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a b s t r a c t

We address the question of inferring the search target from fixation behavior in visual search. Such
inference is possible since during search, our attention and gaze are guided toward visual features
similar to those in the search target. We strive to answer two fundamental questions: what are the most
powerful algorithmic principles for this task, and how does their performance depend on the amount of
available eye movement data and the complexity of the target objects? In the first two experiments, we
choose a random-dot search paradigm to eliminate contextual influences on search. We present an
algorithm that correctly infers the target pattern up to 50 times as often as a previously employed
method and promises sufficient power and robustness for interface control. Moreover, the current data
suggest a principal limitation of target inference that is crucial for interface design: if the target pattern
exceeds a certain spatial complexity level, only a subpattern tends to guide the observers' eye
movements, which drastically impairs target inference. In the third experiment, we show that it is
possible to predict search targets in natural scenes using pattern classifiers and classic computer vision
features significantly above chance. The availability of compelling inferential algorithms could initiate a
new generation of smart, gaze-controlled interfaces and wearable visual technologies that deduce from
their users' eye movements the visual information for which they are looking. In a broader perspective,
our study shows directions for efficient intent decoding from eye movements.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Eye movements can reveal a wealth of information about the
complex cognitive states of the mind. They carry information that
is diagnostic of the task an observer is trying to perform
[16,85,20,24,35,2,38,6]. Yarbus, in his seminal work in 1967,
reported that observers' fixation patterns during free viewing of
a painting were dramatically different than when different ques-
tions were given [85]. While the allocation of attention is often
task-driven, it can also be guided by bottom-up and stimulus-
driven cues [80,42,40,64,39,4,3,10]. Normal vision employs both
processes simultaneously to control overt and covert shifts of
attention.

There is a rich collection of literature that discusses the role of
oculomotor behavior in tasks as diverse as reading [69,22], pattern
copying [1], portrait painting [55], visual search [80,84,88], tea
making [44], sandwich making [32], fencing [29], cricket [46],
squash [21], billiards [23], juggling [43], activity recognition

[15,50,65,25], and game playing [9,7,11]. See [47] for a review of
eye movements in natural vision tasks. Some general underlying
principles of gaze guidance have been discovered. For example, it
is known that eye movements follow the road tangent in driving
[45], some saccades occur to avoid obstacles (predictive saccades
in walking [54]), and eye movements are sensitive to the value of
visual items [59]. Eye movements are also indicators of abstract
thought processes, for instance in arithmetic and geometric
problem solving [18], list sorting, and mental imagery [53]. These
findings highlight the intricate links between the mind, the body's
actions, and the world around us. This active aspect of vision and
attention has been extensively investigated in the context of
natural behavior. Please see [1,33,78,74,57,48,47,39,5] for reviews.

Some computational models have been proposed to quantify
gaze behavior, though their generalizations across tasks remain
limited. Examples of top-down models of gaze control include
HMM models of fixation prediction in reading (E–Z reader model
by Reichle et al. [70], Mr. Chips model by Legge et al. [49]), a model
of minimizing local uncertainty in object classification [71],
a reward maximization framework to coordinate basic visio-
motor routines to perform a complex task using reinforcement
learning [77], Bayesian models of gaze control (e.g., [86,72,8]), and
pattern classification models [9,7]. In addition, a myriad of
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bottom-up models exist for predicting where observers look when
engaged in free-viewing of pictures of natural scenes (see the
review by Borji and Itti [5]).

Despite the enormous amount of past research on understanding
the mechanisms of gaze control, less systematic effort has been made
so far to predict intents from fixations. The majority of studies have
qualitatively analyzed the difference between eye movement patterns
of observers viewing natural scenes under different questions (e.g.,
[24,6]). Some researchers, conducting quantitative analyses, have
reported that it is possible to decode the task from eye movements
while some others have argued against it. For example, Henderson
et al. [35] recorded eye movements of 12 participants while they were
engaged in four tasks over 196 scenes and 140 texts: scene search,
scene memorization, reading, and pseudo reading. They showed that
the viewing tasks were highly distinguishable based on eye movement
features in a four-way classification (decoding accuracy above 80%). In
contrary, Greene et al. [28] did an experiment in which they recorded
eye movements of observers when viewing scenes under four ques-
tions: memorize the picture, determine the decade in which the
picture was taken, determine howwell the people in the picture know
each other, and determine the wealth of the people in the picture.
They were able to decode image and observer's identity from eye
movements above chance level, but failed to predict the viewer's task
(see Fig. 4 in Greene et al.'s paper). Borji and Itti [6] were later able to
decode observers' task on this data as well as on the original question
of Yarbus. Several successful attempts have been made in the past to
learn about human cognition such as predicting search targets [68,30],
decoding stimulus category [31,60,12], predicting relative magnitude
of a randomly chosen number by a person [51], predicting events
[65,15], predicting an observer's category of clinical condition [81], and
task decoding [85].

