
A design for real-time neural modeling on the GPU

incorporating dendritic computation

Tyler W. Garaas
1
, Halil Duzcu

2
, Frank Marino

1
, and Marc Pomplun

1

1University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125-3393, USA

2Middle East Technical University, İnönü Bulvarı, 06531, Ankara, Turkey

Abstract. Recent advances in neuroscience have underscored the role of single neurons in

information processing. Much of this work has focused on the role of neurons' dendrites to perform

complex local computations that form the basis for the global computation of the neuron.

Generally, artificial neural networks that are capable of real-time simulation do not take into account

the principles underlying single-neuron processing. In this paper we propose a design for a neural

model executed on the graphics processing unit (GPU) that is capable of simulating large neural

networks that utilize dendritic computation inspired by biological neurons. We subsequently test

our design using a neural model of the retinal neurons that contribute to the activation of starburst

amacrine cells, which, as in biological retinas, use dendritic computational abilities to produce a

neural signal that is directionally selective to stimuli moving centrifugally.

Keywords: GPGPU, Neural Networks, Retina Simulation, Starburst Amacrine Cells

1 Introduction

As with most research topics, neural modeling has broadened into a spectrum of

methodologies that sometimes use the terms artificial neural networks, computational

neuroscience, and brain models to illustrate methodological differences. The authors of

[1] have chosen the terms realistic brain models and simplified brain models to illustrate

two sides of the research spectrum. Realistic brain models refer to models that go to

painstaking lengths to model the individual components of neurons and their assemblies.

In these models, the goal is often directed toward gaining greater insight into actual brain

function [2]. Indeed, this is a very active avenue of research in both the neuroscience and

computational neuroscience fields.

Unlike its counterpart, simplified brain models, often implemented as artificial neural

networks (ANNs), are usually directed toward computing meaningful information. Their

simplified nature is both a distinct advantage and disadvantage over realistic brain models,

as it is the conceptual and computational intractability that has hindered the use of realistic

brain models as functional entities. Despite the large range of successful applications of

ANNs, future networks that attempt to solve complex problems such as robust object

recognition [3] or modeling complex behaviors [4] will likely require more realistic

organization principles.

If neural networks are to be realized in a more biologically realistic manner, the two

aforementioned hindrances will need to be overcome. The first, conceptual intractability,

is being slowly broken apart by a large number neuroscientists such as those previously

referenced. Their progress has led to many new ideas and models regarding the

functioning of individual neurons. A major insight that has emerged from these studies

involves the role of the single neuron in the computational abilities of neural networks –

both biological and artificial [2,5]. In particular, the structural organization of the

neuron’s dendrite (the part of the neuron that receives signals from other neurons) has

become an important concept in both the theory of biological neuron functioning [2,5-7]

and computational studies [8]. Models that do not take into account the physical structure

of the neuron are in effect using point neurons. Point neurons are named as such to

illustrate the lack of dendrites where afferent neurons instead synapse directly onto the

soma (cell body).

One biological phenomenon that has been attributed to interactions between neurons

synapsing at proximal locations on a dendrite is the directionally selective activation of

starburst amacrine cells [9]. Euler et al. [9] demonstrated that the signal, which responds

vigorously for stimuli moving centrifugally –i.e., away from the soma–, is the result of

local computations that take place on the dendrites of the cell. Following this result,

Tukker et al. [10] created a realistic computational model that showed the directionally

selective signal found at the distal tips of the dendrites could be accounted for by an

interaction between a temporally delayed global signal and local synaptic input.

The second hindrance, computational intractability, is a result of the large number of

calculations needed to model a realistic neuron. One approach that is being used to

overcome computational insufficiencies in highly parallel applications, such as neural

modeling, is to use the Graphics Processing Unit (GPU) [11], which is the primary

computational unit integrated into present-day computer graphics cards.

In this paper, we present a neural network design that has been crafted for execution on

the GPU. The design achieves real-time computational abilities while preserving

potentially crucial features of realistic brain models such as dendritic computing. To

demonstrate the neural network design, we implement a sample network that simulates a

subset of the retinal circuitry responsible for generating the directionally selective signal

in the starburst amacrine cells.

2 GPU Processing

In recent years, the computational abilities of certain systems have seen enhanced growth

due to the expansion of parallel systems such as cluster computing and distributed

computing. Another highly parallel paradigm that has recently been exploited by

computationally hungry scientists is the GPU, which is currently being used for image

processing, computer vision, signal processing, video encoding, and ray tracing, among

others [11]; applications such as these have been given the acronym GPGPU for general-

purpose computation using graphics hardware.

