MINING RULES
IN SINGLE-TABLE AND MULTIPLE-TABLE DATABASES

A Dissertation Presented
by

Laurentiu B. Cristofor

Submitted to the Office of Graduate Studies, University of Massachusetts
Boston, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
June 2002

Computer Science Program

(© 2002 by Laurentiu B. Cristofor

All rights reserved

MINING RULES
IN SINGLE-TABLE AND MULTIPLE-TABLE DATABASES

A Dissertation Presented
by

Laurentiu B. Cristofor

Approved as to style and content by:

Dan A. Simovici, Professor
Chairperson of Committee

Richard L. Tenney, Professor
Member

William R. Campbell, Associate Professor
Member

Ivan Stojmenovic, Professor
Member

Dan A. Simovici, Program Director
Computer Science Program

Peter Fejer, Chairperson
Computer Science Department

ABSTRACT

MINING RULES
IN SINGLE-TABLE AND MULTIPLE-TABLE DATABASES

June 2002

Laurentiu B. Cristofor, B.S., Politehnica University
M.S., Politehnica University
M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Professor Dan A. Simovici

Data mining represents the process of extracting interesting and previously
unknown knowledge from data. In this thesis we address the important data
mining problem of discovering association rules in single-table and multiple-table
databases, and we also introduce a generalization of the database concept of func-
tional dependency: the purity dependencies, which can be viewed as a type of rules
that are informationally more significant than association rules. An association rule
expresses the dependence of a set of attribute-value pairs, also called items, upon
another set of items (itemset). The mining of association rules is performed in two
stages: the discovery of frequent sets of items from the data and the generation
of association rules from the frequent itemsets. The first stage is computationally
intensive and the second stage has the drawback of possibly generating thousands
of rules, thus making the analysis of the results hard to perform by a human an-
alyst. Our contributions relate to both stages of this process. We analyze stage

one and introduce two new algorithms among which algorithm Closure improves

v

upon the performance of the classic algorithm Apriori. We define the concept of an
informative cover of the set of association rules and present algorithm CoverRules
for computing such a cover, which is in practice one or more orders of magnitude
smaller than the set of association rules. Next, we investigate how the mining
of association rules should be performed when the data reside in several tables
organized in a star schema. We show how to modify the Apriori algorithm to
compute the support of itemsets by analyzing the star schema tables or their outer
join. Whereas association rules express the dependency between itemsets, purity
dependencies express the dependency between sets of attributes. We introduce
the concept of purity dependency as a generalization of the concept of functional
dependency and we show that these purity dependencies satisfy properties that
are similar to the Armstrong rules for functional dependencies. As an application
of our theory we present an algorithm for discovering purity dependencies that can

be used to predict the value of a target attribute.

To my parents.

vi

ACKNOWLEDGMENTS

The work presented in this thesis has been done in the Department of Computer
Science (former Department of Mathematics and Computer Science) of the Uni-
versity of Massachusetts Boston. My thanks go to my advisor, Dan Simovici, for
teaching me to express problems formally and for his helpful suggestions and discus-
sions; to Richard Tenney, William Campbell, and Elizabeth O’Neil for their feed-
back and suggestions regarding my thesis; and to the professors at UMass/Boston
with whom I had the pleasure to interact: Ethan Bolker, Richard Eckhouse, Peter
Fejer, Colin Godfrey, George Lukas, Joan Lukas, John Lutts, Kenneth Newman,
Carl Offner, Patrick O’Neil. I also want to thank my wife, Dana Cristofor, for
her support and for being my collaborator in the work on which Chapter 2 and

Chapter 5 are based.

vii

TABLE OF CONTENTS

1 Introduction. 1
1.1 DataMining 1
1.1.1 Classification L 4

1.1.2 Associations 5

1.1.3 Sequences 6

1.2 Associationruleso 6
1.2.1 Database considerations 6

1.2.2 Problem definitiono 8

1.2.3 The Apriori algorithm oL 13

1.2.4 Extensions of the association rules problem 21

1.3 Functional and purity dependencies 21

1.4 Thesis organization Lo 22

2 Mining frequent itemsets in single-table databases 24
2.1 Galois connectionso 27
2.2 Frequent itemsets and closures of itemsets 34
2.3 'The Closure algorithm 37
2.4 'The MazClosure algorithm 39
2.5 Experimental results Lo o000 42
2.6 Conclusions L 48

viii

3 Mining association rules in single-table databases 50

3.1 Rules of inference for association rules 51
3.1.1 Inference rules and bases for association rules 52
3.1.2 A new inference rule for association rules 54

3.2 Covers for associationrules.o 0L 58

3.3 The CoverRules algorithm 62

3.4 Experimental resultso o 0oL 65

3.5 Conclusions 70

4 Mining frequent itemsets and association rules in multiple-table

databases 72
4.1 Problems in previous approaches 73
4.2 Mining association rules in star schemas 79

4.2.1 The AprioriJoin algorithm 81
4.2.2 The AprioriStar algorithm 83
4.2.3 Experimental resultso, 85
4.3 Mining association rules in more general schemas 90
4.4 Conclusions L L 92

5 Mining purity dependencies in databases 93
5.1 Impurity of sets and partitions 96
5.2 Purity dependencies oL 101
5.3 Approximate classification using purity dependencies 105
54 Conclusions L Lo 111

ix

6 Conclusions e
6.1 Mining associationruleso L o000
6.2 Purity dependencieso Lo

References

1.1

1.2

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

5.1

5.2

LisT oF TABLES

An example of a binary table 0000, 7
The binary database D 17
Matrix Me for step 1 of MaxClosure 41
Results for databases with 1000 items 44
Results for databases with 100 items 46
The sample binary table of [PBT99a] 56

Binary table illustrating that a valid rule can have smaller an-

tecedent than a rule of an informative cover 61
Results for Mushroom database 65
Results for SPARSE database 68
Results for DENSE database 69
The tables of the Bank database 76
The join of the tables of the Bank database 7
Characteristics of the synthetically generated databases 88

Results for databases SPARSE, SPARSEx2, SPARSEx4, DENSE,
and OUTER e 89

Results for Mushroom database 108

Approximate mushroom classification resulting from the analysis of

attributes cap_color and spore_print_color 109

xi

9.3

5.4

Exact mushroom classification resulting from the analysis of at-

tributes cap_color and spore_print_color

Values of o that determine comparable results for different types of

generators Lo e

xii

1.1

1.2

2.1

2.2

2.3

24

2.5

2.6

3.1

4.1

4.2

4.3

5.1

5.2

LisT OoF FIGURES

Lattice of itemsets for Z = {iy, 49,93}

Execution of Apriori on table D for minsupp =2/5

Execution of Closure on table D for minsupp =2/5
Results for t5i2d100k
Results for t1014d100k (1000 items)
Results for t10i4d50ko
Results for t1014d100k (100 items)

Results for t10i4d1Mo

Graphical plot of the results obtained on the Mushroom database

Entity-relationship diagram of Bank database
An example of an entity-relationship diagram

Entity-relationship diagram of University database

A 4-block partition of S and an impure subset L

Graphical plot of execution time versus number of tuples

xiil

67

CHAPTER 1

Introduction

1.1 Data Mining

Data Mining (DM), also known as Knowledge Discovery in Databases (KDD), rep-
resents the process of discovering interesting and previously unknown information
from data. There is no restriction to the type of data that can be analyzed by data
mining. We can analyze data contained in a relational database, a data warehouse,
a web server log, or a simple text file. Data mining algorithms and technologies
are researched and implemented for any type of data worth analyzing. One of the
first applications of data mining consisted of the analysis of the transaction data
stored by supermarkets in view of improving the way products are arranged on

shelves [AIS93b]. Other applications of data mining consist of:

e the analysis of past credit behavior, for determining the eligibility of clients

for new credit;

e the analysis of user response to mail advertising, for eliminating the costs of

sending such ads to persons that do not respond;

e the analysis of user preferences, for providing users with recommendations

of other products or services;

e the analysis of web server logs, for determining user browsing patterns and

reorganizing the design of web sites to make their navigation easier;

e the building of applications for automatic analysis and classification of images

gathered by space probes.

The interest in data mining comes from the fact that the information obtained
through this process can provide critical support for decision making and, in gen-
eral, can help in making sense of large amounts of data. With the current availabil-
ity of massive data storage solutions, many organizations have collected gigabytes,
and in some cases terrabytes of data, which are impossible to analyze without the
help of proper techniques. It has become increasingly apparent that, while data
are readily available, there is a lack of techniques and tools that can “mine” and
retrieve the interesting information. The difficulties related to this task are not
only technical, but also of a philosophical nature, because they require definitions
for concepts such as information and interestingness of information. In the past
ten years, data mining has grown from being a rather exotic topic to being an
important research subject in the database community, with several international

conferences (KDD, PKDD, PAKDD, EGC) being exclusively dedicated to it.

Data mining is an interdisciplinary field, as it requires knowledge of Databases,
Machine Learning, and Statistics. Data mining has set itself apart from machine
learning and statistics by providing results that are easy to interpret and by al-
lowing the processing of large volumes of data. This has resulted both in a review
of the techniques developed for machine learning and statistics — seeking to im-
prove their scalability and ease of use — and in an introduction of new techniques,

algorithms, and even problems.

In general, the process of data mining consists of the following stages:

1. selection of data to analyze — the stage in which we determine what data

should be analyzed;
2. extraction of data — the stage in which we isolate the selected data;

3. cleaning of data — the stage in which we deal with data errors and/or omis-

sions;

4. conversion of data — the stage in which we convert the data to a format

suitable for the next stage;

5. mining of information — the stage in which we execute a data mining algo-

rithm;

6. information visualization — the stage in which the results of the data min-
ing algorithm are processed and presented in a form that allows their easy

interpretation.

Stages 2-4 are also commonly known as data preprocessing. Some of these stages
are usually performed several times by varying some parameters or strategies. The

focus of this thesis is on data mining algorithms that can be applied in stage 5.

In [AIS93a], the authors have set apart three types of data mining problems
as being characteristic for the field: classification, discovery of associations, and
discovery of sequences. We briefly present these problems in the next subsections,
after which, in Sections 1.2 and 1.3, we introduce the problems that will be analyzed

in this thesis.

1.1.1 Classification

In the classification problem we are looking for a set of rules that can be used to
partition the data into disjoint sets. For example, in the case of a mail advertising
company, we are interested in determining rules that can allow us to decide whether
a person on the mailing list is likely to respond to the ad or not. Or, in the case
of credit approval, we are interested in rules that allow us to determine the credit

eligibility of customers.

To determine the classification rules we use previously classified data. If this
is not available, we can use the services of a domain expert for classifying a subset
of the data. This already classified data is called training set and is analyzed to
determine the profile of each class, and to extract the rules that allow us to classify

an instance of the data.

An instance of the classification problem has been studied in machine learning
under the name of decision tree learning ([Qui93], [Mit97]). This name is due to
the method of representing the classification rules in the form of a decision tree.
A decision tree is a tree in which the leaves of the tree are labeled with a class,
each internal node is labeled with an attribute, and each branch is labeled with
an attribute value. To classify an instance of data, we start at the root of the
decision tree. We descend recursively through the tree by analyzing the attribute
that labels the current node and following the branch labeled with the attribute
value for our instance. The classification of the instance data is determined upon

reaching a leaf node, by reading its label.

1.1.2 Associations

This problem has been introduced by Agrawal, Imielinski, and Swami in [AIS93a]
and [AIS93b|, and is one of the problems that we analyze in this thesis. The
associations, or association rules, were initially introduced in the context of ana-
lyzing supermarket transactions for discovering the buying patterns of customers.
A supermarket transaction consists of a list of items purchased by a customer, and
the supermarket database consists of a list of such transactions. An association
rule has the form X — Y, where X and Y represent sets of items and are called
antecedent and consequent, respectively. Such a rule indicates that customers
who have bought the items in X tend to also purchase the items in Y. To assess
the importance and interestingness of the association, two measures are used. The
support of the rule indicates the number of transactions that confirm the rule —
the number of transactions in which both X and Y are present. The confidence
of the rule represents the ratio between the number of transactions that contain
X UY and the number of transactions that contain X. As an example, consider
the rule cheese — tomatoes with support 30% and confidence 40%. The rule indi-
cates that 30 percent of the supermarket transactions involve the buying of cheese
and tomatoes, and that 40 percent of the transactions that involve the buying of
cheese also involve the buying of tomatoes. The association rules problem consists
of discovering all association rules with support and confidence larger than some
user specified thresholds. The association rules problem is presented in detail in

Section 1.2.

An important thing to note is that not all association rules actually indicate
a causal relationship between their antecedent and consequent. The confidence

of a rule X — Y gives us only the estimated conditional probability P(Y|X).

To determine the degree of correlation between X and Y, we need to use other

measures than the confidence (see [BA99] for a discussion of other measures).

1.1.3 Sequences

If we add the time factor to the associations problem, then we obtain the problem
of discovering sequences. In this problem, data has an attached timestamp, as
in stock market data. The rules that involve time are now called sequences. An
example of such a sequence is: when the stock of company A goes up and does not
fall for one week, the stock of company B will also go up at the end of the week.
This problem has been analyzed in [AS95b], [AS95c¢|, and [AS96D].

1.2 Association rules

The association rules' problem has been introduced in [AIS93b] in the context
of analyzing supermarket data. We begin our discussion of this problem with an

analysis of possible organizations of data.

1.2.1 Database considerations

The supermarket data analyzed in [AIS93b] has a simple formal model. Let Z =
{i1,...,i,} be a set whose elements are called items and let T = {t1,... ,t,}
be a multiset whose elements are called transactions, where each transaction ¢;
represents a subset of Z. The multiset 7 can be stored in a special table with
binary attributes Z and an additional transaction identifier attribute ¢id. Such a

table is called a binary table or binary database.

!Because the term association rule is a central concept in our thesis, we will sometime use the
acronym AR to refer to it.

Table 1.1 shows the contents of a binary table for Z = {iy,1s,i3} and T =

{{ir}, {ia}, {41, 42, 03}, {31, 12,93}, {41, 92} }-

tid | i | do | i3
1]1]0]0
211010
31111
41111
51110

Table 1.1: An example of a binary table

In a binary table, the presence of an item in a transaction is indicated by a
value of 1 for the attribute corresponding to the item, and its absence is indicated
by a 0. Thus, the cardinality of the domain of the attributes corresponding to
items is two. In most tables used in practice it is infrequent to have only binary
attributes. Attributes that take values in a limited domain are called nominal or
categorical attributes, and attributes whose domain is large are called numerical
attributes. In the case of a nominal attribute, we will extend the use of the
term item to designate a particular attribute—value pair (A, a), denoting A =
a (e.g. color=red). Numerical attributes are handled by transforming them to
nominal attributes through the process of dividing their domain into intervals
and assigning identifiers to these intervals. For example, for an attribute age
we could assign the identifier teenager for the age interval 10-19, resulting in item
age=teenager. This transformation of numerical attributes into nominal attributes

is called discretization.

Contemplating Table 1.1, we can also consider the problem of data density.

Intuitively, we consider one binary database to be denser than another when its

attributes take the value 1 more often. We say that a database is sparse when
its rows contain a relatively small number of 1’s, otherwise we call the database
dense. These notions are informal, however, as there is no formal measure for

quantifying the density of a database.

In the case of mining association rules, for reasons of simplicity, we will usually
assume that databases are binary. All algorithms that work on binary databases,
however, can easily be modified to work in the case of non binary databases whose

numerical attributes have been discretized.

1.2.2 Problem definition

We begin by defining the central concepts of the AR mining problem. For his-
torical reasons, the terminology that was introduced in [AIS93b] in the context of
analyzing supermarket data has been kept intact in all successive papers published

on this subject, even when the papers discussed different applications.

Definition 1.1 Let T = {iy,...,i,} be a set whose elements are called items
and let T = {t1,... ,tm} be a multiset whose elements are called transactions,
where each transaction t; C I. A subset of T is called an itemset. An itemset of
cardinality k is called a k-itemset. The support of an itemset I is denoted by

supp(I) and defined as:

teT|tD1
SUPP(I):I{ |TI‘_ 3

We define supp(f) = 1.

An assoctation rule is an implication of the form A — C', where A and C
are two disjoint itemsets called antecedent and consequent, respectively. We

refer to the antecedent and consequent of a rule r by using the notations antc(r)

and cons(r). We refer to the items of rule r by items(r) = antc(r) U cons(r). The

support of an association rule r is defined as:

supp(r) = supp(items(r)).

The confidence of an association rule r is defined as:

supp(items(r)) .
supp(antc(r))

conf(r) =

Note that the support of an itemset or rule, and the confidence of a rule, take
values in the interval [0, 1]. To simplify the notation, we will use 73973 to denote the
itemset {i1,49,43}. In most algorithms, itemsets are actually implemented as lists
where the items appear in lexicographic order, which allows them to be processed

easily and efficiently.

It is important to keep in mind that an itemset stands for a conjunction of

clauses that require the presence of all of its items in a transaction.

Based on Definition 1.1, the association rules mining problem is defined as
follows: given user specified minimum support and minimum confidence thresholds,
denoted as minsupp and minconf, discover all association rules from 7 having

support and confidence greater or equal to minsupp and minconf, respectively.

In the context of this problem, one more definition is necessary.

Definition 1.2 Let minsupp be a support threshold. An itemset having support
greater or equal to minsupp is said to be frequent. A frequent itemset that is

mazimal with respect to set inclusion is called large?. 0

2Some papers also use the term large to refer to frequent itemsets. We consider the term large
to be more appropriate in designating a mazimal frequent itemset.

In [AIS93b], the AR problem was divided into two subproblems:

1. finding all frequent itemsets

2. generating all association rules starting from the frequent itemsets found

Finding all frequent itemsets is the more computationally intensive of the two
subproblems, and research efforts have focused on finding more efficient algorithms.
Some methods search for only a subset of all frequent itemsets that has the property
of summarizing or of allowing to infer the information on all frequent itemsets. For
example, this subset can represent the set of large itemsets [Bay98] or the set of

closed?® itemsets [PBT99b].

The rule generation stage is usually much more efficient than the first stage, but
has the drawback of possibly producing a very large number of rules, more than a
human analyst could handle. It is not unusual to obtain tens of thousands of rules.
To address this problem, researchers have focused either on defining measures for
the interestingness or degree of surprise of a rule, or on determining subsets of
rules from which all other rules can be inferred using a set of inference rules. Our

contribution following the latter approach is presented in Chapter 3.

Note that both these stages have exponential complexity in their worst case
scenarios. In the case of finding the frequent itemsets, the complexity is in terms
of the number of items. Indeed, given n items, we can form 2" itemsets, all of which
could be frequent. In the case of generating the association rules, the complexity
is determined by the number of frequent itemsets and by their size, because for
an m-itemset we can generate 2™ — 2 association rules. This value was obtained

by considering the number of possible antecedents of a rule and by excluding the

3 A closed itemset I has the property that no item in Z—I appears in all transactions containing
I. The concept of closed itemset is discussed in Chapter 2

10

case of the empty set and that of the maximal set, which would imply an empty
antecedent and, respectively, an empty consequent. Although both subproblems
have exponential complexity, in practice the first one is more costly because for
the computation of the support of an itemset we need to access the transactions

of 7 and verify the inclusion of the itemset in each transaction.

1.2.2.1 Mining frequent itemsets

i1inis

iy | | s | [s

i | i | | i3

Figure 1.1: Lattice of itemsets for Z = {iy, 9,43}

For a given set Z, the potential frequent itemsets form a lattice, which we call
the lattice of itemsets. Figure 1.1 illustrates such a lattice of itemsets in the case
when Z = {iy,4s,73}. To discover frequent itemsets, algorithms have to explore
this lattice. Based on how the traversal is made, algorithms for mining frequent

itemsets can be classified as:

11

1. breadth-first algorithms, which explore the lattice level by level.

2. depth-first algorithms, which explore the lattice by moving from a node to
a next level node if possible, or otherwise to the next node at the current

level.

Based on the point from which they start the lattice traversal, algorithms can also

be categorized as:

1. bottom-up algorithms, which start their traversal at the bottom of the

lattice.

2. top-down algorithms, which start their traversal at the top of the lattice.