The current study addresses the challenging problem of intent
decoding – predicting what target an observer is looking for from
his eye movements. Some scientific findings show promising
directions in this regard. For example, it is known that during
visual search, our attention and eye movements are biased by
visual information resembling the target (e.g., [56,66,84,68]),
causing the image statistics near our fixated positions to be
systematically influenced by basic visual features of the target
([68,66]). One study also found that the type of object sought, of
two possible categories, can be inferred from search statistics [87].
However, the existing approaches have not considered strategies
beyond using elementary search statistics [68]. Furthermore,
current methods have not been tested for target decoding on
natural scenes.

Our work focuses on designing powerful search target infer-
ence algorithms from eye movements recorded during visual
search. Visual search is an important task as it is one of the main
ingredients of complex daily life tasks. Two important application

domains of such target prediction algorithms are interface design
(e.g., smart webpages) and wearable visual technologies. If target
inference becomes possible for a large set of candidate objects, a
new generation of smart, gaze-controlled human–computer inter-
faces could become reality [36,75]. Gaining information about an
interface user's object of interest, even in its absence, would be
invaluable for the interface to provide the most relevant feedback
to its user. In a broader perspective, our study shows directions for
efficient intent decoding from eye movements.

2. Visual search experiments

We conduct three experiments to explore the potential of
algorithmically inferring the search target from a searcher's visited
patterns. In the first two experiments, we choose a random-dot
search paradigm to eliminate contextual influences on visual search
(see Fig. 1 for example scenes). The proposed techniques could also
be applied to the local feature vectors of any type of display.

Search in natural scenes is different from looking for targets in
random-dot patterns since several other factors, in addition to
target features, are involved. Those factors include global scene
context [79], background clutter [73], object-semantic dependen-
cies [37], and spatial priors [63]. In the third experiment, to
investigate informativeness of fixated image patches, we attempt
to predict the search target in natural scenes only from image
patches centered at fixations.

Before proceeding to algorithms, we define two terms: fixated
patterns is the set of all patterns that a subject visits while viewing
the search array, and generated patterns is the set of patterns that
we generate from fixated patterns by considering windows around
them (by sliding a 3�3 window around each fixated pattern).

2.1. Experiments 1 and 2: searching for a target on a synthetic
background

In these experiments, subjects searched a large random-dot
array for a specific 3�3 pattern of squares in two (Experiment 1)
or three (Experiment 2) luminance levels while their eye move-
ments were measured. Our aim was to devise algorithms that
received a subject's gaze-fixation positions and the underlying
display data and inferred the actual target pattern with the highest
possible probability. Fixation and display data from the actual
target pattern in the search display were excluded, because the
disproportionate fixation density at the end of a search would
have made target inference trivial. A variety of inferential algo-
rithms and classifiers were devised and tuned based on ten
subjects' gaze-position data and evaluated on another ten subjects'
data for each experiment. The current paradigm was well-suited

Fig. 1. Search targets and cut-outs from the corresponding visual search displays in (a) Experiment 1 and (b) Experiment 2 with human subjects' scanpaths superimposed on
them. Actual displays consisted of 40�40 squares. Red discs indicate fixation positions, consecutive fixations are connected by straight lines, and the initial fixation is
marked with a blue dot. A green square indicates the position of the target in the search display. Mean eye position over all trials for each experiment is also shown. Fixated
patterns is the set of all patterns that a subject visits while viewing the search array, and generated patterns is the set of patterns that we generate from fixated patterns by
considering windows around them. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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for a first quantitative exploration of this field, because it mini-
mized the influence of semantic factors on eye movements (cf.
[34]) and supplied fixed numbers of equally probable target
patterns, 29 ¼ 512 in Experiment 1 and 39 ¼ 19;683 in Experiment
2. At the same time, this paradigm challenged the algorithms to
the extreme, not only due to these huge numbers of target
candidates, but also because they were not shown as discrete
objects but formed a contiguous pattern whose elements barely
exceeded the spatial resolution of the eye tracking system.

The same twenty subjects aged 19–36 with normal or
corrected-to-normal vision participated in each experiment after
giving informed consent. Their eye movements were measured
using a head mounted eye tracker (EyeLink-II, SR Research,
Mississauga, Canada) with an average accuracy of 0.51 and a
sampling rate of 500 Hz. At the start of each trial in Experiment 1,
subjects were presented with their search target – a 3�3 array of
squares (width 0.61 of visual angle), each of which was randomly
chosen to be either black (1.2 cd/m2) or white (71.2 cd/m2). In
Experiment 2, a third luminance level (gray, 36.2 cd/m2) was added.
Subjects had 6 s to memorize this pattern before it was replaced
with the search display consisting of 40�40 squares of the same
size and luminance levels as those in the target. Each search display
contained the target pattern exactly once (Fig. 1). Subjects were
instructed to find the target as quickly as possible, then fixate on it
and press a designated button to terminate the trial. If the distance
between gaze position and target object during the button press
was less than 11, successful target detection was counted. If no
response occurred within 60 s after the onset of the search display,
the trial also terminated. In each experiment, every subject per-
formed a total of 30 trials, and during all of these trials the search
target remained the same. We analyzed the data of all trials
regardless of success or failure of a trial. The reason for including
trials without target detection is that we were not interested in the
observers' ability to detect the target but in their efforts of finding it.
All subjects found their target in some of the trials, and there was
no indication that they were not performing their assigned task at
any point during the experiment.