2.1 Brief Overview of GPU Architecture

The massive computational power underlying the GPU comes from its parallel

architecture, which is implemented using a computational unit known as a stream

processor. Essentially, a stream processor is a highly restricted form of a processor core;

whereas processor cores are able to perform a wide variety of complex tasks, stream

processors use a specialized instruction set to perform the tasks that are repeatedly

executed during computer graphics rendering. By performing only a handful of tasks, the

GPU can pack hundreds of stream processors into a single GPU, as opposed to the eight

processor cores available in modern CPUs at the time of writing.

Given the restricted nature of stream processors, applications that wish to exploit the

computational advantages of the GPU must adhere to a narrow flow of execution. This

flow is divided into four primary steps: vertex operations, primitive assembly,

rasterization, and fragment operations. All programs executed on the GPU must perform

all four steps; however, in many GPGPU applications, the first three steps are executed at

a bare minimum to support the bulk of the computation, which takes place at the final

stage. Those interested in the details of the first three stages are encouraged to visit a

community website dedicated to GPGPU programming: http://www.gpgpu.org.

The fragment operations that support the bulk of GPGPU computations are performed

by a simple program designed to execute on the GPU known as a fragment shader.

Fragment shaders perform a series of operations that manipulate one pixel of data per

execution. However, since there are hundreds of stream processors, many millions of

pixels of data can be processed in a very short period of time.

Data used by GPGPU applications must also conform to computer graphics constructs

which use images known as textures to store data. In traditional computer graphics

applications, a texture stores visual attributes not suited for –or too computationally

http://www.gpgpu.org/

expensive for– representation by geometry, such as the clothes of a character or the

asphalt of a highway.

2.2 Neural Networks on the GPU

Many ANNs involve a highly parallel design that is well suited for implementation on the

GPU. Consequently, a number of researchers have taken advantage of this to achieve

notable gains in execution time [12-14]. For instance, Bernhard and Keriven [12] were

able to achieve a 5 to 20 fold increase in performance over a CPU implementation while

simulating spiking neural networks for image segmentation. Gobron et al. [13] use the

GPU to model the retina using cellular automata, and Woodbeck et al. [14] use the GPU

to implement a model of the processing that takes place in the primary visual cortex.

However, each of these instances of neural network processing use simple point-neurons

to perform the pertinent computations, which will likely be insufficient to for complex

tasks such as robust object recognition.

3 Neural Network Design

3.1 Single Neuron Model

As mentioned previously, researchers now believe the physical organization of synapses

plays a key role in the processing of information by neurons. In the design presented here,

we take into account the organization of afferent synapses to facilitate some of the

mechanisms that underlie the computational power of biological neurons. Figure 1

illustrates a neuron that can be simulated using the present model. The important thing

to notice is the

Fig. 1. Illustration of potential neurons in the present model.

labeling of dendrite segments, which permits local computations to take place in

individual segments. London and Häusser [5, pp. 509] note, “Because the branch points

in the dendritic tree can be seen as summing up the current in individual branches, ... the

whole dendrite can implement complex functions.” The addition of this type of

organization will allow the use of what London and Häusser refer to as the dendritic

toolkit [5]. In the sample network we use this dendritic toolkit to compute a direction

selective signal in the dendrites of a simulated starburst amacrine cell.

3.2 Single Neuron Creation

The single neuron model described in the previous section allows inputs to be grouped

together on a single dendrite segment so that local computations can take place

independently. However, it may not be entirely clear how the dendrite segments can be

generated or how afferent synapses can be connected to each segment. Consequently, we

have included the pseudocode for a recursive function that generates the dendrite

branching patterns from a branch code. For example, the branch code that is used to

generate the left neuron in Figure 1 is given on the first line of pseudocode, and the branch

code to generate the right neuron is 41110111011101110.

Essentially, each digit in the branch code, which can be stored in string form,

represents the number of new segments that are to be generated from the current location.

For example, ‘2’ represents a binary split, ‘1’ represents a single segment, and ‘0’

represents the end of a segment. When a split is encountered, the subsequent digit(s) is

used to generate the first segment of the split until that branch is terminated with a ‘0’ at

which point the following digit(s) is used to generate the second segment of the most

recent split, and so on until all segments have been terminated.

branchCode = “5210102101012210101021010110”

SetupDendriteSegment(int codeIndex)

 if branchCode[codeIndex] equals ‘0’

 delete digit from branchCode at codeIndex and return

 DendriteSegment d = new DendriteSegment

 while SynapsesNeeded() equals true

 Add GetNextSynapse() to d

 for i = Integer of branchCode[codeIndex] to 0

 SetupDendriteSegment(codeIndex+1)

 delete digit from branchCode at codeIndex and return

End SetupDendriteSegment

The SetupDendriteSegment function can generate a complex branching pattern

from a string of digits; however, it still must be decided how afferent inputs will be

connected to the individual dendrite segments. Since this is different for each type of

neuron, a general procedure is described which invokes two undefined functions,

SynapsesNeeded and GetNextSynapse which are left to the reader to implement

as needed by their application.