A trivial algorithm for mining frequent itemsets would just compute the support
of all itemsets from the lattice. The performance of this algorithm would then be
O(21%1). Practical algorithms attempt to minimize the number of nodes examined in
their traversal of the lattice of itemsets. Ideally, an algorithm would only examine
those itemsets that are actually frequent, so as to compute their support. Because
it is impossible to know in advance which itemsets are frequent, algorithms will
use various techniques to minimize the number of itemsets that they examine, and

to ensure that no frequent itemsets are overlooked.

1.2.2.2 Mining association rules

After the frequent itemsets are computed, we have to generate the association
rules. A very simple algorithm could work as follows: for each frequent itemset I,
and for each of its non-empty subsets I,, we generate the rule I, — I — I, if its

confidence is equal to or greater than minconf. This algorithm would generate all

12

possible association rules and an improved version of it is presented in the following

section.

1.2.3 The Aprior: algorithm

In [AS94b], Agrawal and Srikant introduced the classic algorithm Apriori. The
technical report version of this paper (see [AS94a]) contains more detailed informa-
tion about the algorithm implementation. The algorithm has also been presented

in [AMS96]. In this section we describe Apriori and the ideas behind it.

Apriori mines the frequent itemsets in a bottom-up, breadth-first fashion, and
its pseudocode is given by Algorithm 1.1. The algorithm works iteratively. At
iteration k, Apriori starts with a collection of possible k-frequent itemsets called
candidate itemsets, scans the data to determine which candidates are frequent,
and then generates candidates for the next iteration by applying the procedure
apriori-gen to the set of frequent k-itemsets. The algorithm starts initially with a

collection of candidate itemsets consisting of all 1-itemsets.

Algorithm 1.1 (Apriori)
Input: the transactions T containing items I, and minsupp.
Output: the list of frequent itemsets.

Uses: list of candidates C, list of frequent itemsets F, list of frequent k-itemsets

K.

1 Initialize C to all 1-itemsets.

2 Scan T and count the number of occurrences for each candidate itemset.

13

3 Set the support of each candidate itemset to the ratio of its number of occur-
rences and |T|. Discard the candidates that have support less than minsupp

and copy the frequent candidates to F and K. Clear C.
4 If this is step |Z|, then go to step 7.

5 Add to C the itemsets generated by the procedure apriori-gen when applied to
K. Clear K.

6 If C s not empty, then go to step 2.

7 Return F.

To minimize the effort needed to determine which candidates are frequent, the
candidate itemsets are stored in a special structure called hash-tree. During the
scan of the data, when examining each transaction, instead of verifying for each
candidate whether it is contained in that transaction, we use the hash-tree to

perform this test for only a subset of all candidates.

The hash-tree is a special tree containing two types of nodes: hash-nodes that
are used for the interior nodes, and list-nodes that are used for the leaf nodes. A
hash-node consists of a hashtable of (item, node) pairs. A list-node consists of a
list of itemsets. An empty hash-tree consists of one empty list-node. When we
add itemsets? to the hash-tree, we start from the root and descend through the
tree until we reach a list-node. At level k£ (assume that the root’s level is 1), we
examine the type of the current node. If we have a hash-node, we retrieve the

hash entry corresponding to the k-th item of our itemset. If there is no such entry,

4An itemset is implemented as a list in which the items appear in lexicographic order.

14

we make one by creating a new list-node and adding entry (k-th item, list-node)
to the hash-node, otherwise we just descend one level to the node retrieved from
the entry. If we have a list-node which is not full, then we add the itemset to this
node, otherwise we replace the list-node with a hash-node and add all the itemsets

of the list-node, and our itemset, to this new hash-node.

Once the hash-tree has been filled with a set of candidate itemsets, we can use it
to retrieve those itemsets that could be included in a transaction ¢t = {i,... ,i;,}-
For this, we descend from the root of the hash-tree until we reach a number of
list-nodes. The itemsets contained in these list-nodes are potentially included in ¢.
For the descent, to insure that we retrieve all possible subsets of ¢, we perform the
following procedure: at level 1, we hash on all possible items i, € ¢t for k =1...m,
then at each next level, if we got there by hashing on i;, we will continue to hash
on all items 7 € t with £ > j. This method traces the paths that we would have
followed during the addition to the hash-tree of all subsets of ¢, which guarantees

that we will not miss any such subset.

The apriori-gen procedure uses a couple of techniques to minimize the number
of non-frequent candidates generated. The design of the Aprior: algorithm is based

on several observations resulting from the following property:
Theorem 1.1 Let I} C I, be two itemsets. Then we have supp(I) > supp(ls).

Proof. All transactions containing I, also contain I; and there may exist trans-

actions that contain I; but do not contain I, hence supp(l;) > supp(l). |

Theorem 1.1 can also be rephrased in the following way: if an itemset is fre-
quent, then all of its subsets must be frequent, and if an itemset is infrequent, then
all of its supersets must also be infrequent. This means that if, for example, we

have a frequent itemset I = #1i5...1, then all of its subsets are frequent and, in

15

particular, subsets 4125 . ..7x_2%x_1 and 2145 . ..7x_o1 are frequent and they are also
successive (k — 1)-itemsets (according to the lexicographic order), because they
have the same first £ — 2 items. To limit the number of candidates generated,
apriori-gen uses this property by only generating a new candidate from frequent
k-itemsets that have the same first £ — 2 items. This method is also efficient be-
cause, if we keep the itemsets in lexicographic order, which only requires careful
planning of the algorithm, then we need to verify only a small number of pairs of

itemsets.

To further limit the creation of non-frequent candidate itemsets, the apriori-
gen method verifies for each of the candidate k-itemsets generated, whether all of
their subsets of cardinality £ — 1 are frequent. Candidates that fail this test are
discarded.

Through these two techniques, the apriori-gen procedure ensures that we con-
sider only candidate itemsets that do not contradict the current knowledge that
we have about the frequent itemsets (the a priori knowledge). The pseudocode of

the apriori-gen procedure is given in Algorithm 1.2.

Algorithm 1.2 (apriori-gen)
Input: the list of frequent k-itemsets F.
Output: the list of candidate (k + 1)-itemsets.

Uses: the list of candidate (k + 1)-itemsets C.

1 Scan F and for each two itemsets I, I that have the same first k — 2 items

do:

1.1 Generate candidate I, = I U I5.

16

1.2 If all subsets of I. having cardinality k can be found in F, then add I.
to C.

2 Return C.

To illustrate the steps of the Apriori algorithm we use the binary database
presented in Table 1.2 that has 5 items, Z = {A, B, C, D, E'}. We will refer to this

database in future examples by using the name D.

tid| A|B|C|D|E

2101011170
3|1 (1701110
4 10]0]0 |11
5 1701010

Table 1.2: The binary database D

Figure 1.2 shows how Aprior: discovers the frequent itemsets in table D when

the minimum support value is set as % After each iteration k, the procedure
apriori-gen generates the candidate (k+1)-itemsets out of the frequent k-itemsets.
Apriori performs three database scans to compute all frequent itemsets. After the
third pass over the database, the procedure apriori-gen cannot generate any new
candidates (because there is only one frequent itemset: ABCD), so the algorithm

stops.

On data with characteristics similar to supermarket data, that is, when the

number of items appearing in a transaction is small, the Aprior: algorithm runs

17

Candidate Candidates Frequent
k-itemsets k-itemsets k-itemsets

with support

Iteration 1:

Itemset Itemset Support
Itemset Support
A A 3/5 infrequent
data A 3/5
B B 2/5 itemsets
scan B 2/5
C C 1/5 discarded
—_— D 5/5
D D 5/5 -
E 2/5
E E 2/5
Iteration 2:
Itemset Itemset Support
AB AB 2/5 Itemset Support
infrequent
AD data AD 3/5 i AB 2/5
itemsets
AE scan AE 1/5 AD 3/5
discarded
BD — BD 2/5 BD 2/5
—
BE BE 1/5 DE 2/5
DE DE 2/5
Iteration 3:
infrequent
data
Itemset Itemset Support itemsets Itemset Support
scan
ABD ABD 2/5 discarded ABD 2/5
—_—
—

Figure 1.2: Execution of Apriori on table D for minsupp = 2/5

efficiently. On data containing longer transactions, however, as in the case of census
data, Apriori performs less well [Bay98] because of the necessity of performing a
number of database passes equal to the size of the largest frequent itemset. In
Chapter 2 we introduce an algorithm that reduces by half the number of passes

necessary to discover the frequent itemsets.

The generation of association rules from the frequent itemsets is performed by
algorithm Apriori using the procedure ap-genrules. The procedure ap-genrules
improves on the simple procedure mentioned in Section 1.2.2.2 by making careful

use of Theorem 1.1. Consider that we have the frequent itemset I and that we check

18

whether the rule that uses I, C I as an antecedent has minimum confidence. The

supp()
Supp(.)”

then for all I C 1,, the rules I, — I — I! will also lack minimum confidence

confidence of this rule is If the rule does not have minimum confidence,
because supp(I’) > supp(l,). We can build on this observation by remarking that
we can also say that if I is an itemset and the rule I — I, — I. with I. C I has
minimum confidence, then all rules of the form I — I, — I with I’ C I. will also
have minimum confidence. This happens because we have I — I, C I — I/, so
supp(/ — 1.) > supp(I — I!) and we get:

supp(/) _ supp(/)
supp(f —I.) ~ supp({ — 1)

Based on this observation, ap-genrules works in Apriori-like fashion by starting

conf(I - I = 1I!) = =conf(l — I, — I.).

with the set of all 1-itemset possible consequents and then by generating new
candidate consequents using the procedure apriori-gen. Algorithm 1.3 presents
the pseudocode of ap-genrules.
Algorithm 1.3 (ap-genrules)

Input: itemset I and set of candidate k-itemset consequents IC

Output: the list of rules involving the items of I and having the size of the

consequent larger than or equal to k

Uses: list of association rules R, list of candidate (k + 1)-itemset consequents

1 If |I| <k, then return R.

2 For each itemset I. from K, if confI —I. — I.) > minconf, then add I —1I. —

I. to R, else remove I, from K.

3 Add to C the itemsets generated by the procedure apriori-gen when applied to
K.

19

4 Recursively call ap-genrules for parameters I and C and add the returned

rules to R.

5 Return R.

The pseudocode of the algorithm that uses ap-genrules to generate all associ-

ation rules is shown by Algorithm 1.4°.

Algorithm 1.4 (generation of all association rules)
Input: set of frequent itemsets F
Output: the list of all association rules

Uses: list of rules R, list of candidate 1-itemset consequents C

1 For each frequent itemset I from F, do:

1.1 Fill C with all 1-itemsets included in 1.

1.2 Call ap-genrules for parameters I and C and add the returned rules to

R.

2 Return R.

The procedure ap-genrules is efficient. The only drawback existing with this
part of the algorithm is the possible generation of too many rules, which is not in

fact the algorithm’s fault. The problem is that the confidence of a rule is not a

5The rule generation algorithm presented in [AS94a] is incomplete because it does not generate
the rules with consequents of size 1. The algorithms that we present here — Algorithm 1.3 and
Algorithm 1.4 — correct this problem.

20

very good measure of the rule’s value, which leads to the difficulty of finding the
interesting rules among the many others that are of little interest. For example,
if we consider the database D, item D appears in ever transaction, so every rule
that has D as a consequent will have minimum confidence, and in fact will have
confidence 1! We will discuss this topic in more detail in Chapter 3, where we will
present an algorithm for extracting a subset of all association rules, called cover,
from which all association rules can be inferred by knowing the support of the

frequent itemsets.

1.2.4 Extensions of the association rules problem

The problem of mining association rules can be extended in several ways. One
extension regards the generation of rules that include negations. Such rules would
take into account not only the presence of an item in a transaction, but also its
absence. Taxonomies, introduced in [AS95a], can be regarded as a way of trans-
forming association rules from implication rules involving conjunctions of predi-
cates to implication rules that involve conjunctions of disjunctions of predicates.
Such rules could express a larger range of knowledge than simple associations can.
Quantitative rules were introduced in [AS96a] by considering not only whether an

item has been bought, but also in what quantity it has been bought.

1.3 Functional and purity dependencies

Association rules involve items, which in the case of non-binary databases represent
attribute—value pairs, as shown in Section 1.2.1. On the other hand, functional
dependencies represent exact implication rules involving attributes. Given three

attributes X, Y, and Z , the functional dependency XY — Z tells us that the

21

values of attributes X and Y determine the value of attribute Z. For example, in a
database of US customer addresses, we have the functional dependency zipcode —
state because the state can be inferred from the zipcode. Functional dependencies
are a central topic in the theory of relational databases [ST95]|. The following rules
permit the inference of functional dependencies and are known as Armstrong’s

rules.

Definition 1.3 Armstrong inference rules
Let U, V, W be sets of attributes. Then we have the rules of inference:

VCU
U—-V
U—->V
*TwSvw
. U=V, VW

U—->W

(Inclusion)

(Augmentation)

(Transitivity)

Functional dependencies represent exact implications, but it is also interest-
ing to find and be able to quantify approximate dependencies. In Chapter 5 we
define such dependencies using the concept of generalized entropy and we name
them purity dependencies. We show that purity dependencies satisfy properties
similar to the Armstrong rules, so they can be regarded indeed as generalizations

of functional dependencies.

1.4 Thesis organization

In the next chapters we will present our contributions to the problems of mining

association rules and generalizing functional dependencies. Each chapter will begin

22

with a presentation of the problem and of current results, and then it will continue

with the presentation of our contribution.

In Chapter 2 we examine the problem of mining frequent itemsets in a single-
table database using the concept of Galois connections, and we introduce two
algorithms, among which Closure offers a performance improvement over Apriori.
We continue in Chapter 3 by addressing the problem of generating association
rules. We introduce a new rule of inference for association rules, and based on
it we define a cover for the set of association rules. We present algorithm Cov-
erRules for computing such a cover, and our experimental results show that the
size of the cover is usually one or more orders of magnitude smaller than the total
number of association rules, and that covers can be computed efficiently with little
or no overhead compared to the classic Apriori method. The problem of mining
association rules in a multiple-table database is addressed in Chapter 4, where we
present two algorithms for mining association rules from a database organized in a
star schema. We conclude that chapter with a discussion of the inherent difficulty
of mining complex database schemas. In Chapter 5 we present the concept of pu-
rity dependency, which is defined using the notion of generalized entropy. Purity
dependencies can be regarded as generalized or approximate functional dependen-
cies, and they satisfy properties similar to the Armstrong rules [ST95] that are
satisfied by functional dependencies. The final chapter concludes our thesis with

an overview of our results and suggestions for possible future research directions.

23

CHAPTER 2

Mining frequent itemsets in single-table

databases

The introduction of the association rules problem in [AIS93b] and [AS94b] has
stimulated research for new solutions. The Apriori algorithm had been designed
primarily for the mining of association rules from sparse databases, which, for the
purpose of our discussion, we define as being databases where the number and size
of the large itemsets is relatively small. [Bay98| pointed out that Apriori does
not perform well on databases that are dense, as is the case for census data. In
[BMU97], the authors mentioned that when they applied their algorithm (DIC —
an optimization of Apriori that we will discuss later) to census data, mining was
feasible only for high values of minsupp, even after the authors removed the items
that appeared in more than 80% of the transactions. Apriori does not handle dense
databases well; this happens because, when the size of the largest frequent itemset
is N, Apriori will require N passes over the data to discover that itemset. For dense
databases, this N can be relatively large, leading to increased 1/O costs and thus,
to a degradation of Apriori’s performance. A large value of N also implies a large
number of frequent itemsets, because all 2V subsets of a frequent N-itemset are
frequent too. Any algorithm would have to deal with this exponential complexity,
but Aprior: will also have to deal with a further complexity increase due to the

generation of non frequent candidate itemsets. To deal with these problems, a

24

significant number of methods have been proposed. We briefly discuss some of the

most important results.

The Partition algorithm has been introduced in [SON95] and its improvement
consists of requiring only 2 passes over the data. To achieve this, the Partition
algorithm partitions the database horizontally into blocks that can be loaded into
main memory. In the first pass over the database, the algorithm loads each block
in memory, where it is mined using an Apriori-like method, resulting in a number
of itemsets that are locally frequent in that block. After this step, Partition has
gathered a collection of itemsets that are frequent in at least one block. The
support of these itemsets with respect to the entire database is computed in a
second scan, which discovers all frequent itemsets. Partition makes use of the
simple observation that an itemset that is frequent must be frequent in at least
one block. The drawback of Partition is that for large databases, the number of
frequent itemsets obtained from each block may be large and the locally frequent
itemsets may not have significant overlap. This can lead to problems in both
storing all locally frequent itemsets and in computing their support during the
second scan of the data. Experimental results show that Partition performs better
than Apriori for small values of minsupp, but that Apriori could still outperform

Partition for larger values of minsupp.

[Mue95] investigated sequential and parallel variants of Apriori that used a
prefix tree structure instead of the hash-tree mentioned in [AS95a]. In [GKM97],
the AR problem is analyzed in relation to the hypergraph transversal problem,
and upper bounds on the complexity of two algorithms are provided. The idea of
using a vertical organization of the data, and algorithms that perform a bottom-up
or top-down search in the lattice of itemsets, were investigated in [ZP0O97a] and

[ZPO9Tb].

25

The DIC (Dynamic Itemset Counting) algorithm was analyzed in [BMU97].
DIC also tries to reduce the required number of passes over the data. To this
purpose, DIC compresses into one database scan the actions that Apriori took
during different scans of the data. More explicitly, after each scan of M (minsupp -
|T| < M < |T|) rows of the database, DIC' examines the candidate itemsets to
see if any of them has been counted at least minsupp - | 7| times. If such itemsets
are found, DIC uses them to try to generate new candidate itemsets for which
to compute the support in parallel with the current candidates. This leads to a
reduction in the number of scans necessary, because the algorithm starts counting
the support of new candidate itemsets as soon as possible, that is, after each
block of M rows are scanned, whereas Apriori starts counting the support of new
candidates only when it starts a new database scan. The choice of M depends
on the database characteristics and influences the performance of the algorithm.
The experimental results presented in [BMU97] showed that DIC performs indeed

faster than Apriori.

A theoretical analysis of the AR problem using the theory of formal concept
analysis is presented in [Z098]. [Bay98] deals with the problem of mining dense
databases by proposing algorithm Maz-Miner, which only searches for the large fre-
quent itemsets. The set of large frequent itemsets represents a concise description
of all frequent itemsets and is thus useful when the mining of all frequent itemsets
becomes unfeasible. Experiments showed that Maz-Miner runs faster than Aprior:
and can find the large itemsets for values of minsupp for which Apriori runs out of

memory [Bay98].

Independently of the research that we present in this chapter, and with dif-
ferent results, the application of Galois connections to the AR problem has been

investigated in [PBT99b] and [PBT99c], resulting in the introduction of two new

26

algorithms: A-Close and Close. These algorithms improve upon Apriori by search-
ing for a subset of the set of frequent itemsets represented by the set of frequent
closed! itemsets. For many databases, the number of frequent closed itemsets is
considerably smaller than the number of frequent itemsets. Thus, searching only
for closed itemsets usually allows A-Close and Close to perform fewer database

passes and to compute the support for a smaller number of itemsets.

The results that we present in this chapter were obtained in the fall of 1999
and published in [CCS00]. A number of other algorithms have appeared since
then, and we briefly mention them next. ChARM ([ZH99], [ZH02]) also uses the
concept of closed itemsets and claims improved performance over A-Close and
Close. FPgrowth [HPY00] uses two scans over the data to compress them in main
memory using a structure called an FP-tree. FPgrowth then recursively mines this
structure without having to generate candidate itemsets. Both Tree Projection
([AAPO00], [AAPO1]) and Partial-Support Tree ([GCLOO0], [CGLO1]) make use of

prefix tree structures to compute the support of itemsets using different methods.

2.1 Galois connections

Galois connections are algebraic constructions that play an important role in lattice
theory (see [Bir73] and [GHK80]), in universal algebras, and in computer science.
We demonstrate their usefulness as an algebraic and conceptual tool in the analysis
of the properties of itemsets. We begin by defining the concepts that we will work

with in the remainder of the chapter.

!The concept of a closed itemset will be defined later in this chapter.