Fig. 1 shows a bias in mean eye position towards the upper-left
quadrant of the display. This bias seems to be present in both
experiments but more prevalent in Experiment 2. It is likely a
consequence of systematic scanning of the display in reading
direction, which was left-to-right and top-to-bottom for all sub-
jects. Since trials often timed out before the display had been
completely searched, more fixations were located in the upper-left
quadrant of the display than in the other quadrants. The reading
direction effect is typically more pronounced in more difficult
search tasks [67], and therefore the eye-movement bias is more
pronounced in Experiment 2.

2.2. Experiment 3: searching for an object in a natural scene

We used the data collected by [83], consisting of 11 full-color,
3D rendered images of real-world scenes and containing 15
singleton targets, i.e., only one object resembling the target was
present in each scene (see Fig. 8a). Six subjects with normal or
corrected-to-normal vision participated in this experiment (mean
age¼25; SD¼5). Scenes were displayed on a 19-in computer
screen (resolution 1024�768, 100 Hz) subtending visual angles
of 371 (horizontal) and 301 (vertical) at a viewing distance of
65 cm. Eye movements were recorded with an EyeLink-1000
desktop mount system (SR Research, Canada) at a sampling rate
of 1000 Hz. Prior to each search trial, the target object was
specified by a word presented in the center of the scene. Partici-
pants were instructed to search for the object as fast as possible
and, once found, to press a button of a joystick while fixating the
object. Participants were asked to search, one after another, for 15

different objects in the same scene (i.e., 15 search trials). The
search scene was then replaced by another scene for the next 15
trials, and so on, for a total of 165 trials.

3. Algorithms for inferring search targets

Our development and evaluation of several inferential algo-
rithms on synthetic patterns resulted in the discovery of two
particularly powerful mechanisms, whose combination outper-
formed all other methods (including a baseline method from [68])
over the first two experiments without modifying their para-
meters between experiments. We also checked the generality of
our results using pattern classifiers (Support Vector Machines and
Naive Bayes) over Experiment 3 and sought whether a top-down
biasing phenomenon exists in searching for a target on complex
natural scenes with several objects and background clutter.
Thus, we examined a total of five search target prediction
methods. In Experiments 1 and 2, algorithm parameters were first
tuned from the data of ten subjects (train set) and were then
evaluated on the other ten subjects' data (test set). All results
reported in this paper pertain to the test set. In Experiment 3,
evaluation was performed using cross-validation by splitting data
into train and test sets.

We first compiled all fixated patterns from all search trials of
each subject into a large dataset (data of each subject taken
individually; one dataset per subject). For each fixated square, a
3�3 window was placed over it nine times so that each of its
squares landed on the fixated square once. This technique was
chosen to account for the uncertainty of subjects in landing their
eye movements and/or eye tracker error. All the generated
patterns in this way were added to the dataset of each subject.
Fig. 2 shows the number of generated patterns for each subject
taken individually. Overall there were 293,105 generated patterns
for all ten test subjects, taken together, in Experiment 1 and
313,174 in Experiment 2.

To evaluate the performance of algorithms, we repeatedly
sampled (without replacement) from fixated (generated) patterns
of each subject and formed a pool. We then progressively ran over
all patterns in this pool, calculated and updated the statistics from
this set, and used these statistics to estimate the target of each
fixated pattern. The maximum number of fixations (pool size),
allowing tractable processing, for this analysis was chosen to be
1500 in Experiment 1 and 800 in Experiment 2. We ran each
algorithm with randomly chosen pools many times to obtain a
reliable estimation of accuracy. Algorithms were run on each

Fig. 2. Extracted patterns over ten subjects in Experiments 1 and 2. Each fixation,
off the image border, generates 9 patterns.
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subject separately (since they searched for different targets) and
then accuracies were averaged. The pseudo code of this process is
illustrated in Algorithm 1.

Algorithm 1. Search target prediction algorithm [num_subjects¼
10; num_runs¼10,000 and 15,000 in Exp. 1 and Exp. 2, respec-
tively; num_fixations is the variable].

Input: Generated patterns for each subject/search target
pattern

Output: Mean target prediction accuracy
1: for s¼ 1⋯num_subjects do
2: for r¼ 1⋯num_runs do
3: Pool¼Randomly choose num_fixations patterns from

generated patterns of subject s
4: for f¼ 1⋯num_fixations do
5: Compute and update average luminance of each

fixated 3�3 pattern in Exp. 1 (over the entire data; not
pool) or number of votes in Exps. 2 and 3 in pool

6: Predict the search target
7: end for
8: Compute mean accuracy over all fixations
9: end for
10: Compute mean accuracy over all runs
11: end for
12: Compute and report mean accuracy over all
13: subjects

3.1. Gaze-centered feature map algorithm

The first algorithm, here termed as gaze-centered feature map, is
adapted from a previous study by Rajashekar et al. [68]. In that
study, the statistical distribution of display luminance in a window
centered on a subject's fixation positions was measured and in
some cases found to roughly resemble the search target. To apply
this method to the current task, we computed the frequency of
each feature (e.g., black, gray, and white in Exp. 2) in each square
(across all 3�3-square fixated windows over the entire data) and
subtracted the average frequency of that feature across the nine
squares as we increased the number of fixations. The feature with
the highest value in each square entered the estimated target
pattern.