One final item needs to be handled before the segments are complete, which is the fact

that the local membrane potentials of neighboring segments should be part of the local

computation that takes place on each individual dendrite segment. This can be solved by

simply treating the neighboring segments as synapses and identifying these with a unique

synapse type (described in the following section).

3.3 Data Storage

In the present model, functionally identical neurons are arranged into a single layer

which forms the functional unit of the network. Each layer of simulated neurons in the

network requires three textures to be maintained throughout execution: a neuron texture, a

dendrite texture, and a synapse texture. Individual pixels in the neuron texture store the

activation (i.e., membrane potential; A
N
) for each individual neuron as well as an index to

the first dendrite segment of the neuron (I
D
) stored in the dendrite texture. Pixels in the

dendrite texture store the local membrane potential of each dendrite segment (A
D
), an

index to the first synapse of the segment (I
S
) stored in the synapse texture, and a weight

used to moderate how much local potential is transferred from the segment (W
D
). Finally,

each pixel in the synapse texture stores an index to the afferent membrane potential that is

being transferred by the synapse (I
A
); for instance, bipolar cells in the sample network

receive input from the photoreceptor neurons, which will be indexed by the synapse

texture of the bipolar cell’s synapses. However, as with biological neurons, synapses in

the model can also receive their input from a dendrite segment of another neuron. The

synapse texture also contains a weight used to modify the synapse strength (W
S
) and the

type of the synapse (T) which determines the texture that is indexed by the synapse.

Figure 2 illustrates a summary of the data model described above.

3.4 Model Execution

As mentioned in the previous section, functionally identical neurons are grouped into

layers. Each layer is executed by two fragment shaders each time a neuron’s activations

Fig. 2. Data model for the neural network design. Each pixel (grey square) is used to

store the various indexes and parameters used to compute the activations of the neurons

and dendrites in the network.

are calculated. The first fragment shader computes the local activation function of

individual dendrite segments. This shader executes by beginning at the first indexed

synapse in the synapse texture and iterating over subsequent synapses until a blank

synapse is encountered –denoted by a -1 in I
A
. The membrane potential calculated in this

way is then stored in the G component of the dendrite texture. The second shader

computes the global activation function of the neurons in the network. This shader works

in a manner very similar to the first shader by iterating over the dendrite segments directly

connected to the neuron soma, and the activation of the neuron is stored in the G

component of the neuron texture.

4 Sample Network

The sample network presented hereafter is used to demonstrate how the organization

principles previously described can be implemented to achieve both function and

efficiency. To this end, the following network will be used to model a subset of the

retinal circuitry responsible for the directionally selective signal found in the distal

dendrite branches of the starburst amacrine cells. In particular, we model the

photoreceptors (S-, M-, & L-wavelength cones), horizontal cells (H1 and H2), on-center

bipolar cells (S-, M-, & L-wavelength cells), and starburst amacrine cells. The local

membrane potentials of the network demonstrate the computation of the centrifugal

direction selective signal very similar to that of biological neurons [9,10].

4.1 System Overview

Input to the network is achieved using a standard webcam setup that captures video at 30

frames per second (FPS). After each frame is captured, it is transferred to video memory

on the graphics card using the OpenGL API. Fragment shaders, which encompass nearly

all of the network processing and implementation, are implemented using OpenGL’s high

level shading language, GLSL. The neuron, dendrite, and synapse textures are created

prior to execution using an extension of the methods detailed in previous sections.

4.2 Network Organization

The wiring of photoreceptors, horizontal cells, and on-center bipolar cells is modeled

directly from the biological wiring described in [9-10,15,16]. Figure 3 illustrates the

connections that exist between a single starburst amacrine cell and the cells that contribute

to its activation; essentially, the neurons shown for the classic receptive field for a single

starburst amacrine cell. Dendritic branching of horizontal and bipolar cells incorporates

only single branch segments –e.g., a branch code of 410101010. Bipolar cells compute

a contrast modulated activation through an antagonistic center-surround organization of its

afferent synapses from cones (center) and horizontal cells (surround). For the sake of

brevity, the equations used to compute neural activations are not presented. However, the

neural activations follow very closely those of their biological counterparts as described

by Dowling [15], and are similar in motivation to those of [17].