27

Definition 2.1 Let (P, <) and (Q,<) be two partially ordered sets. A Galois
connection between P and Q) is a pair of mappings (Y, V) such that ® : P — Q,
U:Q — P and:

z < 2’ implies ®(x) > ®(z'),
y <y implies ¥(y) > V(y'),

< U(P(z)) and y < ®(T(y)),

forxz, ' € P and y,y' € Q. a

It is easy to verify (see [Bir73]) that ®(¥(®(x))) = ®(x) and ¥(P(¥(y))) =
U(y) for x € P and y € Q.

Definition 2.2 Let (P, <) be a complete lattice, that is, a poset such that for any
K C P there exist both sup K and inf K. A closure is a mapping cl : P — P

such that the following conditions are satisfied:

1. z < clz),
2. c(z) = cl(cl(x)) and

3. if xr <&, then cl(z) < cl(z'),

for all x,z' € P. An element x € P is cl-closed if cl(x) = x. The set of cl-closed

elements will be denoted by C . 0

For any Galois connection ¢ = (®, ¥) between the complete lattices (P, <) and
(Q, <), the mapping cl. = ¥® is a closure on P, and the mapping cl. = ®V is a

closure on (). It is easy to see that, in this case, the mapping (. = @WC

Clc 1S a

bijection between Cclc and Cy.

28

A standard method for generating Galois connections is through the notion of

polarity.

Definition 2.3 Let X,Y be two sets and let R C X XY be a relation. Define the
mappings ® : P(X) — P(Y) and ¥ : P(Y) — P(X) by

OK)={y |yeY,(x,y) € R for allx € K},
for K C X and
V(H)={z | z € X,(z,y) € R forally € H},

for H CY. The pair ¢ = (®,V) introduced above is a Galois connection and is

usually referred to as the polarity on X and Y determined by the relation

R. a

The following basic properties hold for any polarity ¢ = (®, V), Ky, K1 C X,
and Ho, H1 g Y:

1. ®(KyUK;) = O(Ky) N ®(K;)
2. B(KoN K1) D B(K,) UD(K)

4. W(HyN Hy) D U(Hy) U T (H,)

We are now ready to define a set of measures and prove a number of interesting

properties about them?.

2The relevance of the next results to the topic of mining association rules will become apparent
if the sets X and Y are considered to be the set of items Z and the set of transactions T,
respectively. The results that we prove here apply to any polarity, so we use the generic notation
X and Y instead of using the more specific context of Z and 7T .

29

Definition 2.4 Let ¢ = (®, V) be a polarity on the sets X and Y.

The semidistances generated by ¢ are the mappings d. : P(X) x P(X) —
N and d. : P(Y) x P(Y) — N defined by dc(Up,Uy) = |®(Uy) @ ®(Uy)| for
U, Uy € P(X), where @ is the symmetric difference operation, and d.(Vy, V1) =
[U(Vo) ® U(V3)| for Vo, V1 €Y.

The proximities generated by c are the mappings p. : P(X)xP(X) — N and
pl: P(Y)xP(Y) — N defined by pc(Uy, Uy) = |®(Up)N®(U1)| for Uy, Uy € P(X),
and p(Vo, V1) = [¥ (Vo) N ¥ ()| for Vo, V1 €Y

The weight functions generated by ¢ are the mappings we : P(X) — N
and wl. : P(Y) — N given by w(U) = |®(U)| and w (V) = [¥(V)| for every
UeP(X)andV € P(Y). 0

If the Galois connection c is clear from context, then the subscript ¢ may be

omitted. Also, if a set consists of only one element ¢/, we may write simply £ instead

of {¢}.

Proposition 2.1 Let ¢ be a polarity on the sets X and Y. We have

1. d(Uo, Uy UU;) + d(Ur, Uy UU;) = d(Uy, Uy),
2. p(Uy, Uy UUL) = pc(Uy, Uy U UL) = pe(Uo, Un),

3. dc(U(), C/C(U())) = 0,

for every Uy, U, € P(X).

30

Proof. The definition of d implies that

de(Uy,UgulUy) = [®(Up) & ®(Upg U)|
= |2(Uo) ® (2(Uy) N @(U1h))]
= [@(Uo) — @(Uy)]

d (U1, Upul;) = |@(Up) ® ®(UyUlh)]
= |@(Uh) @ (2(Uo) N ©(U7h))|
= [@(U1) — @(Uo)|,

which imply
de(Uo,Ur) = [2(Uo) ® (Uh)]

= |®(Up) — @(Uy)| + |@(Uy) — ®(Uh)|

= d(Uy,Ug U Uy) +de(Uy, Uy U UY).

For the second part of the proposition we note that

pc(U(),U()UUl) = |(I)(U0)H(P(UOUU1)‘
= [®(Uo) N (2(Uo) N @(U1))]
= [®(Uo) N @(Uh))|

= pC(UOa Ul)

for every Uy, U; € P(X). The proof of p.(U,Uy U U;) = pc(Uy,Uy) is entirely

similar.

Finally, note that dc(U(), Clc(Uo)) = |(I)(U0) @(I)(\I/((I)(Uo)))l = |@(Uo) EB(I)(U()”:
0. i

31

Proposition 2.2 The weight function w. generated by a polarity ¢ = (®,¥) on
X and'Y has the following properties:

1. max{wc(Up), we(U1)} < dc(Us, Ur) + pc(Us, Un),
2. pe(Uo, Ur) = we(Up U U1) < min{we(Up), we(Un)},
3. dc(Uo, Ur) + pe(Uo, Ur) < we(Uo N Uh),

4. we(Us) +we(Ur) = dc(Uo, Ur) + 2pc(Us, Un),

. wc(Uo) = wc(Clc(UO));

for every Uy, Uy € P(X).

Proof. These properties result immediately from Definition 2.4 and basic proper-

ties of set operations.

As an example, we give a proof for the third part of the proposition. Note that:

de(Uo, Ur) + pe(Uo, Ur) = |@(Up) & (U1)| + [@(Uy) N @(U1)]

Proposition 2.3 The prozimity function p. generated by a polarity ¢ = (P, ¥) on
X and'Y has the following properties:

1. p(U,U) = w(U)

2. pe(Uo, Ur) = pe(Ur, Uy)

32

3. pc(UO; Ul) = pc(CIc(UO)u CIC(UI))
4. pc(Uo, Us) > pc(Uy, Ur) + pe(Us, Uz) — we(Uh),
for every U, Uy, Uy, Us € P(X).

Proof. The first three properties result directly from Definition 2.4.

We only provide a proof for the fourth property. By rewriting the fourth

property from Proposition 2.2, we obtain:

wc(U()) -+ wc(Ul) — dc(Uo, U1)
2

pC(U07 Ul) ==

We can use this formula to rewrite the fourth property of Proposition 2.3 in terms

of d. and w:

’wc(Uo) + ’UJC(UQ) — dc(Uo, UQ) > ’wc(U(]) + ’UJC(U1) — dc(U(), Ul)
2 - 2
’lUc(Uo) + wc(Ul) - dc(Uo, Ul)
* 2

_wC(Ul)a

which, after canceling the w, terms, leads to:

dc(Uy, Us) < dc(Uyp, Uy) + de(Uy, Us),
which holds because d, is a semidistance and respects the triangle inequality. 1l
Proposition 2.4 Let Uy,U; C X and let ¢ be a polarity on the sets X and Y.

For every sets U', U" such that Uy C U" C cl(Uy) and U; C U" C cl.(U;) we have
d (U, U") = dc(cl(Uy), cl(Uy)).

Proof. Note that if Uy C U’ C cle(Uy), then &(Uy) D B(U") D (T (®(Ty))) =
®(Uy), so ®(U") = ®(U,). This implies de(U", V') = |B(U") & ®(V')| = |B(Th)
O (Uy)| = dc(Us, Vo).

m D

33

2.2 Frequent itemsets and closures of itemsets

Starting from the set of transactions 7 and the set of items Z, we define the
relation R C T xZ by R={(t,i) | t € T,i € Z,i € t}. The mappings of the
polarity determined by the relation R are denoted by tig : P(T) — P(Z) and
itg : P(Z) — P(T). If R is clear from context, the subscript will be omitted.

We redefine the notion of support based on the weight measure introduced in

Definition 2.4.

Definition 2.5 Let ¢ be a polarity on the set of transactions T and the set of
items Z. The support of an itemset I, I C T, is the value supp(I) = wc(I)/|T|.

An itemset I is e-frequent if supp.(I) > €, and is e-maximal if it is e-
frequent and there is no e-frequent set L such that I C L. An itemset I is closed

if I = clo(I). 0

The weight of an itemset [is given by
we(l)=ti[)|=1[teT | ietforalliecl.

In other words, the weight of the itemset I equals the number of transactions that

contain every item ¢ € I.

In view of Proposition 2.2, we have:

Theorem 2.5 If ¢ is a polarity on the set of transactions T and the set of items

Z, then for every two itemsets Iy, I, C I we have:

1. max{supp(Iy), supp.(I1)} < (dc(Ig, I) + pc(Io, I1))/|T|;

2. supp.(Io U I) < min{supp.(Io), supp.(I1)};

34

3. de(Io, It) + pc(lo, I) < supp(IoN 1) - |T|;
4. supp.(lo) + supp(I1) = (dc(lo, I1) + 2pc(1o, 1)) - | T1;
9. supp (Lo) = supp.(cle(lo));
6. Iy C I implies supp (1) < supp (o).
Proof. The arguments for the first five parts result immediately from Defini-

tion 2.5 and the corresponding parts of Proposition 2.2. The last part results from

part 2. |

Thus, if I; is an e-frequent set of items and Iy C I;, then I, is also e-frequent

(see also Theorem 1.1).

Corollary 2.6 For every sets of items I,J such that I C J C cl.(I), we have

supp (I) = supp (J).

Definition 2.6 Let ¢ be a polarity on the set of transactions T and the set of

items I, and let I C T be an itemset.

The family of (¢,¢)-extended closures of I relative to c is the collection

of sets

XCLE(I) = {cl(I) U J | |J|=£,JNcl(I) =0, and supp(I U J) > €}.

Note that

0 if supp(/) < e,
{cl(I)}, otherwise.

XCLY(I) =

35

Further,
XCLES(I) = {d(I)U{i} | i € Z, i & cl(I) and supp(I U {i}) > €}.

We refer to any member of XCL%(I) as an (¢, €)-extended closure. Unless stated
otherwise, we always work with (1, ¢)-extended closures; so, we will just refer to

them as extended closures.

To compute the family of extended closures for a set of itemsets K, we define
the K-matrix Mg. Every row of this matrix corresponds to an itemset from K.
We assume that the set of items is Z = {i;, ... ,i,} and that the itemsets of K are
arranged in lexicographical order. The columns of the matrix Mg correspond to
the items of Z. If [is an itemset from K and i, € T is some item, then Mg ([, i,),

the element located in the I row and p-th column, will have the value:
Mr(Iip) = p(L,{ip}) = {t € T | TU{5,} C¢}].

Note that the largest value among the entries of the I-line of the matrix Mg
will be found in the columns that correspond to the members of cl¢(/), as shown

by the following theorem.

Theorem 2.7 Let ¢ = (tig, itg) be the polarity associated to the relation R C
T x T and let I be a k-itemset. We have i € cl(I) if and only if My (I,i) =
maX{M{I}(I,j) ‘ J € I}.

Proof. Note that max{Mn(I,5) | j € I} = supp.(I). For any i € Z such that
My (1,4) = supp.(/) and ¢ ¢ Z we have to prove that ¢ € clc(/). This results
from the definition of the value My (/,%), which tells us that ¢ appears in all

transactions in which I appears, so i belongs to the closure of the itemset I. |

36

2.3 The Closure algorithm

The Closure® algorithm is a variation of the Apriori algorithm and performs fewer
database scans than Apriori. Closure is based on the observation that, if we
compute the matrix M¢, for the set of candidate k-itemsets Cj, then we can use
it to determine the frequent k£ + 1-itemsets, skipping the k£ + 1-st step of Apriori,
and moving directly to the generation of candidate k 4 2-itemsets. Thus, Closure
requires roughly % scans of the database, where N is the size of the largest frequent
itemset. Determining the frequent £ + 1-itemsets from M, is easy, because for
each candidate itemset, the matrix allows us to determine the weight of the itemset
and also how often each item appears in the transactions of 7 that contain the

itemset.

Figure 2.1 shows the execution of Closure on our sample database D, introduced
in Section 1.2.3. Note that M, is symmetric and that it allows us to determine the
support of all 1-itemsets and also the support for the 2-itemsets. Analyzing Mg,
results in the discovery of four frequent 2-itemsets, out of which, the procedure
apriori-gen can generate only one candidate. Examination of Mg, fails to discover
any frequent 4-itemset, so the algorithm terminates after two data scans, compared

to the three scans required by Apriori.

The pseudocode for Closure is given by Algorithm 2.1. The difference with
respect to the pseudocode of Apriori appears in step 2, which computes the matrix
Mc¢,, and in step 3, where the matrix is analyzed and the frequent £ + 1-itemsets
are determined. Step 3 performs the actions that required two separate database

scans in the Aprior: algorithm.

3The Closure algorithm that we present here is an improved version of the algorithm described
in [CCS00]. The current version of the algorithm is both simpler and more efficient than the orig-
inal and a public implementation is available in ARtool [Cri02]. ARtool is a free Java application
for mining association rules that is distributed under the GNU General Public License.

37

Candidate Mc¢o Frequent

k
k-itemsets k + l-itemsets

Iteration 1 (k = 1):

Itemset Itemset A B C D E
Itemset Support
A A 3 2 0 3 1 frequent
data AB 2/5
B B 2 2 0 2 1 k + 1l-itemsets
scan AD 3/5
C C 0 0 1 1 0 computed
— BD 2/5
D D 3 2 1 5 2 —
DE 2/5
E E 1 1 0 2 2
Iteration 2 (k = 3):
frequent
data
Itemset Itemset A B C D E k + l-itemsets
scan 0
ABD ABD 2 2 0 2 1 computed
—
—

Figure 2.1: Execution of Closure on table D for minsupp = 2/5

Algorithm 2.1 (Closure)
Input: the transactions T containing items I, and minsupp.
Output: the list of frequent itemsets.

Uses: list of candidates C, list of frequent itemsets F, list of frequent k-itemsets

1 Initialize C to all 1-itemsets.
2 Scan T and compute the matriz Me.

3 Set the support of each candidate itemset to the ratio of its number of occur-
rences and |T|. Discard the candidates that have support less than minsupp.
Copy all frequent k-itemsets to F. Determine all frequent k + 1-itemsets
using M¢ and copy them to F and K. Clear C.

4 If k+1=|Z|, then go to step 7.

38

5 Add to C the itemsets generated by the procedure apriori-gen when applied to
K. Clear K.

6 If C is not empty, then go to step 2.

7 Return F.

Closure represents an improvement over Apriori because, during step 3, it
directly generates the k + 1-itemsets without the cost of accessing the data or
computing the supports for any infrequent itemsets. The only drawback is that,
during step 2, the algorithm has to compute the matrix M¢, which also uses
additional space. The matrix M¢, uses space |Cy| - |Z|, but we could actually
reduce the space required by having columns only for the items that appear in the
itemsets of Cy. Overall, the advantages of Closure easily overcome the additional

costs of computing and storing the matrix M, .

2.4 The MaxClosure algorithm

The MazClosure algorithm uses the concept of extended closure to greedily “jump”
through the lattice of itemsets so that it can discover quickly the large itemsets.
As mentioned in [Bay98|, finding all frequent sets is an extremely expensive com-
putation for some databases, so it makes sense to have available a fast algorithm
that would discover only the large itemsets (which also tell us what the frequent
itemsets are) without finding the support for all frequent candidates. Based on
this knowledge, we could guide the mining process to make it efficient to extract

only the rules we are interested in.

39

MazxClosure is a specialization of the Closure algorithm. It uses the matrix M
for computing the extended closures of itemsets, and it makes use of the fact that
if at any point a frequent itemset has no extended closures, then that itemset is a

large itemset.

Theorem 2.8 If for a frequent itemset I we have XCLL(I) = 0, then cl.(I) is a

mazimal frequent itemset.

Proof. Suppose that cl.(I) is not a large itemset and that its family of extended
closures is empty. Then, there exists a frequent itemset G such that cl.(/) C G and
therefore, G — cl.(I) # (). Let i be an item such that i € G and i ¢ cl.(I). Because
G is frequent, it follows that 7 is frequent and appears with cl.(7) in a fraction of
transactions greater than e. Then, because 7 does not belong to the closure of I,

the family of extended closures of I is not empty and we have a contradiction. M

The pseudocode of MazClosure is shown in Algorithm 2.2.

Algorithm 2.2 (MaxzClosure)
Input: the transactions T containing items Z, and minsupp.
Output: the list of large itemsets.

Uses: list of candidates C, list of frequent itemsets F, list of large itemsets L.

1 Initialize C to all 1-itemsets.
2 Scan T and compute the matriz Me.

3 For each frequent itemset from C, compute its extended closures. If there are
no extended closures, set the support of the itemset to the ratio of its number
of occurrences and |T |, and add the candidate to L if it is not already in L;

otherunse add all extended closures to F if they are not already in F.

40

4 Clear C.
4* Eliminate all itemsets from F that are included in an itemset from L.
5 If F is not empty, then copy F into C, empty F, and go to step 2.

6 Return L.

We analyze the execution of MaxClosure on database D. Initially, we start
with the set of candidate itemsets C = {A, B,C, D, E}. The matrix M, for this
step is presented in Table 2.1. Using M, the closure of A is determined to be
AD, and its extended closure is ABD, with support % We add ABD to F, and
move to the next candidate. In the case of B, its closure is ABD, and there are no
extended closures, so we add ABD to L. C' is not frequent. For D, the closure is
D, and the extended closures are AD, BD, and DE, which we add to F. Finally,
for F the closure is DF, and there are no extended closures, so we add DFE to L.
At this point we have £ = {ABD, DE}, and F = {ABD, AD, BD, DE}. During

Step 4* all itemsets from F are removed and L is returned.

Itemset | A| B|C |D | E
A 3120131
B 21210121
C O[O0]1]11]0
D 31211 2
E 111,10] 212

Table 2.1: Matrix M for step 1 of MaxClosure

41

We justify the correctness of Step 4* of Algorithm 2.2. Suppose that during
some iteration of MazClosure we examine itemset I from C and determine that
one of its extended closures is I' = cl(I) U ¢, for some item i. We also find in £ a
large itemset I}, such that I' C I]. If I' is large, then it must be equal to I and we
can safely eliminate it, so from now on we can assume that I’ C I]. Note that the
large itemset I} must have been added to £ during this iteration of the algorithm,
otherwise I would have been eliminated during the precedent iteration. Let I; be
the itemset from whose examination we added 1] to £. We must have I} = cl (1)),
otherwise I; would not have been added to £ during this step. To summarize, we
have I' = cl(I) Ui C cle(I;) = I]. It is incorrect to remove I’ if one of its extended
closures would lead to some large itemset I, which cannot be obtained otherwise.
Because I' C I}, it results that cl.(I') C clc(I]) = I}, so I, must contain some item
j & I,. But then, cl.(I) Uj would also be an extended closure of I, so I, can be

discovered starting from it and we do not need I'.

In practice, the usefulness of Step 4* is limited because we rarely happen to
find the large itemsets in the first steps of the algorithm, as it happened during

the execution on D.

The MazClosure algorithm requires N scans of the database in the worst case,
where N is the size of the largest frequent itemset. The reason is that, in the worst
case, a candidate itemset can be extended with only one item during one scan of

the database, so it will take N scans of the database to generate an N-itemset.

2.5 Experimental results

We implemented in C++ the algorithms Apriori, Closure, and MaxClosure. We
used the hash-tree structure [AS94b] to efficiently test for itemset inclusions. The

42

data was generated using the IBM Quest synthetic data generator [AS94a] and
was stored in binary files. The implementation of algorithm MazClosure omitted
Step 4* because we noticed that it did not provide any improvement. On the
contrary, the execution of Step 4* seemed to slow down the algorithm for low

values of minsupp.