3.2. Pattern voting algorithm

Our first newly developed technique, pattern voting, is based on
the assumption, derived from an earlier study by Shen and
Reingold [76], that the strongest attractors of observers' eye
movements during search are local patterns that are very similar
to the search target. We operationally defined the similarity
between two 3�3 patterns as the number of matching features
in corresponding squares, resulting in a range of similarity values
from zero to nine (i.e., Hamming distance). The voting algorithm
keeps score of the votes for every possible 3�3 pattern. Each time,
the patterns whose similarity to the fixated pattern in the window
is eight (high-similarity patterns) receive one vote. Identical
patterns (similarity nine) do not receive votes for the benefit of a
‘fair’ evaluation, since neither the actual target nor the fixations on
it are visible to the algorithm. The pattern receiving the most votes
is the estimated target pattern. In case of ties in votes, we
randomly selected one of the patterns with highest votes (see
Appendix A).

3.3. Weighted pattern voting algorithm

Interestingly, placing only the window center over fixated
squares or weighting this center position more heavily leads to
reduced performance of the voting algorithm. While this effect
may partially be due to noise in gaze-position measurement, it is
also possible that subjects do not always fixate on the center of a
suspected target. Depending on how they memorize the target,
their gaze may be attracted by a specific position within similar
patterns – a ‘gaze anchor’ position from where they compare the
local pattern with the memorized one. If we could estimate the
most likely gaze anchor positions, we could improve the pattern
voting algorithm by assigning greater weights to the votes
received at the corresponding window positions relative to fixa-
tion. These window positions should be indicated by greater
consistency of their high-similarity patterns, that is, stronger
preference of some patterns over others. Preliminary experimen-
tation showed that effective weighting can be achieved by com-
puting separately for the nine window positions the votes for
individual patterns as above, divide them by the average number
of votes for that position, and apply an exponent. The final score
for a pattern is the sum of its weights across the nine positions,
and the highest score determines the estimated target pattern. The
exponent, which rewards high frequencies of patterns in specific
positions, should increase when more gaze samples are provided
in order to exploit the greater signal-to-noise ratio. The final
weighted pattern voting algorithm computes the final score sn for
pattern n as follows:

sn ¼ ∑
R

r ¼ 1

N:vr;n
Vr

� �z

; z¼ ln eþVr

c

� �
;for n¼ 1; ⋯; N ð1Þ

where N is the total number of patterns (512 or 19,683 in this
study), R is the number of distinct window positions relative to
fixation (here, R¼9), vr;n is the number of votes given by the
pattern voting algorithm to pattern n in window position r, Vr is
the sum of votes for all N patterns in position r (i.e.,
Vr ¼∑N

n ¼ 1vr;n), and c is a constant whose optimal value was found
near 600 for both experiments, based on the preliminary data.

3.4. Pattern classifiers

The number of possible target classes in the synthetic patterns
in the first two experiments is relatively large (512 in Experiment 1
and 19,683 in Experiment 2). For the majority of these classes (e.g.,
502 classes in Experiment 1), we do not have labeled data. This
makes training traditional machine learning classifiers infeasible on
this data. Here, to explore the specificity of searched patterns for
each target and check whether search for a target indeed biases the
viewing behavior, we utilize two pattern classifiers: Support Vector
Machines (SVMs, see [17]) and Naive Bayes. Each classifier is trained
on a subset of data and tested on the remaining part of the data (i.e.,
cross validation). We report accuracies of these classifiers over all
three experiments.

4. Target decoding results

4.1. Experiments 1 and 2: target inference on synthetic patterns

We first analyze the degree to which eye movements convey
information regarding the search target compared to randomly
fixated locations. Let sðti; TÞ ¼ 1�hðti; TÞ represent the similarity
between the fixated pattern ti and search target T, where hð; Þ is the
Hamming distance. In Fig. 3a, we show the similarity between the
most frequent fixated patterns (excluding first and last fixations)
and the target. Taking the cumulative mean of the similarity
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measure (Fig. 3a, right) shows that highly fixated patterns resem-
ble the target more strongly than less frequent ones. In other
words, subjects tend to look more often at patterns that are similar
to the target. Note that s values are higher in Experiment 1 than in
Experiment 2 due to lower patten variability.

Decoding accuracy of the gaze-centered feature map is shown in
Fig. 3b for both experiments. Higher prediction accuracy was
obtained with human fixations than with random fixations, which
were used to further control for systematic biases in the stimuli.
Note that the actual chance level is very low (0.195% and 0.0051%,
respectively) so doing anything better than chance with the small
patches (about 0.61 visual degrees) would indicate a significant
success. The gaze-centered feature map led to above chance target
prediction accuracies of 0.27% and 0.01% for Experiments 1 and 2,
respectively.