Starburst amacrine cell dendrites follow the basic design present in Figure 1. This

dendrite branching pattern, though highly simplified, still preserves the necessary

geometric relationship that allows for the computation of the centrifugal-selective signals

as described by Tukker et al. [10]. As dendrite segments of the starburst amacrine cell

move progressively farther from the soma, inputs to these segments are selectively

received from bipolar cells that are more distant from the starburst cell.

Fig. 3. Connections and data flow in the sample network. (left) A 3-dimensional

rendering of the actual connections that contribute to the activation of a single starburst

amacrine cell in the sample network. Illustrated neurons represent the classic receptive

field of the starburst neuron. (right) Source image and the activations of each layer in the

network. Lighter portions represent higher activations whereas the color represents the

relative contribution by red, green, and blue components of the source signal.

4.3 Network Results

In all, the network consists of nine layers of neurons, more than 225,000 individual

neurons, and more than 2 million synapses. Despite its size, the activations of every

neuron in the network can be computed in 7 ms or, put another way, the network operates

at approximately 142 pulses per second (1 pulse = 1 computation of neuron activations).

The activations of the individual layers in the network are demonstrated in Figure 3

(right). The activations of all layers, with the exception of the starburst amacrine layer,

are illustrated during a single, similar pulse step. The activations of the starburst amacrine

layer, however, are from a pulse that is many steps into the future, which demonstrates the

motion of the robot pictured. Although the starburst amacrine cells are directionally

selective, their highly overlapped nature instead results in activations similar to image

subtraction from tradition image processing techniques. This result in itself could be

achieved with a simpler network; however, starburst amacrine cells form a crucial input

for the computationally more complex directionally selective ganglion cells [9]. As such,

this network represents a significant first step in the creation of a larger, more complex

network dedicated to modeling the complex visual processes that contribute to our own

remarkable visual abilities.

References

1. Sejnowski, T. J., Koch, C. & Churchland, P. S. (1988). Computational neuroscience.

Science, 241, 1299-1306.

2. Koch, C. & Segev, I. (2000). The role of single neurons in information processing.

Nature Neuroscience, 3, 1171-1177.

3. Gray, C. M., König, P., Engel, A. K. & Singer, W. (1989). Oscillatory responses in

cat visual cortex exhibit inter-columnar synchronization which reflects global

stimulus properties. Nature, 338, 334-347.

4. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H. & Aertsen, A.

(1995). Dynamics of neuronal interactions in monkey cortex in relation to

behavioural events. Nature, 373, 515-518.

5. London, M. & Häusser M. (2005). Dendritic computation. Annual Review of

Neuroscience, 28, 503-532.

6. Agmon-Snir, H., Carr, C. E. & Rinzel, J. (1998). The role of dendrites in auditory

coincidence detection. Nature, 393, 268-272.

7. Mainen, Z. F. & Sejnowski, T. J. (1996). Influence of dendritic structure on firing

pattern in model neocortical neurons. Nature, 382, 363-366.

8. Segev, I & Rall, W. (1988). Computational study of an excitable dendritic spine.

Journal of Neurophysiology, 60, 499-523.

9. Euler, T., Detwiler, P. B. & Denk, W. (2002). Directionally selective calcium signals

in dendrites of starburst amacrine cells. Nature, 418, 845-852.

10. Tukker, J. J., Taylor, W. R. & Smith, R. G. (2004). Direction selectivity in a model of

the starburst amacrine cell. Visual Neuroscience, 21, 611-625.

11. Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E. &

Purcell, T. J. (2007). A survey of general-purpose computation on graphics hardware.

Computer Graphics Forum, 26, 80-113.

12. Bernhard, F. & Keriven, R. (2006). Spiking Neurons on GPUs. International

Conference on Computation Science. Workshop general purpose computation on

graphics hardware (GPGPU): Methods algorithms and applications, Readings, UK,

May 2006.

13. Gobron, S., Devillard, F. & Heit, B. (2007). Retina simulation using cellular automata

and GPU programming. Machine Vision and Applications, 18, 331-342.

14. Woodbeck, K., Roth, G. & Chen, H. (2008). Visual cortex on the GPU: Biologically

inspired classifier and feature descriptor for rapid recognition. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR),

Anchorage, AK, USA, June, 2008.

15. Dacey, D. M. (2000). Parallel pathways for spectral coding in primate retina. Annual

Review of Neuroscience, 23, 743-775.

16. Dowling, J. E. (1987). The Retina: An Approachable Part of the Brain. Cambridge,

MA, USA. Belknap Press.

17. Garaas, T. W. & Pomplun, M. (2007). Retina-inspired visual processing. Proceedings

of BIONETICS 2007, Workshop on Computing and Communications from Biological

Systems: Theory and Applications (CCBS 2007). Budapest, Hungary.