We started by generating two synthetic databases with characteristics sim-
ilar to the databases t5i2d100k* and t10i4d100k, as they were described in
[AS94a]. These databases have 1000 items, 100,000 transactions, and 2000 pat-
terns. t512d100k has an average of 5 items per transaction and 2 items per pattern,
and t10i4d100k has an average of 10 items per transaction and 4 items per pat-
tern. Both these databases are sparse and, as can be observed from Table 2.2,
Closure and MaxClosure clearly outperform Apriori. MaxClosure performs more
database scans and, because the number of frequent itemsets is small, the savings
obtained from the computation of the support cannot overcome the I/O costs.
Thus, MazClosure is a bit slower than Closure. As observed by other researchers
[Mue95], when working with files the bottleneck is in the CPU computations, not
in accessing the disk. The plots of these results are shown in Figure 2.2 and

Figure 2.3.

Notice that for t5i2d100k and minsupp € {1,1.5,2}, MazClosure performs

fewer database scans than Apriori.

For the next experiment, we generated three synthetic databases with 100
items, an average of 10 items per transaction, and 200 patterns with an aver-
age of 4 items per pattern. t10i4d50k has 50,000 rows, t10i4100k has 100,000,

and t10i4d1M has 1,000,000 rows. These databases are denser than the ones from

4We follow the database naming convention from [AS94b] which does not include information
about the number of items present in the database.

43

1000

800

600

Time

400

200

minsupp (%) | Large Time(seconds)/Data scans
itemsets | Apriori ‘ Closure ‘ MazClosure

t5i2d100k

0.25 438 790/6 1/3 3/6

0.33 405 671/4 | 1/2 2/4

0.5 327 390/4 1/2 2/4

0.75 231 45/3 1/2 1/3

1 165 15/2 1/1 1/1

1.5 83 3/2 1/1 1/1

2 32 1/2 1/1 1/1
t10i14d100k

0.25 1559 1055/8 10/4 22/8

0.33 999 1011/8 | 7/4 14/8

0.5 646 887/8 5/4 7/8

0.75 426 659/3 3/2 3/3

1 362 498/2 3/1 3/2

1.5 232 66/2 3/1 3/1

2 159 18/2 3/1 3/1

Table 2.2: Results for databases with 1000 items

t512d100k database results (1000 items)

7y N raYll|

.1
Apriori —e—

Closure - *[1--
MaxClosure - - {) -

L\
0.6 0.8

1

1.2

™
14

Minimum support

1.6 1.8

Figure 2.2: Results for t512d100k

44

S

t1014d100k database results (1000 items)
1200 | | | | |

Alpriori l—e—
Closure - [1--
1000 - MaxClosure - () -]|

800
Time 600
400

200

A v Vi
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Minimum support

Figure 2.3: Results for t1014d100k (1000 items)

the previous experiment. The results from Table 2.3 show that all algorithms scale
linearly with respect to the increase of the size of the data. The plots of the results
are shown in Figure 2.4, Figure 2.5, and Figure 2.6. We can notice that MazClo-
sure performs faster than Closure, even though it performs more database scans.
This happens because of the large number of frequent itemsets, and because Max-
Closure needs to compute the support for fewer itemsets than Closure. As minsupp
is increased and the number of frequent itemsets decreases, we can notice that the
time taken by MazClosure becomes comparable to the time required by Closure.
The difference between the performance of Closure and Aprior: is less visible in
the case of £t10i4d50k and t10i4d100k, but is more evident for t10i4d1M where

we can notice differences of up to 400 seconds.

MaxClosure usually performs the same number of steps as Apriori, with some
exceptions occurring in the experiment involving t512d100k. If we include Step 4%,

the performance of MazClosure degrades for lower values of minsupp. We conclude

45

minsupp (%) | Large Time(seconds)/Data scans
itemsets | Apriori ‘ Closure ‘ MazClosure
t10i4d50k
0.5 6410 213/9 | 205/5 | 54/9
0.7 3810 83/9 61/5 24/9
0.9 2603 30/8 31/4 16/8
1 2248 26/8 27/4 13/8
2 657 117 9/4 6/7
3 320 7/7 4/4 4/7
5 154 47 2/4 3/7
t1014d100k
0.5 6481 394/9 | 389/5 | 87/9
0.7 3798 170/9 | 134/5 | 45/9
0.9 2689 59/8 62/4 31/8
1 2243 51/8 54/4 26/8
2 651 21/7 18/4 12/7
3 318 14/7 8/4 9/7
5 155 9/7 4/4 6/7
t10i4d1M
0.5 6384 4178/9 | 3864/5 | 689/9
0.7 3828 1651/9 | 1212/5 | 414/9
0.9 2708 576/8 | 618/4 | 297/8
1 2197 510/8 | 527/4 | 255/8
2 647 217/7 | 180/4 | 128/7
3 316 148/7 | 91/4 96/7
5 147 98/7 42/4 60/7

Table 2.3: Results for databases with 100 items

46

t10i4d50k database results (100 items)

150
Time
100

S50

Apriori —e—
Closure - [+
MaxClosure - - {) - |

1.5 2 2.5 3 3.5 4 4.5 5
Minimum support

Figure 2.4: Results for t1014d50k

t10i4d100k database results (100 items)

Time

Apriori ——
Closure - -[1-- |
MaxClosure - () - |

Minimum support

Figure 2.5: Results for t10i4d100k (100 items)

47

t10i4d1M database results (100 items)
5000 | T | | I

Alpriori l—e—
Closure " *[1-]
MaxClosure -) -

Time

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Minimum support

Figure 2.6: Results for t10i4d1M

that, on synthetic data, Step 4* is better omitted from the implementation of

Algorithm 2.2.

From these and other experiments we have noticed that the performance of
Closure tends to get closer to that of Apriori when the database is denser. Maz-
Closure runs faster than both Apriori and Closure when the minsupp values are

low, and is thus indicated when executing these algorithms becomes unfeasible.

2.6 Conclusions

We introduced a formalization of the association rules problem based on the con-
cept of Galois connections. Based on some of the properties that we proved,
we introduced two new algorithms: Closure, for mining all frequent itemsets, and
MazClosure, for mining the large itemsets. Closure performs fewer database passes

than Apriori and generally outperforms Apriori, its performance approaching that

48

of Apriori when the data is denser. MazClosure usually performs as many database
passes as Apriori, but executes faster because it computes the support of a smaller
number of itemsets. When the value of minsupp decreases, MazClosure performs
better in comparison with Apriori and Closure. We also noticed that the I/O cost
of working with binary files has a restricted impact on the performance of the algo-
rithms, and thus the difference between the execution times of Apriori and Closure

is smaller than if they were run on databases with more costly access time.

49

CHAPTER 3

Mining association rules in single-table databases

The generation of association rules starting from the set of frequent itemsets can be
performed efficiently using the procedure ap-genrules, introduced in [AS94a]. The
only problem with this method is that, in practice, the number of association rules
generated can become too large and can easily overwhelm a human analyst. Several
methods have been proposed to address this problem. Measures of interestingness
can be used to assess the interestingness of a rule and thus generate only interesting
rules or prune non-interesting ones. Various such interestingness measures were
discussed in [BA99], [LHM99], and [JS01]; a survey of interestingness measures was
made in [HH99]. [SLR99] presented a set of pruning rules for removing semantically
redundant association rules. [PT98] and [PT00] introduced the concept of rules
that are unexpected with respect to prior beliefs and analyzed the generation of
such rules. [PBT99a|, [BPT00], and [Zak00] gave various definitions of the concept
of redundant rules. Out of these definitions, the one from [PBT99a] is of special
interest to us, because in that paper the redundancy of an association rule is
determined by whether or not that rule can be inferred from other association

rules through the use of inference rules.

Our work ([CS02]) continues the line of research from [PBT99a] by introducing
a new rule of inference for association rules and by defining the concept of a cover of

the association rules as a minimal set of rules that are non-redundant with respect

20

to this new inference rule. Our concept of cover is different from the rule cover
concept defined in [TKR95], which referred to the pruning of sets of association
rules with identical consequent and which was not related to the use of inference

rules.

We consider that the use of inference rules in the definition of redundant as-
sociation rules is an important approach because it offers a great potential for
minimizing the number of rules generated and also because it provides a general
mechanism for computer assisted exploration of the set of association rules. The
inference rule that we introduce in this chapter materializes such potential because

of its interesting properties and simplicity.

3.1 Rules of inference for association rules

In [PBT99a], association rules were divided into two categories which we define

below.

Definition 3.1 An association rule with confidence 1 is called an exact asso-
ciation rule. An association rule that is not exact is called an approximative

association rule. 0

An exact association is denoted by X = Y. Not all authors require the an-
tecedent and consequent of a rule to be disjoint, as mentioned in Definition 1.1, so
this requirement should be ignored in the case of results that we quote from other

papers.

Definition 3.2 An association rule is said to be valid [PBT99c], if its support

and confidence are greater or equal to minsupp and, respectively, minconf. g

o1

3.1.1 Inference rules and bases for association rules

An important issue in association rule mining is that many times the number of
association rules generated is overwhelming for the user of the mining system. One
solution for this problem consists of generating only the association rules that are
non-redundant in the sense that they cannot be inferred from other rules by using
certain rules of inference. A minimal set of such association rules was called basis
in [PBT99a]. To avoid confusion, we mention here that the single word rule will
only be used in the sense of an association rule and will never be used to denote

an inference rule.

Based on the results of [GD86] and [Lux91], Pasquier and colleagues [PBT99a]
introduced the Guigues-Duquenne basis for exact association rules and the
Luxenburger basis for approximative association rules, which together form a

basis for the valid association rules.

The Guigues-Duquenne basis is a minimal set of exact association rules from
which the complete set of exact association rules can be inferred using the following

two inference rules:

1. X=Y W=2ZFXW=YZ

2. X=3Y,Y=Z-X=2Z

The Guigues-Duquenne basis does not allow us to infer the support of the rules and
in fact, by ignoring the support values, the first inference rule can lead to associa-
tion rules that have inferior support compared to the rules used in its generation.
Note also that the rules of inference used here are similar to the Armstrong rules

of inference for functional dependencies [ST95]. It is easy to verify that the first

52

rule mentioned above is exchangeable for the Armstrong augmentation rule
X=YHXZ=YZ,

that is, given one of them we can infer the other.

In Chapter 5 we introduce the concept of purity dependency as a generaliza-
tion of the concept of functional dependency and prove that this new type of
dependency satisfies properties similar to the Armstrong rules. Given that the
Armstrong rules for functional dependencies transcribe well to exact association
rules, we might expect that the properties of the generalizations of functional de-
pendencies also hold for the approximative association rules. This is not the case,
however, because an augmented rule can fail to achieve both minimum support
and minimum confidence, and from the two transitivity properties that we prove
in Chapter 5, only one of them is holding in the case of association rules, as the

next theorem shows.

Theorem 3.1 Let X — Y and Y = Z be two valid association rules. Then

X — Z is a valid association rule.

Proof. We have supp(Y) = supp(Y Z), so supp(XY) = supp(XY Z) < supp(X72),

which implies that the rule X — Z has minimum support. The confidence of this

SUPP(XZ) - SUPpP(XY
SUpp(x) = supp(x)

our rule also has minimum confidence, so it is valid. |

rule is) based on the observation we made before. Therefore

The Luxenburger basis is a minimal set of approximative rules from which
the complete set of approximative rules can be deduced using the two properties

introduced in [Lux91]:

1. the association rule X — Y has the same support and confidence as the rule

c(X) = c(Y)

93

2. for any three closed itemsets X, Y, and Z, such that X C Y C Z, the
confidence of the rule X — Z is equal to the product of the confidences of

the rules X — Y and Y — Z, and its support is equal to the support of the
rule Y — 7

The first property indicates that we only need to generate association rules whose
antecedent and consequent are closed itemsets, and the second property allows us
to eliminate transitive rules between closed itemsets (see also [Zak00]). Both these
properties can be regarded as new inference rules and they permit the inference of

both the support and confidence of the resulting rules.

Together, the Guigues-Duquenne basis and the Luxenburger basis, provide a
minimal basis for association rules, which we will denote as the GD-L basis.
Starting from this basis, however, it is possible to infer rules that are not valid, as

was noticed in the presentation of the Guigues-Duquenne basis.

Both [BPTO00] and [Zak00] have introduced other bases starting from new def-
initions of redundancy that had a lesser emphasis on the use of inference rules,
and emphasized more the format of the association rules, based on the idea of
presenting the user with the most informative rules. As a result, these new bases

are larger than the GD-L basis.

3.1.2 A new inference rule for association rules

We now introduce a rule of inference for association rules that does not take into
account their support and confidence, these being easily computed in a data mining
application by using the results obtained during the generation of all frequent
itemsets. The reason for this approach is that the inference of association rules with

exact support and confidence is not a fundamental requirement because it is hard to

54

imagine the user trying to infer manually other rules than those presented to him.
On the other hand, the data mining application already has all the information
regarding the support of the frequent itemsets and this information can be used

to compute the exact support and confidence of any rule that we know is valid.

Theorem 3.2 Let r, 1" be two association rules such that items(r') C items(r) and

supp(antc(r')) < supp(antc(r)). Then,

supp(r') > supp(r) and conf(r') > conf(r).

Proof. items(r’') C items(r), so supp(items(r’)) > supp(items(r)), and thus, rule 7’

has greater support. Also, for the confidence of this rule we can write

conf(r') = supp(r') > supp(r) _ _ conf(r)

~ supp(antc(r’)) = supp(antc(r))

because supp(antc(r’)) < supp(antc(r)). |
This justifies the introduction of the inference rule:

r,items(r’) C items(r), supp(antc(r’)) < supp(antc(r)).

,r.l
Note that this inference rule is sound because by applying it to a valid association

rule we can only derive other valid association rules.

Because this inference rule requires knowledge of the support of the rules and
of the support of the antecedents of the association rules, it cannot be used as
a purely syntactical inference rule. This is because, although supp(antc(r)) can
be obtained by computing the ratio of the support and confidence of r, we need
the additional information about supp(antc(r’)) before we can apply the inference
rule. Examples of purely syntactical rules are the Guigues-Duquenne rules and

the rule of Theorem 3.1, because they only rely on knowledge of association rules

95

characteristics (antecedent, consequent, support, and confidence). In this respect,
our rule is similar to the Luxenburger rules which can be applied only to association

rules whose antecedents and consequents are known to be closed itemsets.

The new inference rule is very powerful because by starting from a valid rule

it can allow us to infer many other valid rules, as shown in the next example.

Example 3.1 Consider the data from Table 3.1 that was used in [PBT99a]. We

2 gnd minconf= 1

will examine this table assuming minsupp = £ 5

tid| A|B|C|D|E

2101111101
3|1 (1}1]0|1
4 10110011
o (11 1110]1

Table 3.1: The sample binary table of [PBT99a]

Note that the rule B — ACE is valid and that B, C, and E, are the most
frequent items in the table, so by using Theorem 3.2, we can also infer the valid
rules: ¥ — BCE, B —- FE, E — B, AC — BEFE, to enumerate just a few.
The exact support and confidence of these rules can be computed based on the

information we have about the frequent itemsets. g

Definition 3.3 If for two association rules, r1 and rq, it is possible to infer ro
from ry using Theorem 3.2, then we say that rule ro is covered by rule vy (and
that r1 covers ry), and we write r1 < ro. The coverage relation < consists of

all ordered pairs of rules (r1,rs), such that r1 < rs. 0

o6

Because of Definition 3.3, we will also refer to the property of Theorem 3.2 as

the coverage rule.

Definition 3.4 Two association rules, r1 and r9, are called equipotent if ri < ro

and ro < 11. 0

The next theorem shows that equipotent rules must have the same sets of items

and that the support of their antecedents must be equal.

Theorem 3.3 Let r1,79 be two association rules. Then ry and ry are equipotent

if and only if items(r,) = items(ry) and supp(antc(ry)) = supp(antc(rs)).
Proof. This statement follows immediately from Definition 3.4. i

Example 3.2 Consider again the data from Table 5.1.

The rules B — ACE, C — ABE, E — ABC, and BE — AC are all equipo-
tent because they have the same set of items, and because supp(B) = supp(C) =

supp(E) = supp(BE) = . 0

The following theorem shows that the coverage relation is a preorder on the set

of association rules.

Theorem 3.4 The coverage relation < is reflexive and transitive but is not anti-

symmetric.

Proof. Reflexivity results from Theorem 3.2 and the lack of antisymmetry follows

from Definition 3.4 and Theorem 3.3.

To prove the transitivity property, let 1 = X7 — Yi, 79 = X5 — Y5, and

r3 = X3 — Y3, be three rules such that 7 < r9 and ro < r3. This means that

o7

supp(X2) < supp(X;) and supp(X3) < supp(X3), which imply that supp(X3) <
supp(X1). Also, we have that X5Y5 C X;Y; and X3Y3 C X,Y5, which imply that
X3Y3 C X1Y). Therefore, because the conditions of Theorem 3.2 are met, it results

that 7 < 73. |

Equipotent rules are important because they are interchangeable from the point

of view of the coverage relation.

Corollary 3.5 If ry and ry are equipotent and r1 < r3 for some r3, then also

T9 < T3.
Proof. Because r; and ry are equipotent, we have ro < 71 so, from the hypothesis

and the transitivity of <, we also obtain o < 3. |

3.2 Covers for association rules

Based on Theorem 3.2, we define the notion of a cover of the set of valid association

rules:

Definition 3.5 Let R be the set of all valid association rules extracted from a
table 7. A cover of R is a minimal set C C R, such that any rule from R —C 1is

covered by a rule in C. A rule belonging to C is called a C-cover rule. 0

Note that R does not have to have a unique cover. Because of the existence of

equipotent rules, a set of association rules can have several covers.

Proposition 3.6 Given a cover C of R, such that one of its rules r1 is equipotent

with a rule ro, (C —{r1}) U {r2} is another cover of R.

Proof. The proof is immediate from Corollary 3.5. i

o8

Example 3.3 Consider again the table from Example 3.1.

If we mine the table using minsupp = % and minconf = 3, then we obtain 50

association rules which we omit listing here. The GD-L basis contains six rules:
{A=C,B=FE F= B, AC - BE, BE — C,C — A}. For this table, one
possible cover is: {B — ACEY}, containing only one rule. It can be easily verified
that all the rules in the GD-L basis are covered by the rule B — ACE. Other
possible covers are {C — ABE}, {E — ABCY}, and {BE — ACY}, which contain
rules that are equipotent to B — ACE. 0

The next theorem expresses some important properties of cover rules.

Theorem 3.7 Let C be a cover of a set of association rules R extracted from a

table 7. The following statements hold:

1. If r,r9 € C, then items(ry) # items(rs).

2. If r is a C-cover rule, then for any r' € R such that items(r') = items(r), we

have

supp(r) < supp(r') and conf(r) < conf(r').

3. If r is a C-cover rule, then there is no ' € R such that antc(r) = antc(r')

and cons(r) C cons(r').

Proof.

1. If two C-cover rules have the same set of items, then one of them will be

covered by the other and therefore does not belong to the cover.

2. This is immediate from the fact that the coverage rule only allows the infer-

ence of rules with greater or equal values of support and confidence.

99

3. Suppose that r is the C-cover rule I — X and that v’ € R hastheform I — Y
such that X C Y. Note that ' < r and the two rules are not equipotent
since items(r) # items(r). If r' is a cover rule, then r is redundant and
can’t belong to the cover, so 7' cannot be a cover rule. Therefore, there is a
C-cover rule r{, such that ry < r’ and r; # r. Thus, we have 7, < r, so r is

redundant, which contradicts our hypothesis.

Out of the set of possible covers, some of them are more informative than

others:

Definition 3.6 An tnformative cover is a cover where for each cover rule r

there is no equipotent rule v’ such that antc(r') C antc(r). 0

Theorem 3.8 Let C be an informative cover of a set of association rules R ez-
tracted from a table 7. If v is a C-cover rule, then there is no valid rule v’ such

that items(r') = items(r) and antc(r') C antc(r).

Proof. Assume r has the form X — I — X and suppose there exists a valid rule 7/
of the form Y — I — Y with Y C X. If this happens, then the rule X — I — X is
covered by Y — I — Y, because if Y C X, then we have supp(Y) > supp(X). The
rule Y — I — Y cannot be a cover rule itself, because of the first property from
Theorem 3.7, so it must be covered by some rule r and, by the transitivity of the
coverage relation, it follows that X — I — X is covered by r. Because X — I — X
is a cover rule, this can happen only if r = X — I — X is equipotent to I — I —Y,
but this contradicts Definition 3.6. Thus, the rule Y — I — Y with Y C X cannot

exist. 1

60

Note that it is possible to have an informative cover rule r and a valid rule
', such that items(r) = items(r’) and |antc(r)| > |antc(r')|, as the next example

shows.

