And the Final Subject is…

Trees

Definition: A tree is a connected undirected graph with no simple circuits.

Since a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops. Therefore, any tree must be a simple graph.

Theorem: An undirected graph is a tree if and only if there is a unique simple path between any of its vertices.

Example: Are the following graphs trees?

No.

Yes.

Yes.

No.

Trees

Definition: An undirected graph that does not contain simple circuits and is not necessarily connected is called a forest.

In general, we use trees to represent hierarchical structures. We often designate a particular vertex of a tree as the root. Since there is a unique path from the root to each vertex of the graph, we direct each edge away from the root. Thus, a tree together with its root produces a directed graph called a rooted tree.

Tree Terminology

If v is a vertex in a rooted tree other than the root, the parent of v is the unique vertex u such that there is a directed edge from u to v.

When u is the parent of v, v is called the child of u. Vertices with the same parent are called siblings.

The ancestors of a vertex other than the root are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root.

The descendants of a vertex v are those vertices that have v as an ancestor.

A vertex of a tree is called a leaf if it has no children. Vertices that have children are called internal vertices.

If a is a vertex in a tree, then the subtree with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.
Tree Terminology

The level of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.

The level of the root is defined to be zero.

The height of a rooted tree is the maximum of the levels of vertices.

Example I: Family tree

James
 / \
Christine Bob
 / \
Frank Joyce
 \
 Petra

Example II: File system

/
|
usr bin temp
 |
 |
 bin spool ls

Example III: Arithmetic expressions

+
|
y z

-
x y

This tree represents the expression \((y + z)(x - y)\).

Definition: A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children.

An m-ary tree with \(m = 2\) is called a binary tree.

Theorem: A tree with \(n\) vertices has \((n - 1)\) edges.

Theorem: A full m-ary tree with \(i\) internal vertices contains \(n = mi + 1\) vertices.

Binary Search Trees

If we want to perform a large number of searches in a particular list of items, it can be worthwhile to arrange these items in a binary search tree to facilitate the subsequent searches.

A binary search tree is a binary tree in which each child of a vertex is designated as a right or left child, and each vertex is labeled with a key, which is one of the items.

When we construct the tree, vertices are assigned keys so that the key of a vertex is both larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in its right subtree.
Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  north  
  /   
  zoo  
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
    math
   /   
computer  power
```
Binary Search Trees

Example: Construct a binary search tree for the strings math, computer, power, north, zoo, dentist, book.

```
  math
 /    
computer   power
 /     /
book   dentist
      /     
north   zoo
```

Binary Search Trees

To perform a search in such a tree for an item x, we can start at the root and compare its key to x. If x is less than the key, we proceed to the left child of the current vertex, and if x is greater than the key, we proceed to the right one.

This procedure is repeated until we either found the item we were looking for, or we cannot proceed any further.

In a balanced tree representing a list of n items, search can be performed with a maximum of $\lceil \log(n + 1) \rceil$ steps (compare with binary search).

Spanning Trees

Definition: Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G.

Note: A spanning tree of $G = (V, E)$ is a connected graph on V with a minimum number of edges ($|V| - 1$).

Example: Since winters in Boston can be very cold, six universities in the Boston area decide to build a tunnel system that connects their libraries.

```
  Brandeis
    /   
Harvard MIT
  
  BU

  Tufts UMass
```

The spanning trees of this graph connect all libraries with a minimum number of tunnels.

Spanning Trees

The complete graph including all possible tunnels:

Now imagine that you are in charge of the tunnel project. How can you determine a tunnel system of minimal cost that connects all libraries?

Definition: A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

How can we find a minimum spanning tree?
Spanning Trees

The complete graph with cost labels (in billion $):

The least expensive tunnel system costs $20 billion.

Spanning Trees

Prim's Algorithm:

- Begin by choosing any edge with **smallest weight** and putting it into the spanning tree,
- successively add to the tree edges of **minimum weight** that are incident to a vertex already in the tree and not forming a simple circuit with those edges already in the tree,
- stop when \((n - 1)\) edges have been added.

Spanning Trees

Kruskal's Algorithm:

Kruskal's algorithm is identical to Prim's algorithm, except that it does not demand new edges to be incident to a vertex already in the tree.

Both algorithms are **guaranteed** to produce a minimum spanning tree of a connected weighted graph.

Spanning Trees

Prim vs. Kruskal:

The two algorithms differ in the way they can be implemented and their efficiency under different conditions.

As a rule of thumb, **Prim's algorithm** is more efficient when initially there are many more edges than vertices.

For graphs with initially only few edges in comparison to the number of vertices, **Kruskal's algorithm** typically performs more efficiently.

The End