The chart in Fig. 4 illustrates that pattern voting clearly outper-
forms the gaze-centered feature map in Fig. 3b. In Experiment 1,
even after only 20 fixations (randomly sampled from the pool;
about 5 s of search in a search trial), the voting algorithm's
probability of picking the correct target is already 4.8 times above
chance level, while it is only 1.2 times above chance for the feature
map. After approximately 300 fixations, the weighted pattern
voting starts surpassing the basic voting algorithm and maintains
a steeper increase until the final 1500 fixations, where its
performance reaches 13.3%, outperforming the voting algorithm
(10.4%, po0:01), which in turn exceeded the performance of the
gaze-centered feature map (po0:001; Fig. 4a). A similar pattern of
results was found for Experiment 2, with maximal accuracy of
0.052% for voting and 0.065% for weighted voting based on 800

fixations (Fig. 4b). In both experiments, pattern voting algorithms
perform significantly better than the gaze feature map approach
(pso0:05). See also Appendix B for results using other variants of
voting methods.

Even if we compensate for the difference in pattern set size (by
dividing performance by chance level), weighted pattern voting
still performs clearly better in Experiment 1 than in Experiment 2,
as indicated by greater performance-to-chance level proportion
(68.2 in Exp. 1 vs. 13 in Exp. 2 at 800 fixations; 34.07 in Exp. 1 vs.
6.5 in Exp. 2 with regard to random fixation chance-level at 800
fixations), and sensitivity d0 (2.54 vs. 0.92, respectively) according
to signal detection theory, po0:01, for 1800 fixations.2 If the
reason for this discrepancy was poorer memorization of the more
complex target patterns in Experiment 2 and, as a result, greater
noise in the guidance of eye movements, then subjects should
detect the target less often than they do in Experiment 1. However,
the mean target detection rate (i.e., subject success rate) is 43% in
Experiment 1 and 47.3% in Experiment 2. Another possible
explanation is that the higher target complexity leads to subjects'
eye movements being guided by only a part of the target pattern,

Fig. 3. (a) Similarity (1 – Hamming distance) between the 400 most frequently fixated patterns and the target. Occurrences of fixated patterns were first counted and then
sorted by frequency. Results are calculated for all trials of each subject and then are averaged across all subjects. Right panel shows the running average. (b) Decoding
accuracy of the gaze-centered feature map for Experiments 1 and 2.

2 To compare the inferential performance of algorithms between decision
spaces of different sizes, we employed the sensitivity measure d0 for the situation in
which a technical device or human observer has to make a choice among a known
number of alternatives [52]. Although this measure assumes independence of
signals, which is not warranted in the present scenario, it provides a useful
approximation that has been applied to similar problems before [52]. In the
subpattern analysis (Fig. 5a), we further make the simplifying assumption that all
subpatterns of a target are fixated with the same probability.

A. Borji et al. / Neurocomputing 149 (2015) 788–799792



and whenever this part is detected, a complete verification of the
local pattern is conducted. To test this hypothesis, we resampled
1800 fixations (since the minimal dataset across subjects and
experiments included 1821 fixations) to rank all 2�2 patterns
according to their frequency of being fixated, and calculated the
probability that any of the four 2�2 subpatterns of the target
(Fig. 5b) was the top-ranked one. While the absolute hit rate
(i.e., algorithm performance) does not differ statistically between

Experiments 1 and 2 (68.1% vs. 51.6%, respectively), p40:3, both the
hit rate-to-chance level proportion (2.72 vs. 10.44, respectively) and
sensitivity d0 (0.65 vs. 1.19, respectively), are greater in Experiment 2,
po0:01, supporting our hypothesis (Fig. 5b).

Fig. 5c illustrates the top ranking choices made by the weighted
pattern voting algorithm. Actual target objects appearing in the
first three ranks are marked by red frames. While all target
patterns in Experiment 1 occupy either rank one or two (out of

Fig. 4. Comparison of inferential performance of pattern voting algorithms proposed here. Performance is measured as the probability of correctly inferred target objects as a
function of the number of gaze fixations provided to the algorithms in (a) Experiment 1 and (b) Experiment 2. This probability was approximated by repeated resampling
(10,000 and 15,000 times for Experiments 1 and 2, respectively) of subjects' fixation data. Notice that the number of potential target patterns is 512 in Experiment 1 and
19,683 in Experiment 2.

Fig. 5. Analysis of target subpattern frequencies. (a) Each target is decomposed into four 2� 2 subpatterns. (b) Probability of any of the four target subpatterns to receive the
most fixations among all 2�2 subpatterns (16 patterns in Experiment 1 and 81 patterns in Experiment 2). Error bars indicate standard error of the mean across ten subjects.
(c) Actual targets (green frame) and the 3 patterns ranked highest by the weighted voting algorithm (left: Exp. 1, right: Exp. 2). Actual target appearing in the first 3 ranks are
marked by red frames. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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512 candidates), the average rank of the target patterns in
Experiment 2 is 1514 (out of 19,683 candidates).

Table 1 summarizes search target inference results over the
first two experiments (Fig. 6).

We now report accuracies of Naive Bayes (NB) and multi-class
SVM for search target/subject inference with a linear kernel using
generated patterns (linearized 3�3 patterns). Note that our goal
here is not target inference (out of all possible search targets) but
rather subject identity inference. We need this alternate compar-
ison where the goal is to predict one of ten subjects for whom we
have training data. Recall that we do not have enough labeled data
for all possible search targets to run traditional machine learning
classifiers. Chance level here is 10%, which is much higher than in
the original experiments.