Example 3.4 Consider the data from Table 3.2. We will examine this table as-

suming minsupp = 0.3 and minconf = 0.7.

tid | A

,_.
— =

= o o ol

o o o o | Q

© o0 N O Ot =W N
—
—
—

17111
01110
01110
100110

Table 3.2: Binary table illustrating that a valid rule can have smaller antecedent

than a rule of an informative cover

There are siz valid association rules: {C = B,C = A, BC = A, AC =
B, AB — C,C = AB}. The informative cover is {AB — C}. Note that C = AB

has the same items as the cover rule but has a smaller antecedent. 0

An informative cover is interesting because it can be smaller than the bases

mentioned in Section 3.1, it allows the inference of all valid rules and only the

61

inference of valid rules, and, for given sets of items, it contains rules with min-
imum antecedent (among all possible covers) and maximum consequent. This
last property is similar to the criteria used to judge the informativeness of a rule
in [BPT00].

The reverse of this is the fact that cover rules have smaller support and confi-
dence, which happens because the coverage rule only leads to rules with higher or

equal support and confidence.

A cover summarizes the set of valid rules in a similar way in which the large
itemsets summarize the set of frequent itemsets [Bay98]. A cover can also be used
to simplify the presentation of association rules to users: initially, only cover rules
could be shown to a user, then the user could select a cover rule r and retrieve
a subset! of all rules covered by r, and then the process could be repeated. In
this manner, the user could guide his search for association rules without being
overwhelmed by their number. A similar type of rule exploration has been proposed

in [LHM99], in the context of the so called direction setting rules.

3.3 The CoverRules algorithm

The following pseudocode describes algorithm CoverRules that generates an infor-

mative cover for the set of valid association rules.

Algorithm 3.1 (CoverRules)
Input: set of frequent itemsets.

Output: the list of cover rules.

'For example, this subset could consist of the rules covered by r that have the same size and
antecedent size, and of the covered rules of size inferior by 1 that have minimal antecedent size.

62

Uses: queue of frequent itemsets Q, list of cover rules C.

1 Initialize Q by enquewing into it all maximal frequent itemsets, in decreasing

order of their size.

2 If Q is empty, then output C and exit; else extract an itemset I from Q.

-2 sorted primarily

3 For all strict non-empty subsets of I, I, withi =1...2
by their support values (decreasingly) and secondarily by their cardinality

(increasingly), do:

3.1 If the rule I, — I — I, is valid, then add it to C if it is not covered by a

rule already in C. Go to step 2.

3.2 Ifi=1 and |I| > 2, then add to Q each subset of I that has size |I| —1

and that is not already included in an itemset from Q. Continue step 3.

4 Return C.

Algorithm CoverRules starts from the set of maximal frequent itemsets and
examines them in decreasing order of their cardinalities (steps 1-2). For each such
itemset I, we search for a subset S having maximum support, such that S — I —S
is a valid association rule (step 3). Such a rule is a candidate cover rule and, once
found, the search stops and the rule is added to the set of cover rules C, if it is
not covered by one of the rules of C (step 3.1). During the examination of each
subset S of I, we may encounter some subsets such that they cannot be used as
an antecedent of a rule based on the items of I. For these subsets, we will have
to verify whether they can be antecedents of rules based on subsets of I. This is

why, in step 3.2 of the algorithm, we add to Q all the subsets of I. Those subsets

63

that are already included in an itemset of Q, however, do not need to be added.
Step 3.2 needs to be performed only once, so we perform it if the first subset
examined in step 3 cannot be used as an antecedent. The collection Q is a queue
because we want to examine the large itemsets in decreasing order of their size
before we examine their subsets (added in step 3.2). We examine these itemsets
in decreasing order of their size because an association rule whose set of items is
larger cannot be covered by an association rule whose set of items is smaller. This
ensures that a cover rule added to C cannot be covered by another cover rule that
we may discover later. Each time that we intend to add a rule to C, however, we

still need to check whether that rule can be covered by one of the rules already in

C.

The strategy of examining first the maximal frequent itemsets and then their
subsets, in decreasing order of their size, guarantees that the set of rules that we
generate is minimal. Step 3.2 guarantees that all valid rules can be inferred from
the rules in set C. Together, these ensure that the resulting set C is a minimal
set, of rules from which all valid rules can be inferred, and thus, C is a cover. The
cover is informative because, in step 3, for subsets having the same support, we

examine first those with smaller cardinality.

There are several optimizations that can be made to Algorithm 3.1. The ex-
amination of the subsets from step 3 of CoverRules can be done in stages: at each
stage we can examine subsets of equal cardinality, and we can reduce the number
of subsets that need to be examined during the next stage, based on the results
obtained in the current stage. For example, if during the examination of the sub-
sets of size k we discover one with high support that can be used to generate a
possible cover rule, then in the next stages, when examining subsets of cardinality

greater than k, we will ignore all those subsets whose support is less than the sup-

64

port of this antecedent. The search from step 3 should also be done using binary
search. For the sake of clarity, the description of Algorithm 3.1 was intentionally

kept simple and omitted the details of such optimizations.

3.4 Experimental results

We implemented in Java (see [Cri02]) the optimized version of algorithm Cover-
Rules and we tested the implementation on several databases. In a first experi-
ment, we executed the algorithm on the Mushroom database obtained from the
UCI Repository of Machine Learning Databases [BM98]. We present in Table 3.3
the results that we obtained, as well as the results obtained for this database by
[PBT99a]. Note that the UCI repository contains two versions of the Mushroom
database. We have used the version containing fewer rows, which was used in the

experiments of [PBT99a].

Mushroom database (minsupp = 30%)

minconf | Valid rules | Cover | GD-L Basis
90% 20399 238 382
70% 45147 176 453
50% 64179 159 479
30% 78888 78 493

Table 3.3: Results for Mushroom database

From these results it can be observed that the cover contains fewer rules than
the GD-L basis. Another interesting result is the fact that the size of the cover
decreases as minconf is lowered (see also Figure 3.1). This may seem surprising

at first, but is due to the fact that, as minconf is lowered, more valid rules exist,

65

the redundancy of these rules is greater, and thus they can be summarized better.
In fact, for minconf = 30%, the size of the cover is identical to the number of
large itemsets existing in the mushroom database (for minsupp = 30% there are
78 such maximal frequent itemsets), and this happens because all rules that can
be generated using subsets of a maximal frequent itemset are valid. Notice that,
in this case, the cover size is one order of magnitude smaller than the size of the
GD-L basis, and three orders of magnitude smaller than the total number of valid

association rules.

For minconf = 30%, all cover rules have the item veil-type = partial as an-
tecedent. Interestingly, this item is common to all the mushrooms described in
the database, so its support value is 1 — the maximum possible support value.
By looking at a cover rule separately, the fact that the rule has the most frequent
item as antecedent might make us think that the rule is trivial. Knowing that this
is a cover rule, however, its antecedent being the most frequent item takes new
meaning because it implies that any association rule that we can build from the
items of the cover rule will be a valid association rule. Usually, the most frequent
items are known to the users of the database, so a cover rule having such an item

as antecedent can be easily interpreted, even without the help of the computer.

In the case of the Mushroom database, the CoverRules algorithm is about
as fast as the Apriori ap-genrules procedure for generating all valid rules. Both
algorithms finished their processing in a couple of seconds, so we do not include

their detailed time results here.

We also tested our algorithm on synthetically generated data. For this pur-
pose, we used our own implementation of the synthetic data generator described
in [AS94a]. Our synthetic data generator is integrated in ARtool [Cri02]. We

generated database SPARSE with 100,000 transactions of average size 10, having

66

Mushroom database results

1000 I I
Cover —o—
800 GD—L basis - + -
Number 6% . 1
of rules 400L + |
200 (5\9_\9\:
0 | |
90% 70% 50% 30%

Minimum confidence

Figure 3.1: Graphical plot of the results obtained on the Mushroom database

100 items, and containing 300 patterns of average size 5. This is a sparse database
that we mined for minsupp = 5%, thus discovering 207 maximal frequent item-
sets. For all our experiments on this database, the times taken by CoverRules
and ap-genrules were well below 1 second, so we omit them again. The number

of association rules discovered and the corresponding cover size are presented in

Table 3.4.

We can observe that, in this experiment, the cover size increases initially as
minconf decreases. This happens because the database is sparse, so the redundancy
is poor and rules that are discovered when the confidence threshold is lowered do
not necessarily allow the inference of rules with higher confidence. For minconf
= 10%, we obtain all valid rules and lowering the confidence threshold further
does not bring any new rules. In fact, the 194 cover rules correspond to the large
itemsets that have cardinality greater than one, because there are 13 such maximal

frequent itemsets of size one.

67

SPARSE database (minsupp = 5%)
minconf | Valid rules Cover
90% 3 2
80% 19 13
70% 42 25
60% 87 55
50% 186 124
40% 321 196
30% 455 240
20% 658 257
10% 880 194
5% 880 194
1% 880 194

Table 3.4: Results for SPARSE database

For our final experiment, we generated a dense synthetic database, which we
will call DENSE, with 100,000 transactions of average size 15, having 100 items,
and containing 100 patterns of average size 10. Our strategy for obtaining dense
synthetic databases consists of choosing fewer and longer patterns. We mined this
database for minsupp = 5% and we obtained 3,182 maximal frequent itemsets. For

this experiment, the times taken by the CoverRules and ap-genrules algorithms

became noticeable and we include them in Table 3.5.

We can see from these results that again, for this dense database, the cover
size generally tends to decrease as we lower the confidence threshold. All valid
rules are discovered for confidence 5%, so lowering minconf further does not result

in more rules. There is only one large itemset of size one, which accounts for the

68

DENSE database (minsupp = 5%)

minconf | Valid rules ap-genrules | Cover CoverRules
Time(seconds) Time(seconds)

90% 87722 9| 8875 215
80% 344001 30 | 9375 236
70% 511191 46 | 9020 220
60% 574554 49 | 7878 178
50% 603861 50 | 6483 130
40% 630706 52 | 6506 133
30% 656724 51 | 5496 104
20% 682076 53 | 5674 99
10% 703373 52 | 3416 41
5% 703924 52 | 3181 37
1% 703924 52 | 3181 37

Table 3.5: Results for DENSE database

69

difference between the number of large itemsets and the cover size obtained in
this case. The time taken by the rule generation algorithms is more significative
and allows us to notice that CoverRules’s performance tends to improve with the
lowering of the confidence threshold, while ap-genrules tends to take more time
as minconf is decreased. ap-genrules runs initially faster than CoverRules, which
performs better for lower values of minconf. These results, however, do not include
the time necessary to output the generated association rules, which would have
added to the time spent by ap-genrules. The space requirements of ap-genrules
are more significant than those of CoverRules, and in some experiments we had
to increase the memory available to the Java Virtual Machine so that ap-genrules
would not run out of memory. This is why, for this experiment, we ran our Java
programs on a Sun Ultra-10 with 512MB RAM that did not have a JIT compiler,
which is another important reason why the time taken by the algorithms became

more noticeable than in the previous experiments.

In general, as expected, the performance of CoverRules, as well as that of ap-
genrules, slows down when the databases are denser, and when the number of large
itemsets increases. The performance of the algorithms varies differently with the
change of minconf. For dense databases, the size of the cover is one-two orders
of magnitude smaller than the number of valid association rules and shows the
tendency of getting smaller as the redundancy in the generated association rules

increases.

3.5 Conclusions

We presented a new inference rule for association rules and, based on it, we intro-

duced the concepts of cover and informative cover for the set of valid association

70

rules. We discussed the properties of these covers and their relation to the previous
research performed on the topic of bases for association rules, and we presented al-
gorithm CoverRules for the generation of an informative cover. Our experimental
results show that CoverRules is about as efficient as the ap-genrules method, and
that the informative cover is usually smaller than both the number of association
rules and the size of the GD-L basis. In some cases, the size of the informative
cover is one or two orders of magnitude smaller than the GD-L basis. Another
important property is the fact that the size of the cover tends to decrease when
the redundancy of the association rules increases, which is due to the fact that
the informative cover takes better advantage of the redundancy to provide a useful

summarization of the set of association rules.

71

CHAPTER 4

Mining frequent itemsets and association rules in

multiple-table databases

The data mining algorithms presented in the previous chapters handle databases
consisting of a single table. In this chapter, we address the problem of mining
association rules in databases consisting of multiple tables and designed using the
entity-relationship model (see [Mai83], [ST95]). We discuss previous approaches to
this problem, point out some unaddressed issues, and present a couple of algorithms
to address these issues. We also analyze the possibility of extending our algorithms

to database schemas more complex than a star schema.

There are very few published results on how to mine association rules when data
reside in more than one table. An instance of this problem has been addressed in a
machine learning setting by Dehaspe and De Raedt [DR97], for the special case of
mining a deductive relational database containing knowledge about some type of
entity (for example, entities could be kids or sentences) and several weak entity sets
dependent on this entity set. The work in [DR97], however, does not analyze how
mining should be performed in databases involving relationships between multiple

entities as is usually the case in a relational database.

The term Multi-Relational Data Mining has been introduced by Knobbe, Bloc-
keel, Siebes, and van der Wallen in [KBS99|, to describe the problem of find-

ing interesting patterns about sets of tuples belonging to a user selected table,

72

named target table. The output of a MRDM algorithm is usually a decision
tree [KSW99]. Despite its general name, MRDM does not concern itself with the

discovery of association rules, which is the problem that we address in this chapter.

Recently, Jensen and Soparkar [JS00] have addressed the problem of mining
association rules in multiple tables for the special and important case when the
database is organized in a star schema. They proposed replacing the application
of the Apriori [AS94b] algorithm on a table obtained by joining all schema’s
tables by a technique (which we will call the JS algorithm) that in a first stage
looks for frequent itemsets in each separate table using a slightly modified version
of Apriori, and then, in a second stage, finds all frequent itemsets whose items
belong to more than one table. Finally, this method would yield the same results
as those yielded by Apriori when executed on the joined schema tables, and would

have better performance then the latter method.

We show ([CS01]) that both methods, the Apriori algorithm and the JS algo-
rithm, can produce rules which may not reflect accurately the actual relationships
existing in data in cases like the one used as an example in [JS00], and we inves-

tigate how association rule mining should be performed in these cases.

4.1 Problems in previous approaches

We begin with a few definitions related to relational database theory [ST95]. We
view a table as a triple 7 = (T, H, p), where T is the name of the table, H =
Ay ... A, is its heading, and p C Dom(A;) x --- x Dom(A4,,) is the content of 7.

The star database design that we consider here is derived from an entity rela-
tionship design that involves k entity sets and a set of k-ary relationships R that

involve the instances of entity sets Fi,..., Ey. Tables that represent entity sets

73

are referred to as entity tables, and tables that represent relationship sets are
called relationship tables. The tables are denoted by the same letter as their

respective set. We denote the attributes of an entity set F by attrF.

To simplify our definitions and discussions, we will assume that R has no other
attributes than the foreign keys for the entity sets Ei, ... , Ex. Note that this is not
a restrictive assumption because if the relationship set R contains other attributes
than foreign keys, then we can simply consider them as being attributes of an extra

entity set Fj1, whose instances participate exactly once in a relationship from R.

We also assume that each relationship of R must involve an entity from each
of the entity sets Ei, ..., Ex. This assumption corresponds to imposing referential
integrity to R.

Let &€ = {Fi,...,E} be a collection of k entity sets, R be a set of k-ary
relationships between Fi,..., E, Join be the join of tables R, F1,... , Ey, and
OQuterJoin be the outer join of tables R, FE;,...,E;. We use these notations

throughout the chapter when discussing star schemas.

We redefine the notions of Definition 1.1 in the terms of the new relational

database context.

Definition 4.1 An item in a table T = (T, H, p) is a pair (A, a), where A € H is
an attribute and a € Dom(A) is an attribute value. An itemset is a set of items
{(A1,a1) ... (An,a,)}, such that, if i # j, then A; # A; for any i,5 € {1,... ,n}.
In other words, an itemset contains no two pairs of items with an identical attribute
component. The support of an itemset I = {(Ay,a1), ..., (An, an)} with respect to
a table T = (T, H, p) is supp(I) = |{t € p | t[A;] = a; for alli € {1,... ,n}}/|p|.
An assoctation rule is an ordered pair {a,c) of itemsets such that they do

not contain items with an identical attribute component. The first itemset in the

74

Customers ATMs

Figure 4.1: Entity-relationship diagram of Bank database

pair is called antecedent and the second is called consequent. We represent the
association rule as a — c. The support of an association rule is defined to be the
support of the union of its antecedent and consequent itemsets. The confidence
of an association rule is defined to be the ratio between the support of the rule and

the support of the antecedent. a

To illustrate our arguments, we use an example similar to the one presented in
[JS00], with the difference that we changed the data to make some points easier

to observe.

The example is that of a simplified banking environment organized in a star
schema (see Figure 4.1) consisting of two tables that reflect entity sets: the
Customers table with attributes {acct#, balance, age}, the ATMs table with at-
tributes {atm#, type, limit}, and a table that represents a set of binary relation-
ships named ATM-Activity with attributes {acct#, atm#, amount}. The contents

of these tables are presented in Table 4.1*.

The table Join obtained from joining the three tables is identical to the table

that we would obtain by performing an outer join and is presented in Table 4.2.

!Note that ATM-Activity has an attribute (amount) that indicates the value of the trans-
action; this differs from our assumption that R should contain only foreign key attributes. To
satisfy our assumption we could consider a third entity set, the transactions, resulting in a star
schema that involves three entities and a ternary relationship.

75

Customers ATM-Activity

acct# balance age acct# | atm# | amount
1 50000-100000 | 30-40 1 1 | 500-1000
2 1000-5000 | 30-40 2 2 50-100
3 100-1000 | 20-30 1 2 50-100
3 2 0-50
1 1 | 500-1000

ATMs

atm# | type | limit

1 in | 1000
2 out 500

Table 4.1: The tables of the Bank database

We question whether an algorithm that mines this star schema database for
association rules is useful when it finds exactly the same results obtained by exe-
cuting the Apriori algorithm on the joined tables. We claim that the generation
of correct rules requires the knowledge of the entities and relationships existing in

the database, and we will look at some examples that illustrate this idea.

Let us consider the rule age = 30 — 40 — balance = 50000 — 100000 which
involves attributes age and balance belonging to entity table Customers. If we
consider the Join table, then the support of this rule would be 60% (3/5) and its
confidence would be 75% (3/4). Another approach, however, would be to examine
only the Customers table, in which case the support of the rule would be 33.3%
(1/3) and its confidence would be 50% (1/2). A question now arises about which

76

Join

acct# | atm# | amount balance age | type | limit
1 1 500-1000 | 50000-100000 | 30-40 in | 1000
2 2 50-100 1000-5000 | 30-40 | out | 500
1 2 50-100 | 50000-100000 | 30-40 | out | 500
3 2 0-50 100-1000 | 20-30 | out | 500
1 1 500-1000 | 50000-100000 | 30-40 in | 1000

Table 4.2: The join of the tables of the Bank database

of these two results is the correct one. Because the rule involves only attributes
of the Customers table, we argue that the support and confidence of the rule
should be based on this table only, so that we should obtain the second result.
This is because Customers represents an entity set and properties of its attributes
should be determined only by looking at the set of instances of customers. When
executed on the joined tables, however, Apriori would generate the first result,
thus producing what we consider to be an association rule with misleading support

and/or confidence values.

It is also worth mentioning that, because the support of a set of attribute values
corresponding to one entity can be smaller with respect to the joined table than
with respect to the entity table, the itemset may not even be discovered by Apriori,
much less be used to generate an association rule. For example, the support of
age=20-30 is 20% (1/5) with respect to Join and 33.33% (1/3) with respect to
table Customers. Such an itemset would be missed by the JS algorithm when

mining with minsupp = 30%.

7

Let us now consider another example in the rule age = 30—40 — type = in. In
this case, the rule contains attribute age from entity Customers and attribute type
from entity ATMs. Because the rule contains attributes from two different entities
and these entities are related through relationship ATM-Activity, it makes sense to
compute the support and confidence of this rule with respect to the table obtained
by joining Customers, ATM-Activity, and ATMs, which in our case is equivalent to
using the table Join. By looking at the Join table, we can compute the support

for this rule as 40% (2/5) and its confidence as 50% (2/4).

