutionary mechanisms in the cyberentity

Evaluation Criteria

- Response Time:
 - Waiting time of a service request at a platform and network delay of the request
- Hop Count:
 - The average distance between a requesting user and the cyber-entity that processes the request
- Energy Gain:
 - The difference between *acquired energy and consumed energy*.

Simulation Summary

- Cyber-entities successfully evolve and adapt to simulation environments.
- (not shown today's talk, but) various types of cyber-entities and network environments are examined,
 - Randomly walking users
 - Different resource cost environment
 - Unstable network with topological changes

Bio-Networking Platform

25

The Bio-Networking Platform

- The Bio-Networking platform (bionet platform)
 - is a middleware system that provides reusable software components for deploying and executing cyber-entities.
 - abstract low-level operating and networking details (e.g. I/O, concurrency, messaging and network connection management) and,
 - provide a set of runtime services that CEs frequently use for
 - performing their services,
 - sensing network environment, and
 - invoking their biological behaviors.

Bionet Message Transport

- Bionet message transport abstracts low-level operating and networking details such as I/O, concurrency, messaging, network connection management.
 - Marshaling/unmarshaling of messages issued by a CE
 - GIOP/IIOP used currently
 - TCP connection setup and management
 - Message delivery on a TCP connection
 - One-to-one messaging, currently
 - One-to-many broadcasting/multicasting (future work)
 - Threading (thread pooling) to accept incoming messages

Bionet Container

- Bionet container dispatches incoming messages to target CEs.
 - Demultiplexing incoming messages
 - Dispatching incoming messages to target CEs
 - Creating CE references
 - Activating and de-activating CEs

Bionet Services

- CEs use bionet services to invoke their behaviors.
 - e.g. bionet lifecycle service when a CE replicates
- Each bionet platform provides 9 bionet services
 - Bionet Lifecycle Service
 - allows a CE to change its state.
 - maintains a thread pool that contains threads assigned to autonomous CEs
 - allows a CE to replicate itself and reproduces a child CE with a partner.
 - allows a CE to reproduce a child CE with a partner
 - · Mutation and crossover during replication and reproduction
 - Bionet Relationship Management Service
 - allows a CE to establish, examine, update and eliminate their relationships with other CEs.

- Bionet CE Sensing Service
 - allows a CE to discover other CEs running on neighboring bionet platforms reachable in N hops (platform-level discovery).
 - N = 0; discovery of local CEs running on the same platform.
 - N > 0; discovery of remote CEs running on different platforms.

- Bionet Pheromone Emission/Sensing Service

- allows a CE to leave its pheromone (trace) on a local platform when it migrates to another platform
 - so that other CEs can find the CE at a destination platform
- allows a CE to let other CEs know of its existence by broadcasting its metadata.
 - Other CEs may come to interact with the CE or establish a relationship with the CE.

Implementation Status

- Every component in the bionet platform has been implemented,
 - except the bionet topology sensing service.
 - Bionet message transport and bionet container are implemented based on the CORBA specification.
 - Our own CORBA implementation, called muORB
 - Publicly available CORBA implementation called JacORB
- Measurements and documentation underway
 - netresearch.ics.uci.edu/bionet/resources/platform/

Standardization Effort at OMG

- A goal of the OMG Super Distributed Objects (SDOs) working group is to
 - provide a standard computing infrastructure for highly distributed ubiquitous networking systems.
- SDO is a logical representation of a hardware device (e.g., PDA, AV device and refrigerator) and software component.
- Status:
 - The SDO RFI issued ('00), and responses gathered ('01)
 - from 10 organizations including UCI
 - The SDO white paper published ('01)
 - The first RFP published ('02).
 - the resource data model for SDOs and the interfaces that SDOs implement.
 - Hitachi, GMD Fokus and UCI will submit the joint revised specification in March '03.
 - Several key constructs in the Bio-Networking Architecture have been reflected (e.g. CE's attributes such as energy level, relationship, relationship attributes such as relationship strength) 38

Empirical adaptability of CEs

- Empirical implementation of evolutionary adaptation mechanism
 - Has implemented a framework to define and manipulate behavioral policies (factor, weight and threshold values).
 - Now implementing CE's behavior selection mechanism
 - to calculate weighted sum of factor values, compare it with a threshold value, and invoke a corresponding behavior.
 - Will evaluate empirical adaptability of CEs on actual network environments soon.

Reconfigurability of Bionet Platform

- Motivations to reconfigure bionet platform
 - Every user and application does not require every functionalities/services provided by the bionet platform.
 - Every network node probably cannot deploy all the components in the bionet platform due to resource constraint.
 - Approach to reconfigure middleware
 - Compose middleware as a set of components.
 - Middleware
 - sense its context such as available resources and systems current configuration.
 - determine a strategy to reconfigure middleware according to the obtained context.
 - execute the determined reconfiguration strategy.
- Our goal is to investigate the adaptability of networking system by making not only network applications but also underlying middleware systems to be reconfigurable.

	Thank you	
•	 All the papers/documents are available at: Project web site: netresearch.ics.uci.edu/bionet/ Bionet simulator netresearch.ics.uci.edu/bionet/resources/evolution_simulator/ Bionet platform netresearch.ics.uci.edu/bionet/resources/platform/ 	
•	 Sponsors NSF (National Science Foundation) DARPA (Defense Advanced Research Program Agency) AFOSR (Air Force Office of Science Research) State of California (MICRO program) Hitachi Hitachi Hitachi America Novell NTT (Nippon Telegraph and Telephone Corporation) NTT Docomo Fujitsu NS Solutions Corporation 	
		48