We have data for only 10 classes (10 subjects, each one looking
for a different target). Here, we drew nAf2;5;10;100;200;500;
1000;5000g patterns uniformly randomly from each subject's gener-
ated patterns and pooled them across all 10 subjects to build a train
set. Each pattern was accompanied by its target label which was the
same as the subject's identity, since each subject searched for a unique
target. To generate the test set, we followed the same procedure,
except now each time we picked n patterns from the rest of the
patterns (i.e., excluding training patterns). The above process was
repeated 200 times and results were averaged. Note that chance level
was at 10% (1 out of 10 targets). Fig. 5 shows decoding results for
human generated and randomly generated patterns. Including more
fixations increased accuracy up to 16.58% for Exp. 1 (14.46% using
Naive Bayes) and 15.8% for Exp. 2 (13.3% using Naive Bayes), both
significantly above chance (t-test, po0:005 using both classifiers
starting from 10 fixations). Decoding performance was at chance level
with random fixations. This result indicates that fixated locations were
more similar to the target pattern, conceivably due to a top-down
attention biasing mechanism [56,66,84,68,58]. Note that this outcome

was not caused by the difference in statistics of search arrays
(i.e., different random dot patterns over subjects), as classification
accuracy with random patterns was not significantly better than
chance.

Strengthen this observation by clarifying for the reader that the
test set was derived from a different set of target patterns than the
training set. Therefore, it makes sense that the subject classifier
will fail when the gaze patterns are influenced more by target
identity than by subject identity.

4.2. Experiment 3: target inference on natural scenes

We investigated the influence of two parameters in target
decoding accuracy on data from Section 2.2 (see Fig. 7) including
(1) number of saccades from 1 to 15, and (2) attention window size
(patch size n) from 5�5 to 513�513 (i.e., 2nþ1 for n¼2...9). First
and last saccades as well as all saccades inside the target object
region (object boundaries were annotated) were discarded.
A classifier was trained on each image separately and then its
average performance over all 11 images was measured. Following
a leave-one-out procedure, we first trained a multi-class SVM with
RBF kernel from data of 5 subjects to map randomly selected
observer-fixated patches to the target object. The resultant classi-
fier was then applied to another set of randomly selected fixated
patches from the remaining subject. We exploited three types of
features to encode the image content at fixated locations: (1) the
concatenated histograms of red, green, and blue pixels in RGB
color space, (2) gist features by Oliva and Torralba [62] which have
proven to be highly relevant to scene and object recognition, and
(3) local binary patterns (LBP) by Ojala et al. [61].

Fig. 8b shows that target decoding accuracy rises with increas-
ing number of fixations. Further, increasing the window size rises
the decoding performance up to size 257 (129 for RGB Hist) and
then drops. This might be because the average size of annotated
objects was approximately 256 �256 pixels, or because the size of
the subjects' attentional focus was in the same range. As a control,
we also used raw fixation locations (i.e., augmented (x, y) coordi-
nates) as features for target prediction (solid black curve in
Fig. 8b). Surprisingly, this simple feature results in significantly
above-chance accuracy of 22.67% (po0:05) indicating systematic
differences in eye movements in searching for different objects. It
should be noted, however, that fixation location implicitly encodes
local image features and also semantic factors; for instance, when
searching for a bicycle, observers would direct their attention to
the depicted street level rather than the roofs of houses [79].
Another viable explanation is that the structure of the used indoor

Table 1
Summary results of Experiments 1 and 2 for search target inference. Accuracies are
in percentages. Stars indicate significance vs. voting algorithm (po0:01 in both
experiments). In both experiments, both voting algorithms perform significantly
better than the gaze feature map approach (pso0:05).

Parameter/Accuracy Exp. 1 Exp. 2

No. of classes 29¼512 39¼19,683
No. of fixations in pool 1500 800

Gaze-centered map 0.27 0.01
Voting 10.4 0.052
Weighted voting 13.3n 0.065n

Chance 0.195 0.0051

Fig. 6. Search target decoding accuracy for increased number of fixations using SVM and Naive Bayes classifiers in Experiments 1 and 2. Chance level here is at 10%. Error
bars indicate standard error of the mean (s.e.m) across 200 runs.
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scene dataset is such that wherever one fixates, there is sufficient
information to perform target inference.

The best performance of 25.4% was achieved using RGB Hist
features, window size 129, and 15 fixations. This result is sig-
nificantly above the chance level of 6.7% (t-test, po0:01) and
trending towards significantly higher decoding accuracy than
using fixation locations (t-test, p¼ 0:1). Averaged over all fixations
(x-axis), SVM using RGB Hist results in 22.7% accuracy which is
significantly above 21.7% using fixation locations (t-test, p¼ 0:02).
Increasing the number of fixations to 25 did not change the results
dramatically (maximal accuracy of 26% using RGB Hist).