From these examples we can draw several conclusions:

1. Running the Aprior: algorithm on the join of the tables of a database can
fail to produce all existing rules or may produce rules whose support and

confidence do not properly reflect the knowledge embedded in the data.

2. The entity-relationship model of a database provides important information
concerning the relations between entities, and this information should be

used by data mining algorithms.

3. When looking for association rules, rules among attributes of the same en-
tity should be analyzed with respect to that entity set. When looking for
association rules among attributes of several entities, we need to look at how
these attributes appear together, so we need to analyze rules with respect to
the relationships existing between the entities. Note that if several relation-
ships exist between two or more entities, then the association rules between
their attributes must be examined with respect to each such relationship.

We discuss this issue in Section 4.3.

78

We have thus identified a problem that appears when mining a database built
from an entity-relationship model using standard mining algorithms. New algo-
rithms are needed to address this problem and in the next sections we discuss such
algorithms. Initially, we address the basic case of star schemas and then we discuss

the case of more complex schemas.

4.2 Mining association rules in star schemas

We examine extending the Apriori algorithm to make it work on the join of all
tables, and then we investigate a method for mining association rules without

joining the tables, assuming a star schema organization of the database tables.

Definition 4.2 An entity itemset is an itemset {(A1,a1),...,(An, an)}, such
that {A; | i € {1,... ,n}} C attrE for some entity set E € £.

A join itemset is an itemset I = {{A1,a1),...,{An,an)}, with the property
that |J;_; Ai C U§:1 attrE;, and such that I is not an entity itemset. In other
words, a join itemset is an itemset whose attributes do not belong to the same
entity.

The support of an entity itemset with respect to its entity table is called entity
support.

The support of an entity or join itemset with respect to the table Join is called

join support. g

Note that we can compute the join support for any itemset, but the entity

support is only defined for entity itemsets.

It is impossible to predict the relative magnitude of the join support and entity

support for an itemset. The entity support may be greater or smaller than the

79

join support. In the example presented in the second section we have seen that
the join support of itemset {age = 30 — 40, balance = 50000 — 100000} (60%)
was greater than its entity support (33.3%). On the other hand, the join support
of itemset {age = 20 — 30} (20%) was smaller than its entity support (33.3%).
This means that, in the execution of an Aprior: algorithm, for a candidate entity
itemset we should compute both its entity support and its join support. If the
entity support is greater than minsupp, then the itemset should be considered
frequent; otherwise, if the join support is greater than minsupp, then the itemset is
not frequent but it might be a subset of a frequent join itemset and thus should be
used in the candidate generation procedure. Finally, if both supports are smaller

than minsupp, then the itemset should be discarded.

We propose to modify the Aprior: algorithm as follows: whenever we compute

and evaluate the support of a candidate itemset, we consider two possibilities:

1. If the itemset is an entity itemset, then both its join and entity supports
should be computed. The itemset should be considered frequent if its entity
support is greater than minsupp; otherwise, if its join support is greater
than minsupp, then the itemset should be used in generating new candidate
itemsets for the next step of the algorithm. If none of these conditions is

met, then the itemset should be discarded.

2. If the itemset is a join itemset, then its join support should be computed and
checked against the minimum support to determine whether the itemset is

frequent; otherwise, the itemset should be discarded.

In the apriori-gen procedure, which combines two itemsets of length k& into a

candidate itemset of length k£ + 1, we would again have two possible cases:

80

1. If the resulting candidate itemset is an entity itemset, then we need to check
that all its subsets have entity support greater than minsupp or that all its
subsets have a join support greater than minsupp (so that the itemset can
be used later for the generation of a candidate join itemset); otherwise, the

candidate should not be generated.

2. If the resulting candidate itemset is a join itemset, then we should just verify
that all its subsets have join support greater than minsupp; otherwise we

should not generate the candidate.

Next, we discuss how these changes can be used to obtain an algorithm for

mining the joined tables and an algorithm for mining the star schema.

4.2.1 The AprioriJoin algorithm

In this section we want to devise an algorithm capable to mine a table containing
all the data existing in a star schema. Note that such a table can be obtained by
performing an outer join on all tables of the star schema. A simple join would not
be sufficient because we could miss entity instances that do not participate in the

relationship.

In order for Apriori to generate rules with proper support and confidence val-
ues, it has to know about the existing entities that appear in the table on which
it is run. This can be done if the algorithm knows for each attribute what is the
key attribute of the respective entity. We focus on the problem of finding large
itemsets because from these we can construct association rules by applying stan-
dard methods like ap-genrules. The algorithm described in this section is named

AprioriJoin; we assume that its input table is the OuterJoin table.

81

To compute the support of an itemset we need to differentiate between entity

itemsets and join itemsets.

For an entity itemset, we compute its entity support as follows. We first count
the number of rows of OuterJoin that contain the itemset and that have a distinct
entity key. Then we divide this count by the number of distinct entity keys to find
the percentage of the entity support. To compute the join support we have to count
the number of rows that contain the itemset and that belong to Join but not to
QuterJoin, and then divide this value by the cardinality of Join. Identifying the
rows which belong to OuterJoin but not to Join is quite simple: these are the
rows that contain null entity keys. The rows of Join are then identified as those

that do not contain null entity keys.

For a join itemset, we compute its join support simply by counting the rows

that contain the itemset and then dividing this value by the cardinality of Join.

There are few implementation difficulties in adapting an Apriori algorithm to
mine the QuterJoin table. The main steps of the resulting algorithm are presented

in Algorithm 4.1.

Algorithm 4.1 (AprioriJoin)

Input: minsupp, the table OuterJoin, and the mapping of each attribute to an

entity key.
Output: the list F of frequent itemsets.

Uses: list of candidate itemsets C, list of frequent itemsets K.

1 Initialize C to contain all 1-itemsets.

2 Scan table OuterJdoin and compute the join support and, if appropriate, the

entity support for all candidate itemsets.

82

3 Place wnto collection K all itemsets from C that have entity support or join
support greater than minsupp. Place into collection F the entity itemsets that
have entity support greater than minsupp and the join itemsets that have join

support greater than minsupp. Clear C.

4 Generate new candidates by applying the apriori-gen method (modified as
described at the beginning of this section) to KC. Place all newly generated

itemsets into C. Clear IC.
5 If C is empty, then return F.

6 Go to step 2

4.2.2 The AprioriStar algorithm

In this section we present AprioriStar, an algorithm that correctly finds the fre-
quent itemsets in a set of tables organized in a star schema. The pseudocode of

AprioriStar is described in Algorithm 4.2.

Algorithm 4.2 (AprioriStar)

Input: minsupp and a star schema database with entity tables Eq,... , E, and

relationship table R.
Output: the list F of frequent itemsets.

Uses: list of candidate itemsets C, list of frequent itemsets K.

1 Scan R and store the number of occurrences of every value of each foreign

key (a step identical to the one in the JS algorithm).

83

2 Initialize C to contain all 1-itemsets (note also that these are entity itemsets)

3 Scan tables F+, ..., E, and, during the scan of each table E;, compute the
entity support for all itemsets from E; as well as their join support using the
information collected during step 1 (whenever we see a row containing the
itemset, the support of the itemset is increased with the number of occurrences

of the row’s key value in the R table).

4 Place into collection IC all itemsets from C that have entity support or join
support greater than minsupp. Place into collection F the entity itemsets that
have entity support greater than minsupp and the join itemsets that have join

support greater than minsupp. Clear C.

5 Generate new candidates by applying the apriori-gen method (modified as
described in the beginning of this section) to K. Place all newly generated

itemsets into C. Clear IC.
6 If C is empty, then return F.

7 For all entity itemsets in C, belonging to a table E;, scan E; and compute

their join and entity supports.

8 Compute on the fly the join of tables R, E1,... , E, and then, for all join

itemsets in C, compute their join support with respect to the joined tables.

9 Go to step 4

Note that, in step 8, it is not required to compute the join of all tables if the

candidate itemsets do not contain attributes of all entities. For example, if the

84

candidate itemsets would just contain attributes of entities £y and F5, we would

just need to join R, Fy, E5 and we could ignore tables Es, ..., E,.

The main differences between this algorithm and the JS algorithm are:

1. AprioriStar uses the join and entity supports in determining frequent item-
sets. By considering the entity support, AprioriStar does not eliminate from
the result the entity itemsets that are frequent with respect to their entity
table but not with respect to the relationship table, and it also allows the
computation of correct support and confidence for rules existing among at-

tributes of the same entity table.

2. AprioriStar does not compute the support of the join itemsets in a single data
scan, as it was done in the JS algorithm. Our approach avoids the explosion

of join candidates that is present in the final step of the JS algorithm.

4.2.3 Experimental results

For our experiments, we implemented in Java the algorithms AprioriJoin and
AprioriStar, and we executed them on binary files containing synthetically gener-
ated data. The synthetic data constitute a star schema with three entity sets and
a relationship set. The entity tables were indexed for the faster random access

needed by the implementation of AprioriStar.

The test data was built as follows: first we generated synthetic data for the
AprioriStar algorithm by creating a database with three entity sets and a rela-
tionship set, and then we outer joined these tables to obtain the table on which
we executed the AprioriJoin algorithm. For the generation of the entity tables
we have used our implementation (see [Cri02]) of the synthetic data generator

described in [AS94a], and for the generation of the relationship table we have de-

85

signed and used a synthetic relation generator. The synthetic relation generator
yields a number of relationships for each of the tuples of a specified entity table.
The average and standard deviation for this number of relationships are specified
by the user and are generated using a normal distribution. Also, for each such
tuple, we randomly select a sample of tuples from every other entity table, so that
the selected tuples can be involved in the relationships to be generated. The size of
the sample selected from each entity table is produced using a Poisson distribution
with mean specified by the user. Finally, we generate relationships by randomly

selecting the participating tuples from the samples previously constructed.

We first generated two types of databases: a sparse one having a small average
number of items per transaction and having fewer frequent itemsets, and a dense
one having a larger average number of items per transaction and more frequent

itemsets. We call these databases SPARSE and DENSE, respectively.

We verified the scalability of the algorithms by doubling twice the contents
of the database SPARSE, thus obtaining databases SPARSEx2 and SPARSEx4.
The doubling of the database SPARSE was done in the following way: first we
duplicated the rows of all entity tables and then we duplicated the relations and
made the duplicate relations refer to the duplicate entity instances instead of the
original ones. Thus, we have obtained a database whose tables had twice the size

of the original table, but which contained the same rules as the original database?.

For both the SPARSE and DENSE databases, all the entity instances are par-
ticipating in relationships from R, which is not the case for a third database that

we generated, called OUTER, where only half of the transactions of each entity

2Note that the complexity of the mining operation is derived from the number of attributes
of the database, and from the patterns existing in the data. Thus, to verify the scalability of the
algorithms with respect to the variation of the database size, we have maintained constant both
the number of attributes and the patterns existing in the data.

86

table participate in relationships of . OUTER was obtained by generating two
different sets of entity tables and then concatenating them. For this database, the
relationship table R consists of the relationship table generated for the first set of

tables.

The main characteristics of these datasets are presented in Table 4.3. For
OUTER, we separated by a slash the characteristics of the first and second sets of

tables that were used for its generation.

We have executed the two algorithms, AprioriStar and AprioriJoin, on a Sun
Ultra-10, running Sun OS 5.7, with 512MB of memory. We used Sun’s JDK 1.2.2
for compiling and running the programs, and we did not benefit from the use of a

JIT compiler. The time was measured using the /usr/bin/time command.

Table 4.4 presents the results of our experiments. In parentheses we have indi-
cated the number of frequent itemsets and the largest size of a frequent itemset for
the respective algorithm execution. For example, (13/3) means that the algorithm
has found 13 frequent itemsets and the largest one consisted of 3 items. Because
SPARSEx2 and SPARSEx4 contain the same patterns as SPARSE, we have not
duplicated this information in their case and we have only displayed the time taken

by the algorithms.

There are a couple of important observations to be made from the test results.
First, it can be observed that the algorithms scale linearly as the number of tu-
ples of the database increases. With respect to the relative performance of the
algorithms, we can note that the AprioriJoin algorithm is almost always a little
faster than AprioriStar when working on databases where all entity instances are
participating to the relation R. This isn’t surprising, given that on such databases

AprioriStar would find frequent join itemsets at each step, and would thus have to

87

Test database characteristics

Characteristics SPARSE ‘ DENSE ‘ OUTER
Entity E1

Number transactions 10000 10000 20000

Average transaction size 7 20 7/12

Number of items 60 60 60

Number of frequent patterns 100 50 100

Average pattern length 5 10 4/10
Entity E»

Number transactions 100 100 200

Average transaction size 4 4 4/7

Number of items 10 10 10

Number of frequent patterns 10 10 10

Average pattern length 2 2 2/5
Entity E3

Number transactions 1000 1000 2000

Average transaction size 5 10 5/9

Number of items 20 20 20

Number of frequent patterns 50 20 50

Average pattern length 3 5 3/7

Relationship R

Total number relationships 100380 95753 95985

Average and standard deviation

of number of relationships 10,8 10,5 10,5

for each tuple of entity one

Second entity sample mean 10 5 20

Third entity sample mean 20 20 50
Outer Join

Number tuples ‘ 100380 ‘ 95753 ‘ 107085

Table 4.3: Characteristics of the synthetically generated databases

88

Test results

Minimum SPARSE SPARSEx2 SPARSEx4 DENSE OUTER
support
AprioriJoin results
0.5 5m0ls (13/3) 10m02s 20m23s 23m19s (912/7) 7m39s (26/3)
0.4 6m47s (38/4) 13m14s 27m23s 33mb52s (3275/8) Tm58s (77/4)
0.3 6m59s (100/4) 13m54s 28m04s 1h11m21s (14788/10) 10m18s (217/5)
0.2 9m15s (340/5) 18m26s 37m28s 4h38m15s (106219/11) | 13m3ls (878/6)
0.1 17mO06s (2145/7) 34m10s 1h08m49s - 24m56s (5968/9)
AprioriStar results
0.5 5m27s (13/3) 11m02s 20m44s 24m45s (912/7) 5m12s (26/3)
0.4 7m50s (38/4) 15m28s 30m45s 35m22s (3275/8) 7m40s (77/4)
0.3 7m59s (100/4) 15m38s 31m33s 1h14m15s (14788/10) 10m12s (217/5)
0.2 11mO00s (340/5) 21m39s 43m38s 4h28m51s (106219/11) 13m30s (878/6)
0.1 21m00s (2145/7) | 41m30s 1h22m31s - 22m50s (5968/9)

Table 4.4: Results for databases SPARSE, SPARSEx2, SPARSEx4, DENSE, and
OUTER

build the join of the tables as often as AprioriJoin would perform its scan. This
means that AprioriStar would end up doing more I/O operations than Apriori-
Join because it also has to scan the entity tables in a separate step. In the case
of database OUTER, however, we can notice that AprioriStar outperforms in all
cases AprioriJoin. This is due to a combination of two factors. The first factor is
that, for database OUTER, AprioriStar generates only entity candidates during
its last steps, so it will avoid performing a scan of the join of the tables and will
just scan some of the entity tables. This is the main reason for the more significant
difference obtained in the experiment where we used a minimum support value of
0.1. The second factor is that AprioriJoin works on a table that is obtained from
an outer join and that is thus larger than the join table built on the fly by Apri-
oriStar, which makes the I/O requirements of the algorithms to be comparable,
hence the rather small difference in performance for the minimum support values

0.2-0.5.

89

In the next section we introduce the difficulties related to mining more complex

database schemas.

4.3 Mining association rules in more general schemas

To handle more complex database designs, we start from the fact that the entity-
relationship diagram of a database D is a bipartite, connected graph Gp whose
set of nodes is partitioned into entity sets and relationship sets. Let £ be the
collection of entity sets and let R be the collection of relationship sets involved
in the model. For a set of attributes X, let £(X) be the set of all entity sets
in £ that contain some attributes in X. Also, for a collection of entity sets F,
where F C &, denote by M(F) the collection of all minimal relationship sets S,
such that the subgraph of Gp generated by F U S is connected. For example, if
F = {FE1, Ey, E3} is a collection of entity sets (shown in Figure 4.2), then M (F)
consists of {{R;},{ Rz, R3}}. We refer to these members of M (F) as connectors
of F.

Figure 4.2: An example of an entity-relationship diagram

For a set of attributes X and every connector Q of M(E(X)), we consider the
subgraph Gx o of the entity-relationship diagram determined by £(X)U Q. Each

such subgraph is a union of “star” graphs and one can define the support of X

90

relative to the join of the tables that represent the entity sets and the relationship

sets corresponding to the vertices of the graph Gx o.

For example, consider a small university database having two entities: Profes-

sors and Students (see Figure 4.3).

STUDENTS PROFESSORS

student_age professor_age

Figure 4.3: Entity-relationship diagram of University database

There are two relationships between the entities ADVISING and TEACHING.

For the set of attributes X = student_age professor_age we have:

£(X) = STUDENTS PROFESSORS,

M(E(X)) = {{ADVISING} {TEACHING}}.

Thus, for a rule like student_age > 30 — professor_age > 40, one could con-
template the support relative to the table obtained by joining ADVISING, STU-
DENTS, and PROFESSORS, or the support relative to the table obtained by
joining TEACHING, STUDENTS, and PROFESSORS.

These observations suggest some promising new research directions involving
the design of efficient algorithms that compute the support of itemsets relative to
the various connectors that may exist, and the analysis of the effect of the topology

of the entity-relationship diagram on the resources required for these computations.

91

4.4 Conclusions

We approached the problem of mining association rules in databases consisting of
several tables organized in a schema obtained from an entity-relationship design.
We have focused mainly on the problem of mining a star schema database. We
noticed that previous algorithms did not take advantage of the knowledge already
embedded in an entity relationship model regarding the relationships between the
database entities. To address this issue, we introduced the concepts of entity and
join support, and we presented two algorithms: algorithm AprioriJoin, for mining
the outer join of the tables using knowledge of the star schema organization of the
tables, and algorithm AprioriStar, for directly mining the star schema database.
These algorithms were tested on synthetically generated databases and the results
of our tests show that both algorithms scale linearly with respect to the size of the
input database. The results also show that in the case of a star schema there is no

clear winner between the two algorithms in terms of time performance.

For schemas that are more complex than star schemas, the problem becomes
more complicated because for a given itemset we may need to compute as many
support values as there are connectors for the respective itemset. This can lead
to an explosion of the number of support values that need to be computed for an
itemset. We thus require new algorithms and techniques for handling such complex

mining problems. This represents an interesting direction for future research.

92

CHAPTER 5

Mining purity dependencies in databases

Functional dependencies are an important concept in the design of databases,
due to their role in normalization theory, which aims to minimize redundancy and
anomalies in relational databases. The identification of these dependencies satisfied
by database schemas is an important topic in data mining literature ([KM95],

[HKP98]).

We propose ([SCCO02b], [SCC02a]) a generalization of the notion of functional
dependency starting from the notion of impurity of a subset of a set S relative
to a partition of S; this notion is extended to the notion of relative impurity
of two partitions. Because sets of attributes of a table of a relational database
naturally generate partitions on the set of tuples (as we show in Section 5.2), it
becomes possible to define the relative impurity of two sets of attributes. When
this impurity is below a certain limit we say that the table satisfies a purity
dependency. Purity dependencies have properties that are similar to those of
functional dependencies and, as we show in the final section of this chapter, they
can be useful in approximate classifications, that is, in classifications where certain

errors are tolerable.

Unless stated otherwise, all sets considered in this chapter are finite. We begin

with a few notations and definitions of terms.

93

The set
{(pr,...,px) €ER* | p;>0and p; +---+pp = 1}.

will be denoted by SIMPLEX,_; and will be called k-dimensional simplex.

A function f: R — R is:

e concave on a set S C Rif f(azx + (1 — a)y) > af(z) + (1 — a)f(y) for
a€[0,1] and z,y € S;

e sub-additive on S if f(z +y) < f(z) + f(y) for z,y € S.

For example, x — x? is concave on the set R and — log z is sub-additive on the
set [0, 1].

In [CHH99], a concave impurity measure is defined as a real-valued function

1 : SIMPLEX, _; — R that satisfies the following conditions:

(i) i(ap+(1—a)q) > ai(p)+(1—a)i(q) for any « € [0,1] and p,q € SIMPLEX;,_,
with equality if and only if p = q;

(ii) if p = (p1,... ,pk), then i(p) =0 if p; = 1 for some j, 1 < j < k.

The corresponding frequency-weighted impurity measure is the function

I : N — R given by

where N = Z?Zl nj.

In [CHH99], the authors show that both the Gini impurity measure and the
entropy measure can be generated using a simple one-argument function that sat-
isfies certain conditions. In this paper we additionally require sub-additivity of

this function, as shown in the next definition.

94

Definition 5.1 A function f : [0,1] — R is a generator, if it is concave, sub-
additive, and f(0) = f(1) = 0.
The monogenic impurity measure induced by the generator f is the impu-

rity measure generated by the concave impurity measure ¢ having the form

i(pla"' ’pk) :f(p1)+"'+f(pk)a

where (p1, ... ,px) € SIMPLEX;_;. 0

It is easy to verify that such functions as fgni(p) = p — p?, fenr(p) = —plogp,
fsq(p) = \/]_D—p’ or

P if0<p<0.5
fpeak(p) =
1—-p if05<p<l1
are generators. (In the definition of fe,y we assume that 0- oo = 0.) Thus, both

the Gini impurity measure, induced by fgini, and the entropy measure, induced by

fent, are monogenic impurity measures.

Our definition of the entropy measure is an alternative approach to the ax-
iomatic definitions of entropy, a subject much discussed in information theory (see
[Khi56], [Khi57], [IU62], [GT66], and [MR75]), and has the advantage of opening
the possibility of some useful generalizations. For an axiomatic presentation of

partition entropies see [SJ01].

Further examples of generators are fg,(p) = sinmp, ferde = VP — %, fo(p) =
1 — e?’~?_ where p € [0,1], or

1 if0o<p<1
flp) =
0 ifp=0orp=1.

95

Bl BS

Figure 5.1: A 4-block partition of S and an impure subset L

For a concave function f, the inequality

1

)+ + Fow) < kS (z) (5.1)

holds for every (pi,...,pr) € SIMPLEX,_;, and is known as Jensen’s inequality.
This implies that the largest value of the sum f(p;) + ---+ f(px) is achieved if
and only if py = -+ = pp = % Therefore, for the monogenic impurity measure
generated by the function f, we have 0 <i(py,... ,px) < kf(%) for (p1,...,pk) €
SIMPLEX,, ;.

5.1 Impurity of sets and partitions

In this section we introduce the notion of impurity of a subset of a set .S relative to
a partition of S. In turn, this notion is used to define the impurity of a partition

relative to another partition.

Definition 5.2 Let f be a generator, S be a set and let PART(S) be the set of all
partitions of S. The tmpurity of a subset L of S relative to a partition

7w € PART(S) and generated by f is the monogenic impurity measure induced

96

by the generator f:

= 1) - er (52). e

where 1 = {By,...,B,}.

The specific impurity of L relative to m and generated by f is

f
impﬁ(L):%zf(‘L&‘Bl‘)+---+f(%). (5.3)

When the subset L is included in one of the blocks of partition T, IMPj;(L) =0

and L is called a m-pure set; otherwise, L is called a m-tmpure set. g

Note that if L is m-impure, then |L| > 2.

In Figure 5.1, we show an impure set L that intersects three of the four blocks

of a partition of a set S.

Note that Jensen’s inequality (5.1) implies that the impurity of a set L C S
relative to a partition 7 = {By,...,B,} of S, as defined in (5.2), cannot exceed

the value
f 1
i =110 f (). (5.4)

The impurity measure is superadditive and monotone, as shown by Theorem 5.1

and Corollary 5.2.

Theorem 5.1 Let K, L be two disjoint subsets of the set S and let 1 € PART(S).

Then, we have

IMPL(K U L) > IMP!(K) + IMPL(L).

97

Proof. The definition of impj; allows us to write

imp/ (KUL) = Zf(KKUL)mB")

|K U L|

=1

_ if('KﬂBAHLﬂB")
— |K UL| ’

because K and L are disjoint.

|KNBg|+|LNBy| -

binati £ [KNBy|
TKUL] 1S a convex combination o

K]

|LNBy|
IL|

Because and , the concavity

of f allows us to write

f(\KﬂBg|+\LﬂB@|>> K| f<|KﬂBg\)+ IL| f<\LﬁBe\>,

KU L — K[+ L] K| K|+ L] |L|
SO
: K| . |L| .
Hk L) > — 2 impf (k) + —Eimpf (L
which immediately gives the desired inequality. i

Corollary 5.2 If K, L are subsets of S such that K C L and m € PART(S), then
IMP!(K) < IMP!(L).

Proof. Let H = L — K. By Theorem 5.1, because K and H are disjoint, we have:
IMP/(L) = IMP/(K U H) > IMP/(K) + IMPI(H),

so IMPZ(L) > IMPL(K). |

Let 7 and o be two partitions in PART(S). We write 7 < o if each block of
the partition 7 is included in a block of the partition ¢; in this case we say that 7
is a finer partition than o. The following theorem shows that the impurity of
a set increases if the partition with respect to which the impurity is computed is

finer.

98

Theorem 5.3 Let m = {By,... ,B,} and 0 = {C,... ,Cp} be two partitions of
aset S. Ifm < o, then IMPL(K) < IMPL(K) for every subset K of S.

Proof. Because m < o, every block C; of o is the union of some blocks of the
partition m: C; = J{By | h € H;}, where Hy,..., H,, is a partition of the set
{1,...,n}.

Therefore,

imp! (K zmjf ('K”C ‘) Y ('K“Bh') — imp (),

j=1 heH;

because of the sub-additivity of f. This implies the inequality of the theorem. 1

Lemma 5.4 Let 71 = {By,...,B,}, (= {D1,...,D,} be two partitions of a
set S. If K 1s a subset of S such that K C Dy for some block Dy € (, then
IMP!, (K) = IMP(K).

Proof. Because the blocks of the partition 7 N ¢ have the form Bj, N D;, we have

imp7{/\(ZZf(U(mmaD\)

h=1 j=1

KNByND; :
Each sum)77, f (M) contains at most one non-null term, namely

| K|
f (\KﬂmaDk\) _ <|KmBh\>
K| K|)’
if K N By, # (), which implies the desired equality. |

Definition 5.3 Let S be a finite set and let 7,0 € PART(S) be two partitions,
where m = {By,...,B,} and 0 = {C4,...,Cn,}. The impurity of o with

respect to m generated by f is given by
IMP! (o) = max IMPL(C). (5.5)

A partition o is a-tmpure with respect to partition 7 if IMPﬁ(O‘) < a. 0

99

The impurity between two partitions can also be defined using the following

formula:
IMP (¢ Z ||S| IMPZ(C (5.6)

which takes into consideration the impurities of all blocks of o with respect to .
Both definitions lead to measures that have similar properties. We use (5.5) rather
than (5.6) because, as we will show in Section 5.2, its values are easier to interpret.
The form (5.6) was used to define the generalized conditional entropy between two

partitions in [SCCO00].

Informally, the impurity of a partition ¢ with respect to a partition 7 gives us
a measure of how well do the blocks of ¢ fit inside the blocks of 7. When o < 7,
this impurity will be zero. A proof of this is given in the corollary for the following

theorem.

Theorem 5.5 Let S be a finite set and let m,0,(€ PART(S) be partitions of S.
We have:

(i) if o <, then IMPL(C) < IMPL(C) and IMPL(0) < IMPL(r);
(i) IMP!, (o AC) < IMPL(0).

Proof. The first part of the Theorem is an immediate consequence of Theorem 5.3.

To prove the second part, assume that D is a block of {, 7 = {Bj, ..., B, }, and
o={Cy,...,Cy}. Using Lemma 5.4, we have |MP7{/\4(CJ' N D) = IMPL(C; N D),
so IMPZ, .(C;n D) < IMPL(C;) because of Corollary 5.2. Thus, IMP/ (C;N D) <
IMPj;(a) for every block C; N D of o A ¢ and this implies the second inequality. |

Corollary 5.6 Let 0 and m be two partitions of a set S. We have o < 7 if and
only if IMPL () = 0.

100

Proof. It is easy to see that IMP/(5) = 0. Therefore, by the first part of Theo-
rem 5.5, we have IMPL(c) = 0.

Conversely, if IMP/ (o) = 0, then IMP/(D) = 0 for every block D of o. This

1D
BN D =D (ie., D C B). This implies 0 < 7. i

implies f ('BOD‘) = 0 for every block B of m, so we have either BN D = (), or

5.2 Purity dependencies

In this section, based on the notion of impurity measure between two partitions,
we introduce the notion of purity dependency as a generalization of the concept of

functional dependency.

Let 7 = (T, H, p) be a table, where T is the name of the table, H = A;... A,
is the heading of the table, and p C Dom(A;) x - -- x Dom(A4,,), where Dom(4;) is
the domain of the attribute A; for 1 < ¢ < n. The projection of a tuple ¢ € p on a
set of attributes X will be denoted by ¢[X].

The notion of the active domain of an attribute of a table is extended to sets of
attributes as follows. The active domain of the set of attributes X of the table 7 is
the set of all values that appear under X in 7, that is, aDom,(X) = {¢t[X] | ¢ € p}.

For relational terminology and notations see [Mai83] and [ST95].

For X C H, we define the equivalence =x on the set of tuples p by u =x v
if u[X] = v[X]; the corresponding partition of the set of tuples p is denoted by
mx. Clearly, mx is the partition of the tuples of p that would be obtained using a
group by X clause in SQL.

Note that if U,V are two subsets of H such that U C V, then 7y < 7.

101

Example 5.1 Our running example is the Mushroom database obtained from the
UCI Repository of Machine Learning Databases [BM98]. This dataset' describes
23 attributes of 8124 different types of North American mushrooms. We adopted
this dataset for several reasons: it is well-known and well-documented, its attributes
are easy to understand, it has a large enough number of tuples, and it also has more
categorical attributes than other UCI datasets. Thus, there was a good chance of

finding interesting patterns embedded in the data.

The class attribute specifies whether a mushroom is edible or poisonous, so
|aDom(class)| = 2. Similarly, an attribute like odor has 7 values: almond, anise,
creosote, fishy, foul, musty, none, pungent, and spicy, so the corresponding parti-

tion Togor has seven blocks. 0

It is easy to see that a table satisfies a functional dependency X — Y if and
only if mx < my, or equivalently, if and only if IMPer (mx) = 0, according to
Corollary 5.6. This amounts to requiring that every block B of the partition 7x
is a my-pure set. Thus, functional dependencies could be generalized by imposing
an upper bound a on the impurity of the blocks of the partition 7x relative to the

partition 7y. This suggests the following definition:

Definition 5.4 Let 7 = (T, H,p) be a table and let X,Y C H be two sets of

attributes. T satisfies the purity dependency X Loy if IMPer (mx) < a. 0

In other words, the table 7 satisfies the purity dependency X L%y if the
largest f-impurity of a block B of mx relative to the partition 7wy does not exceed

Q.

L This Mushroom dataset is not the same as the one used in the experiment from Chapter 3;
the dataset used here is the slightly longer version of the Mushroom database.

102

Example 5.2 For the Mushroom database, we are interested in finding purity de-
pendencies of the form X EL:A class; in other words, we are interested in finding
sets of attributes X such that IMPZ;dm (rx) < a. Thus, by examining the values
of the attributes X, we could predict the value of the attribute class with a certain
error margin. Of course, given the nature of this dataset, there would be little
use in predicting whether a mushroom is edible or poisonous with less than 100%
accuracy. As we will show in Section 5.3, however, even though we searched for

purity dependencies with an o value different than zero, some of the facts that we

discovered presented 100% accuracy.

In a rule of the form X ELCN A, with |aDom,(A)| = 2, the properties of the

blocks of mx depend on the choice of the function f.

For example, if the Mushroom dataset contained a purity dependency of the
form odor fgl'()l class, then for every set of mushrooms M having the same odor
attribute value, if Mo.q C M represents the set of edible mushrooms and My, C M
represents the set of poisonous mushrooms, then we have:

2 M|+ | My _
‘Med‘ + |MP0| B

In other words, the harmonic average of the sizes of M.y and M,, does not exceed
a. Thus, one of the sets has fewer than a elements and the other has at least

|U| — « elements.

If the Mushroom database satisfies the purity dependency odor fik’)a class, then
at least one of the sets Meq, My, will have size less than a/2, so the other set will

have at least |U| — § elements. 0

Next, we generalize the Armstrong inference rules for functional dependencies

(see [Mai83], [ST95]) to purity dependencies.

103

Theorem 5.7 Let 7 = (T, H, p) be a table and let X,Y,Z be subsets of H. The

following statements hold:

1. if 7 satisfies X =Y andY RLN Z, then 7 satisfies X RNy (left transitivity
property);

2. if T satisfies X L4y and YV — Z, then T satisfies X 1o 7 (right transi-

tivity property);

3. if T satisfies X ELLN Y, then XU Z Iy yuz (the augmentation property).

Proof. Suppose that 7 satisfies X — Y and Y RNy Then, we have mx < 7y
and IMP. (7y) < a. By Theorem 5.5, we have IMP/ (7x) < IMPL (ny), so

IMPﬁZ (mx) < a, which justifies the first part of the theorem.

Now, suppose that 7 satisfies X L%y and Y — Z, s0 IMPer (7x) < a and
Ty < mz. Again, by Theorem 5.5, we have IMPfrZ (rx) < IMPf:Y (7x), which implies
that 7 satisfies X 2% Z.

To prove the augmentation property observe that myuy = 7y A my for all sets

of attributes U,V of 7. The second part of Theorem 5.5 implies that

IMP!_ (mxuz) = IMP{

TYuZz Ty ATz

(mx Nmz) < IMPﬁy(WX) < a,

which means that 7 satisfies the purity dependency X U Z Ioyyuz |

Theorem 5.8 If the table T satisfies the dependency X ELLN Y, X C X', and

Y' CY, then T satisfies both X' Loy and X 2% v,

Proof. Because T satisfies X 2% Y we have IMPer (rx) < a. As we no-
ticed above, X C X' and Y’ C Y imply IMPL (7x) < IMP! (nx) < a and

IMPZ;Y, (mx) < IMPL_(mx) < «, which give the desired conclusions.

104

Alternatively, the statement follows from the transitivity properties. i

The purity dependencies that we introduced are essentially based on the gener-
alization of the notion of entropy formulated in terms of partitions. In a different
but related direction, Kivinen and Manilla ([KM95]) studied functional dependen-
cies that are approximately satisfied by tables. They introduced three pairs of
measures (denoted by G;, g; with 1 < ¢ < 3) that evaluate the extent to which
a table violates a functional dependency. Specifically, G1(X — Y, 7) equals the
number of pairs of tuples in p that violate X — Y, Go(X — Y,7) gives the
number of tuples that participate in such a violation, and G3(X — Y,7) is the

minimum number of tuples that must be removed from p to obtain a relation that
G1 (X—)Y,T)
o]?

g(X =Y, 1) = w for i = 2,3. The measures GG; and G5 can be expressed

satisfies X — Y. The g; measures are given by ¢;(X — Y, 1) = and
using the partitions generated by attribute sets, but they are not impurity mea-
sures in the sense used in this chapter. Indeed, let X,Y be two sets of attributes
of the table 7 = (T, H, p), and let 7x = {By,...,B,}, and 7y = {Cy,...,Cpn}.

We can write:

n

=1
Jk=1

itk
Similarly, Go(X — Y, 7) = > {|Bi| | B; is my — impure}.
5.3 Approximate classification using purity dependencies

Let X be a set of attributes of a table 7 = (T, H, p) and let A be an attribute
of the same table. Suppose that the tuples of 7 are classified in groups based on

the values of A and that we must determine the groups where the tuples belong

105

based on tests on the remaining attributes. Of course, we are interested in using
a minimal number of tests in the classification process. This task is frequently

encountered in areas such as biology, medicine, social sciences, to name just a few.

We mention here an important difference between this problem and the problem
of finding a decision tree: this is the fact that, whereas in a decision tree we can
use a large number of attributes on different paths of the decision tree, here we are
looking for a fixed set of attributes, whose examination will allow us to classify a
tuple. We will look for such sets of attributes that are minimal in the sense that
any of their subsets will not allow us to perform the classification with the desired

precision.

Note that, if 7 satisfies the purity dependency X ELLN A, then the impurity
of every group of tuples defined by a common X-value relative to the partition
generated by A is less than «; this implies that the A blocks are approximate

unions of X-groups.

Theorem 5.8 shows that if 7 satisfies the purity dependency X ELLN A, then
T also satisfies X' 2% A for every superset X’ of X. Thus, it is important to
determine those sets X that are minimal with respect to set inclusion, such that
X L% A In Algorithm 5.1 we present the pseudocode of an algorithm for finding

these minimal sets.

Algorithm 5.1 (generation of purity dependencies)
Input: o and attribute A.
Output: the list of all minimal sets of attributes X such that IMPZ;A (7x) < a.

Uses: the lists of sets of attibutes C, M, and N .

1 Put into C all sets of attributes (distinct from A) having size one.

106

2 While C is not empty do:

2.1 For each set of attributes X from C, compute IMPj;A (rx). If the impurity
15 less than «, then remove X from C and add it to M.

2.2 Add to N the sets of attributes generated by the procedure apriori-gen
when applied to C. Clear C. Copy elements of N into C. Clear N.

3 Return M.

The apriori-gen procedure works for sets of attributes as it worked for itemsets.
Note that, like itemsets, the sets of attributes are actually implemented as lists
in which the attributes are enumerated in the order in which they appear in the
heading of the table.

This algorithm resembles Apriori; however, whereas in Apriori the frequent
set property is hereditary (i.e., is inherited from a set by its subsets), we use in
our algorithm the fact that the property {X | X C H, X EiN A} contains all the

supersets of any of its members, which means that it is dually hereditary.

We implemented in C++ this algorithm and we executed it on the Mushroom

database. A was chosen to be the class attribute of the database.

The results of an experiment using four different types of functions for different

values of « are summarized in Table 5.1.

Among the minimal sets returned by the algorithm when using the fpe.k genera-
tor and an « value of 250, we have the two sets of attributes {odor} and {cap_color,

spore_print_color}.

We verified that the odor attribute is indeed a very good classifier criterion.

The edible mushrooms are classified using odor in one of three sets of cardinalities

107

Number of Minimal Sets Total number of
of Attributes Found candidate sets examined

a | fgini fent | fpeak | [fsq Sgini Sent Sroeak fsq
2000 46 120 113 18 153 1367 834 57
1750 53 177 109 45 278 2110 1128 160
1500 86 238 121 69 451 3926 1750 290
1250 95 310 142 93 770 5275 2365 524
1000 128 433 264 | 107 1217 9062 4101 952
750 170 530 332 | 216 2905 16897 8295 2387
500 | 376 914 434 | 425 7559 39659 | 20017 7742
250 796 | 1434 664 | 984 33189 | 126141 | 76257 | 35274

Table 5.1: Results for Mushroom database

400, 400, and 3408. The poisonous mushrooms are classified using odor in one of
seven blocks of cardinalities 192, 2160, 36, 120, 256, 576, and 576. There is only
one set characterized by odor that contains both edible and poisonous mushrooms,
and this set corresponds to the value "none” (no odor) and contains 3408 edible
mushrooms and 120 poisonous mushrooms. This supports the observation made in
Example 5.2, because the smaller intersection — the 120 poisonous mushrooms —
is less than half of the value of « (which was 250 in this example). We can conclude
that we can classify very well mushrooms based on odor, the classification needing
to be refined only in the case of odorless mushrooms. Note that, even though we
searched for rules that were impure, we discovered properties that hold with 100

percent accuracy for the recorded instances.