As a control analysis, we trained a classifier with random
fixations and randomly extracted patches (using RGB Hist).
A number of random fixations matching that of human fixations
were extracted in search for each object. Classification accuracy
with random fixations rose with more fixations up to 15.15% at
15 fixations which is significantly lower than accuracy using
human fixations (t-test, po0:005). Similarly, using random
patches resulted in accuracy of 15.4% which is significantly lower
than accuracy using human fixated patches (po0:005). As the
number of random fixations increases, the algorithm gets to
sample more of the scene, and therefore, the accuracy of target
prediction increases.

5. Discussion

We reported algorithms for search target inference from eye
movements in synthetic and natural scenes. The results provide
insight into both the way humans search for complex patterns and
the most promising approaches to extracting intent information
from fixation data. With regard to human search processes, it
seems that complex target patterns are not matched with local
display areas as a whole but that search is guided by subpatterns
(in alignment with findings from [68]). Only target verification

processes use the complete memorized target information. Pattern
voting takes advantage of this fact and thus is superior over target
inference approaches based on classification images [68]. Further-
more, the focus of attention during real-world scene search
appears to be matched in size with typical individual scene
objects.

Here we treated all visited search patterns equally. While there
does not seem to be an obvious reason why certain fixations
during the search may convey more information than others
regarding target appearance (e.g., fixations near the start of trial
vs. fixations near the end of trial), a systematic investigation of this
factor may tell us how subjects accumulate information over time
during search (see for example [56]).

Note that the problem addressed here does not fit to the classic
setting in the pattern recognition literature in which a set of data
from all classes along with their labels are available to train
classifiers (i.e., many classes here do not have samples). In other
words, no other obvious algorithms seem to be feasible in our
scenario beyond the ones we tested. While it is possible to design
search tasks with fewer possible search targets (as in Exp. 3), the
advantage of our first two experiments is that they challenge
algorithms to their extreme and force them to take better
advantage of the limited amount of available data.

Is it possible to obtain better accuracies than what we reported
in our first two experiments? It is very hard to answer this
question as several factors such as subjects' strategies over space
and time, their uncertainty in landing saccades, and eye tracking
error are involved. Even a human benchmark here would not be
very useful and most likely humans will fail to report the search
target from fixated patterns. Failure of humans, however, does not
necessarily mean such information does not exist in the data. In a
similar setting to ours, Greene et al., [28] asked a group of
observers to watch the scanpaths of some other observers and
guess the tasks under which they viewed images (i.e., Yarbus'
experiment). They found that their observers were not able to

Fig. 7. Stimuli used in Experiment 3. Data was borrowed from [83] in which six subjects searched for one of 15 objects in 11 full-color, 3D rendered images of real-world
scenes. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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perform better than chance. This (along with the failure of their
classifiers trained from eye movement patterns) led them to
conclude that scanpaths lack diagnostic information regarding
the task. Interestingly, later studies [6,41] were able to classify

observers' task from eye movement patterns indicating the pre-
sence of task diagnostic information in scanpaths.

In Experiment 3, we used data of Võ and Wolfe [83] and
showed that search target inference is feasible on their data to

Fig. 8. (a) Search scanpaths for 4 objects in natural scenes. In alignment with the previous works (e.g., [27,14]), we qualitatively observe that viewers look more often at the
objects (which are usually unstructured) rather than the background (which is usually structured). (b) Decoding accuracy using 3 feature types and multi-class SVM for
increasing number of fixations and surrounding window sizes. Solid black curve is the accuracy of an SVM classifier with fixation position information only. Mean eye
position over all search trials (inset) shows a bias toward lower scene regions as most objects often appear on the floor. Classification accuracies using all feature types are
significantly above chance, indicating that fixated patches convey information regarding the search target. An SVM with shuffled labels (from ½1 15�) results in 6.7% accuracy
(chance-level).
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some extent using pattern classifiers. However, it is not trivial to
readily apply our pattern voting algorithms to this data due to the
high variability of image data and the number of possible target
patterns (compared to our synthetic patterns). The bottom line is
that target features offer more information than previously
thought from Rajashekar et al.'s study [68] but demand more
intelligent ways to extract and exploit them.

Despite a large volume of research on human behavior in visual
search, to the best of our knowledge, no one has yet tried to
perform the reverse which is predicting search targets in natural
scenes from search statistics (here target features). We believe that
our results together with the previous findings on the role of
saliency and context in visual search (e.g., [26,79]) can help design
more accurate search target inference algorithms in the future.

To move from target inference in visual search to complex
intent and task decoding scenarios, we propose the following four
categories of features. These features have been used scatteringly
in the previous studies and include:

1. Oculomotor-based saccade metrics including distributions of
saccade duration, inter-saccade interval, saccadic peak velocity,
saccade amplitude, etc.

2. Stimulus-based features including distribution of features at
fixated locations and spatial patterns of eye movements inspired
by [85,24].

3. Correlations with bottom-up saliency maps (differential distri-
butions of salience values at human gaze vs. random locations).

4. Correlations with top-down relevance maps. These top-down
maps can be obtained by learning models for a specific task
from training data. For example, a relevance map can be
obtained by training a classifier from computer vision features
to the task output y (e.g., W in a linear classifier Y¼WX þ b can
be converted to a 2D saliency map). This relevance map is
basically equivalent to annotating data and then measuring

feature statistics on annotated regions (for features such as
face, text, and gaze direction). The underlying idea here is to
generate features that represent a fusion of image-derived
information (salience/relevance maps) with observer-derived
behavior (eye positions). This means fusing stimulus and
behavior.

The above features can be used to train different types of
algorithms and pattern classifiers for answering the following
questions regarding stimulus, observer's identity, and his task:

1. Given the stimulus x and pattern of fixations e, what would be
the observer's response y?

2. Given response y and patterns of eye movements e, what is
stimulus x or its category? Such prediction is possible because
different images have different informative or interesting
regions that attract attention (e.g., a beach scene vs. a city
scene).

3. Given e and x (or just e), which task, out of several tasks T1,
T2, …, Tn, a subject has been performing (i.e., Yarbus's classic
experiment [85])?

4. Given ðx; y; and eÞ, what is the identity or category of the
observer (e.g., healthy or patient [81])? This might be inferable
due to idiosyncratic patterns of eye movements (e.g., [20]).

5. Given x and T, what are the locations of fixations e? This is the
goal of gaze prediction and saliency models.

We found that, on synthetic search tasks, subjects break down
complex target patterns to smaller manageable pieces to look for in
a scene. This aligns with previous findings (e.g., [84,82,58,13,19])
that suggest neurons to be biased in a top-down manner to render
the target more salient. Such studies, however, have mainly con-
sidered elementary features such as orientation, color, and intensity
which are believed to be extracted by early visual areas. Our results
extend these findings and suggest that biasing of more complex
mid-level features or composition of simple features might be also
possible.

6. Conclusion

The present data suggest that the mechanisms underlying the
weighted pattern voting algorithm are robust enough for a useful
target estimation in a variety of human–computer interfaces. Our
target inference algorithms can be adapted to various display
types, since image filters commonly used in computer vision and
behavioral studies (e.g., [88]) can transform any display into a
matrix of feature vectors. Moreover, the current data advocate that
the future designers of smart, gaze-controlled human–computer
interfaces should keep the spatial complexity of display objects
low in order to induce more distinctive patterns of eye movements
for individual search targets.

We also mentioned what features can be extracted from eye
movement data for general intent decoding. These features can be
used for developing algorithms that can be utilized for a number of
applications such as wearable visual technologies (smart glasses
like Google Glass), smart displays (phones and tablets), adaptive
web search, activity recognition, human–computer interaction,
biometrics, marketing, and patient diagnosis (e.g., Autistic, ADHD,
Parkinson, Alzheimer). Eventually, eye movements together with
EEG, fMRI, cell recording data, and purely biological cues such as
pupil size, sweating, heart rate, and breathing can lead to high-
throughput intent decoding.

Fig. 9. Search target prediction accuracy when the target is among the patterns
with the maximum vote (see Appendix A).

A. Borji et al. / Neurocomputing 149 (2015) 788–799 797



Acknowledgments

A.B. was supported by the National Science Foundation (Grant
number CMMI-1235539), the Army Research Office (W911NF-
11-1-0046 and W911NF-12-1-0433), and U.S. Army (W81XWH-
10-2-0076). M.P. was supported by Grant number R15EY017988
from the National Eye Institute. The authors would like to thank
Melissa Le-Hoa Võ and Jeremy Wolf for sharing their data with us.
Thanks also to reviewers for their valuable comments. Our code
and data are publicly available at http://ilab.usc.edu/borji/
Resources.html.

Appendix A

In Section 3, to break the tie in votes (i.e., when there are
several patterns with the same maximum votes), we randomly
selected one of the patterns with most votes. Here, we report
results with an alternative criterion: a hit is declared when the
target is among the patterns with the same maximum votes. Fig. 9
– the results for 1800 fixations. As it shows, patterns are the same
as those shown in Fig. 4 but accuracies are about two times higher.
The feature gaze map algorithm is executed here over only fixated
patterns (and not their neighbors).

Appendix B

The weighted pattern voting algorithm was determined as the
strongest target inference method through evaluation of various
approaches. Besides the algorithms presented above, several other
algorithms were implemented, their parameters and components
were fitted using ten subjects' data, and they were evaluated on
the other ten subjects data. The fitting of the algorithms included
modifications for gaze-anchor estimation, which led to relative
performance gains of up to 72.4% (using the criterion in Appendix A).
The algorithms and their performance (for the strongest-performing
variant and parameters) based on 1800 fixations in Experiments 1
and 2, respectively, were the following: pattern voting with votes
weighted by similarity (30.9% and 0.122%), pattern voting weighted
by fixation duration (24.1% and 0.115%), pattern voting with lower
(7) similarity threshold (21.5% and 0.102%), Bayesian inference based
on similarity metric (18.5% and 0.098%), 2�2 subpattern voting (9.2%
and 0.115%), 3�1 and 1�3 subpattern voting (7.1% and 0.103%),
feature map based on most frequently fixated patterns (6.5% and
0.08%), voting based on feature correlation between neighboring
squares (6% and 0.093%), and average luminance in gaze-centered
window (0.26% and 0.0069%).
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