For the pair of attributes, cap_color and spore_print_color, the edible mush-
rooms are classified in 25 sets. The poisonous mushrooms are classified in 20 sets.
There are 11 sets characterized by particular values of attributes cap_color and
spore_print_color that contain both edible and poisonous mushrooms, and 23 sets

that contain only edible or poisonous mushrooms. The sets for which the classi-

108

fication is ambiguous

given in Table 5.3.

are presented in Table 5.2 and the exact classifications are

cap_color spore_print_color | edible | poisonous
cinnamon | white 32 12
red white 48 876
gray black 440 32
gray brown 440 32
brown black 488 64
brown brown 536 64
brown white 96 892
white chocolate 16 96
white black 256 96
white brown 280 96
white white 144 8

Table 5.2: Approximate mushroom classification resulting from the analysis of

attributes cap_color and spore_print_color

As Table 5.2 shows, the ambiguous classifications tend to contain predomi-
nantly either poisonous or edible mushrooms. Still, we discovered 23 exact classi-
fications, which are shown in Table 5.3, and each of these can also be viewed as an
exact association rule. Some of these association rules have significant support, for
example, the rule {cap_color = gray, spore_print_color = chocolate} = {class =

poisonous} is supported by 744 instances.

To compare the results obtained using various generator functions in construct-
ing the set of all minimal sets of attributes X, with X RLLN A, consider the set
G of all generator functions and define an equivalence ~ on the set G x R, by
(f,0) ~ () if

o o'

i (spamc) ' (aooma)

109

Mushrooms

| entl%%igng::i:
I
20000 - sl %
15000 - R
.._1‘_
Time ..._..' ..._......’
(secs) i T
10000 - . -
-x.
A
5000 - P +
s '
P
gis”
0 | | | | | | |
0 2 4 6 8 10 12 14 16
X

108 TOWS

Figure 5.2: Graphical plot of execution time versus number of tuples

If (f,a) ~ (f',d), then it is easy to see that we have miﬂr < « if and only if

mfﬂr < o/, where mim was introduced by Equation 5.4. This gives us a base for
comparing the results obtained for several generator functions. For example, in
the case of a binary attribute A, the partition 74 has two blocks. Therefore, we
have (f,a) ~ (f',a/) if 05 = ﬁol_f)). Thus, the experimental results obtained
in determining the purity dependencies of the form X L% A for o = 1000 and
f = fqini are comparable to results obtained in other experiments for values of o

described in Table 5.4.

Our algorithm is scalable with respect to the number of tuples as shown by the
results from Figure 5.2. In this experiment we sought to determine the minimal
sets of attributes X that satisfy a purity dependency X 1% A for a fixed A, by

increasing the threshold « in proportion with the number of tuples. The set of

110

purity dependencies was kept constant across these experiments by replicating the
initial dataset for a sufficient number of times to achieve the desired number of

tuples.

5.4 Conclusions

In this chapter we introduced purity dependencies as generalizations of functional
dependencies by using the notion of relative impurity of partitions. They can also
be regarded as reflecting an “approximate” satisfaction of functional dependencies
by tables in relational databases. Regardless of the generator function used for the
impurity measure, purity dependencies have properties that are similar to Arm-

strong’s rules of inference for functional dependencies, as shown by Theorem 5.7.

The approach to classification that we propose in this paper generalizes well-
known classification techniques in data mining such as the one proposed in the
CART system which is based on the Gini impurity measure (see [BFO84]). Algo-

rithm 5.1 is reasonably fast and is scalable with respect to the size of the database.

111

cap_color | spore_print_color class | number
buff chocolate poisonous 96
buff green poisonous 24
buff white edible 48
red black edible 288
red brown edible 288
gray chocolate poisonous 744
gray white edible 152
brown buff edible 48
brown orange edible 48
brown yellow edible 48
pink black poisonous 32
pink brown poisonous 32
pink green poisonous 24
pink white edible 56
green chocolate edible 16
purple chocolate edible 16
white green poisonous 24
white purple edible 24
yellow chocolate poisonous 648
yellow black edible 176
yellow brown edible 200
yellow purple edible 24
yellow white poisonous 24

Table 5.3: Exact mushroom classification resulting from the analysis of attributes

cap_color and spore_print_color

fgini fent fpeak fsq
« | 1000 | 2000 | 2000 | 828

Table 5.4: Values of o that determine comparable results for different types of

generators

112

CHAPTER 6

Conclusions

Although data mining has come a long way since the term was coined at the be-
ginning of the 1990’s, there are many problems that are still open. For this reason,
data mining is an exciting field of study, and its importance will certainly grow
in the next decade. It is both surprising and pleasing to see that new algorithms
continue to appear for mining association rules, seven years after the introduction
of the problem in [AIS93b]. This shows that DM problems are far from being
exhausted, even if they have been around for some time. Because new applications
can appear for any new type of data, data mining is a field that will continue to

attract the interest of researchers.

In this thesis we have presented our contributions to the problems of mining

association rules and generalizing the concept of functional dependency.

6.1 Mining association rules

In Chapter 2 we have introduced two new algorithms: Closure and MazClosure,
for mining frequent itemsets and maximal frequent itemsets, respectively. These
algorithms scale linearly relative to the size of the input database. The MazClosure
algorithm is recommended when the time required by traditional algorithms that

mine all frequent itemsets, like Apriori and Closure, becomes too large.

113

After the mining of the frequent itemsets, the generation of association rules
raises another problem. Interesting rules can be hidden among thousands of less
relevant rules. This can be regarded as a secondary data mining problem, because
we now want to extract the interesting rules from the set of all possible associations.
Our approach, presented in Chapter 3, consists of finding a subset of all association
rules — the cover — from which it is possible to infer all other rules by using the
inference rule from Theorem 3.2. As shown by the results of our experiments,
the cover can be computed efficiently using algorithm CoverRules, is considerably
smaller than the set of association rules, and it can summarize better the sets of
associations that contain more redundant rules. The cover is also smaller than the
Guigues-Duquenne-Luxenburger basis, which was a similar concept introduced in

[PBT99a).

The mining of association rules in multiple-table databases is a problem that
has received less attention. In Chapter 4, we have analyzed the special but impor-
tant case of mining a star schema database. The algorithms that we introduced,
AprioriJoin and AprioriStar, both scale relative to the database size. The min-
ing of arbitrary database schemas raises more problems, due to the necessity of
computing the support of an itemset relative to each connector that links its corre-
sponding entities in the schema. Therefore, this can represent an interesting future

research direction.

6.2 Purity dependencies

The purity dependency concept that we introduced in Chapter 5 as a generalization
of the notion of functional dependency can be used for performing approximate

classifications. As shown by the results of our experiments, knowing what purity

114

dependencies exist in data can lead us to the discovery or rules that hold with
100 percent accuracy. It is also useful to have such a measure for quantifying the
degree in which the values of a set of attributes can be determined by examining

the values of another set of attributes that is disjoint relative to the first.

The relative impurity of two sets of attributes also forms the basis for defin-
ing the generalized conditional entropy between the partitions determined by the

respective sets of attributes, with applications to clustering [SCC00].

The results of our experiments show that similar purity dependencies can be
obtained using various generators, as long as we adjust the required impurity
value accordingly. An interesting future research topic would be to determine a
criteria for selecting one generator function over another or for determining in what

situations a generator function is better suited than another.

115

[AAPO(]

[AAPO1]

[AIS93a]

[AIS93b]

[AMS96]

[AS94a]

[AS94b)

[AS95a]

[AS95b]

REFERENCES

Ramesh C. Agarwal, Charu C. Aggarwal, and V.V.V. Prasad. “Depth
First Generation of Long Patterns.” In Proceedings of the 6th ACM-
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 108-118, 2000.

Ramesh C. Agarwal, Charu C. Aggarwal, and V.V.V. Prasad. “A Tree
Projection Algorithm for Generation of Frequent Itemsets.” Journal of

Parallel and Distributed Computing, Special Issue on High Performance
Data Mining, 61(3):350-371, 2001.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Database Min-
ing: A Performance Perspective.” IEEE Transactions on Knowledge
and Data Engineering, Special Issue on Learning and Discovery in
Knowledge-Based Databases, pp. 914-925, 1993.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Mining Associ-
ation Rules between Sets of Items in Large Databases.” In Proceedings
of ACM-SIGMOD International Conference on Management of Data,
pp. 207-216, 1993.

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivo-
nen, and A. Inkeri Verkamo. “Fast Discovery of Association Rules.” In
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pp. 307-328. AAAI/MIT Press, Menlo Park, 1996.

Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Min-
ing Association Rules.” RJ 9839, IBM Almaden Research Center, Al-
maden, California, 1994.

Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Min-
ing Association Rules in Large Databases.” In Proceedings of the 20th
International Conference on Very Large Databases, pp. 487-499, 1994.

Rakesh Agrawal and Ramakrishnan Srikant. “Mining Generalized As-
sociation Rules.” In Proceedings of the 21st International Conference
on Very Large Databases, pp. 407-419, 1995.

Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Pat-
terns.” RJ 9910, IBM Almaden Research Center, Almaden, California,
1995.

116

[AS95¢]

[AS96a]

[ASO6b]

[BA9Y]

[Bay98|

[BFO84]

[Bir73]

[BMOS]

[BMU97]

[BPT00]

Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Pat-
terns.” In Proceedings of the 11th International Conference on Data
Engineering, pp. 3-14, 1995.

Rakesh Agrawal and Ramakrishnan Srikant. “Mining Quantitative As-
sociation Rules in Large Relational Tables.” In Proceedings of ACM-
SIGMOD International Conference on Management of Data, pp. 1-12,
1996.

Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Pat-
terns: Generalizations and Performance Improvements.” In Proceedings
of the 5th International Conference on Extending Database Technology,
pp. 3-17, 1996.

Roberto J. Bayardo and Rakesh Agrawal. “Mining the Most Interesting
Rules.” In Proceedings of the 5th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 145-154, 1999.

Roberto J. Bayardo. “Efficiently Mining Long Patterns from
Databases.” In Proceedings of ACM-SIGMOD International Confer-
ence on Management of Data, pp. 85—93, 1998.

L. Breiman, J. H. Friedman, R. A. Ohlsen, and C. J. Stone. Classifica-
tion and Regression Trees. Chapman & Hall/CRC, Boca Raton, 1984.
Republished 1993.

Garrett Birkhoff. Lattice Theory. American Mathematical Society Col-
loquium Publications, Rhode Island, 1973.

C. L. Blake and C. J. Merz. “University of California,
Irvine: Repository of machine learning databases.”, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Sergey Brin, Rajeev Motwani, Jeffrey Ullman, and Shalom Tsur. “Dy-
namic Itemset Counting and Implication Rules for Market Basket
Data.” In Proceedings of ACM-SIGMOD International Conference on
Management of Data, pp. 255264, 1997.

Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, and Lotfi
Lakhal. “Mining Minimal Non-Redundant Association Rules using Fre-
quent Closed Itemsets.” In Proceedings of the First International Con-
ference on Computational Logic, pp. 972-986, 2000.

117

[CCSO00]

[CGLO1]

[CHH99]

[Cri02]

[CS01]

[CS02]

[DR97]

[GCLOO]

[GDS6]

[GHKS0]

[GKMOY7]

Dana Cristofor, Laurentiu Cristofor, and Dan A. Simovici. “Galois
Connections and Data Mining.” Journal of Universal Computer Sci-
ence, 6(1):60-73, 2000.

Frans Coenen, Graham Goulbourne, and Paul H. Leng. “Computing
Association Rules Using Partial Totals.” In Proceedings of the 5th Eu-
ropean Conference on Principles and Practice of Knowledge Discovery
wn Databases, pp. 54—66, 2001.

Don Coppersmith, Se June Hong, and Jonathan R.M. Hosking. “Par-
titioning Nominal Attributes in Decision Trees.” Data Mining and
Knowledge Discovery, 3(2):197-217, 1999.

Laurentiu Cristofor. “ARtool: Association Rule Mining Algorithms and
Tools.”, 2002. http://www.cs.umb.edu/~laur/ARtool/.

Laurentiu Cristofor and Dan A. Simovici. “Mining Association Rules
in Entity-Relationship Modeled Databases.” TR 01-1, University of
Massachusetts at Boston, Boston, Massachusetts, 2001.

Laurentiu Cristofor and Dan A. Simovici. “Generating an informative
cover for association rules.” TR 02-1, University of Massachusetts at
Boston, Boston, Massachusetts, 2002.

Luc Dehaspe and Luc De Raedt. “Mining Association Rules in Mul-
tiple Relations.” In Proceedings of the 7th International Workshop on
Inductive Logic Programming, pp. 125-132, 1997.

Graham Goulbourne, Frans Coenen, and Paul H. Leng. “Algorithms for
Computing Association Rules Using a Partial-Support Tree.” Knowl-
edge Based Systems, 13(2-3):141-149, 2000.

J.L. Guigues and V. Duquenne. “Familles minimales d’implications in-
formatives résultant d’un tableau de données binaires.” Mathématiques
et Sciences Humaines, 24(95):5-18, 1986.

Gerhard Gierz, Karl Heinrich Hoffman, Klaus Keimel, Jimmie D. Law-
son, Michael W. Mislove, and Dana S. Scott. A Compendium of Con-
tinuous Lattices. Springer-Verlag, Berlin, 1980.

Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, and Hannu
Toivonen. “Data Mining, Hypergraph Transversal, and Machine Learn-
ing.” 1In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 209-216, 1997.

118

[GT66]

[HHO9]

[HKPYSg]

[HPY00]

[1U62]

[JS00]

[JS01]

[KBS99)

[Khi56]

[Khi57]

[KMO5]

S. Guiasu and R. Theodorescu. Mathematical Information Theory (in
Romanian). Editura Academiei, Bucharest, 1966.

Robert J. Hilderman and Howard J. Hamilton. “Knowledge discovery
and interestingness measures: A survey.” Technical Report CS 99-04,
University of Regina, Regina, Saskatchewan, Canada, 1999.

Yka Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen.
“Efficient Discovery of Functional and Approximate Dependencies Us-

ing Partitions.” In Proceedings of the 14th International Conference on
Data Engineering, pp. 392-401, 1998.

Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns with-
out Candidate Generation.” In Proceedings of ACM-SIGMOD Interna-
tional Conference on Management of Data, pp. 1-12, 2000.

R. S. Ingarden and K. Urbanik. “Information without Probability.”
Coll. Math., 1:281-304, 1962.

Viviane Crestana Jensen and Nandit Soparkar. “Frequent Itemset
Counting Across Multiple Tables.” In Proceedings of the 4th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 4961,
2000.

Szymon Jaroszewicz and Dan A. Simovici. “A General Measure of Rule
Interestingness.” In Proceedings of the 5th European Conference on
Principles and Practice of Knowledge Discovery in Databases, pp. 253~
265, 2001.

Arno J. Knobbe, Hendrik Blockeel, Arno Siebes, and Daniel M.G.
van der Wallen. “Multi-Relational Data Mining.” INS-R 9908, CWI,
The National Research Institute for Mathematics and Computer Science
in the Netherlands, Amsterdam, Netherlands, 1999.

A.Ta. Khinchin. “On The Fundamental Theorem of Information Theory
(in Russian).” Usp. Mat. Nauk, 11:17-75, 1956.

A. Ta. Khinchin. Mathematical Foundations of Information Theory.
Dover Publ., New York, 1957.

Jyrki Kivinen and Heikki Mannila. “Approximate Dependency Infer-
ence from Relations.” Theoretical Computer Science, 149(1):129-149,
1995.

119

[KSW99]

[LHM99]

[Lux91]

[Mai83]

[Mit97]

[MR75]

[Mue95]

[PBT99a)

[PBT99b)

[PBT99¢]

Arno J. Knobbe, Arno Siebes, and Daniel M.G. van de Wallen. “Multi-
Relational Decision Tree Induction.” In Proceedings of the 3rd Euro-

pean Conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 378-383, 1999.

Bing Liu, Wynne Hsu, and Yiming Ma. “Pruning and Summarizing
the Discovered Associations.” In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp- 125-134, 1999.

Michael Luxenburger. “Implications partielles dans un contexte.”
Mathématiques, Informatique et Sciences Humaines, 29(113):35-55,
1991.

David Maier. The Theory of Relational Databases. Computer Science
Press, Rockville, Maryland, 1983.

Tom M. Mitchell. Machine Learning. WCB McGraw-Hill, New York,
1997.

A. M. Mathai and P. N. Rathie. Basic Concepts in Information The-
ory and Statistics — Azxiomatic Foundations and Applications. Halsted
Press, John Wiley & Sons, New York, 1975.

Andreas Mueller. “Fast Sequential and Parallel Algorithms for Associ-
ation Rule Mining: A Comparison.” CS-TR 3515, University of Mary-
land, College Park, Maryland, 1995.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. “Closed
Set Based Discovery of Small Covers for Association Rules.” In Pro-
ceedings of the 15th Conference on Advanced Databases, pp. 361-381,
1999.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. “Dis-
covering Frequent Closed Itemsets for Association Rules.” In Proceed-

ings of the 7th International Conference on Database Theory, pp. 398—
416, 1999.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. “Effi-
cient Mining of Association Rules Using Closed Itemset Lattices.” In-
formation Systems, 24(1):25-46, 1999.

120

[PTY8]

[PT00]

[Qui93]

[SCCO0]

[SCCO02a)

[SCCO2b]

[SJ01]

[SLR99]

[SON95]

[ST95]

Balaji Padmanabhan and Alexander Tuzhilin. “A Belief-Driven Method
for Discovering Unexpected Patterns.” In Proceedings of the 4th In-
ternational Conference on Knowledge Discovery and Data Mining, pp.
94-100, 1998.

Balaji Padmanabhan and Alexander Tuzhilin. “Small is beautiful: dis-
covering the minimal set of unexpected patterns.” In Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 54-63, 2000.

John R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
man, San Mateo, 1993.

Dan A. Simovici, Dana Cristofor, and Laurentiu Cristofor. “Generalized
Entropy and Projection Clustering of Categorical Data.” In Proceedings
of the 4th European Conference on Principles and Practice of Knowledge
Discovery in Databases, pp. 619-625, 2000.

Dan A. Simovici, Dana Cristofor, and Laurentiu Cristofor. “Impurity
Measures in Databases.” Acta Informatica, 38(5):307-324, 2002.

Dan A. Simovici, Dana Cristofor, and Laurentiu Cristofor. “Mining
for Purity Dependencies in Databases.” In Proceedings of Journées
Francophones d’Extraction et de Gestion des Connaissances, pp. 257—
268, 2002.

Dan A. Simovici and Szymon Jaroszewicz. “An Axiomatization of Gen-
eralized Entropy of Partitions.” In Proceedings of the 31st IEEE Inter-
national Symposium on Multiple- Valued Logic, pp. 259-266, Warsaw,
Poland, 2001.

Devavrat Shah, Laks V. S. Lakshmanan, Krithi Ramamritham, and
S. Sudarshan. “Interestingness and Pruning of Mined Patterns.” In
1999 ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 1999.

Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. “An
Efficient Algorithm for Mining Association Rules in Large Databases.”

In Proceedings of the 21st International Conference on Very Large
Databases, pp. 432-444, 1995.

Dan A. Simovici and Richard L. Tenney. Relational Database Systems.
Academic Press, New York, 1995.

121

[TKR95]

[Zak00]

[ZH99]

[ZH02]

[Z098]

[ZPO97a]

[ZPO97b]

Hannu Toivonen, Mika Klemettinen, Pirjo Ronkainen, Kimmo Hatonen,
and Heikki Mannila. “Pruning and Grouping Discovered Association
Rules.” In Proceedings of the European Conference on Machine Learn-
ing Workshop on Statistics, Machine Learning, and Knowledge Discov-
ery in Databases, pp. 47-52, 1995.

Mohammed J. Zaki. “Generating Non-Redundant Association Rules.”
In Proceedings of the 6th ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 34-43, 2000.

Mohammed J. Zaki and Ching-Jui Hsiao. “ChARM: An Efficient Al-
gorithm for Closed Association Rule Mining.” Technical Report 99-10,
Renssaeler Polytechnic Institute, Troy, New York, 1999.

Mohammed J. Zaki and Ching-Jui Hsiao. “CHARM: An Efficient Al-
gorithm for Closed Itemset Mining.” In Proceedings of the 2nd SIAM
International Conference on Data Mining, pp. 457473, 2002.

Mohammed J. Zaki and Mitsunori Ogihara. “Theoretical Foundations
of Association Rules.” In Proceedings of the 3rd SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 7:1-7:8,
1998.

Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and
Wei Li. “New Algorithms for Fast Discovery of Association Rules.” In
Proceedings of the AAAI International Conference on Knowledge Dis-
covery in Databases, pp. 283286, 1997.

Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and
Wei Li. “New Algorithms for Fast Discovery of Association Rules.” TR
651, University of Rochester, Rochester, New York, 1997.

122

