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Abstract. Recent advances in neuroscience have underscored the role of single neurons in 

information processing.  Much of this work has focused on the role of neurons' dendrites to perform 

complex local computations that form the basis for the global computation of the neuron.  

Generally, artificial neural networks that are capable of real-time simulation do not take into account 

the principles underlying single-neuron processing.  In this paper we propose a design for a neural 

model executed on the graphics processing unit (GPU) that is capable of simulating large neural 

networks that utilize dendritic computation inspired by biological neurons.  We subsequently test 

our design using a neural model of the retinal neurons that contribute to the activation of starburst 

amacrine cells, which, as in biological retinas, use dendritic computational abilities to produce a 

neural signal that is directionally selective to stimuli moving centrifugally. 
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1   Introduction 

As with most research topics, neural modeling has broadened into a spectrum of 

methodologies that sometimes use the terms artificial neural networks, computational 

neuroscience, and brain models to illustrate methodological differences.  The authors of 

[1] have chosen the terms realistic brain models and simplified brain models to illustrate 

two sides of the research spectrum.  Realistic brain models refer to models that go to 

painstaking lengths to model the individual components of neurons and their assemblies.  

In these models, the goal is often directed toward gaining greater insight into actual brain 

function [2].  Indeed, this is a very active avenue of research in both the neuroscience and 

computational neuroscience fields. 

Unlike its counterpart, simplified brain models, often implemented as artificial neural 

networks (ANNs), are usually directed toward computing meaningful information.  Their 

simplified nature is both a distinct advantage and disadvantage over realistic brain models, 



as it is the conceptual and computational intractability that has hindered the use of realistic 

brain models as functional entities.  Despite the large range of successful applications of 

ANNs, future networks that attempt to solve complex problems such as robust object 

recognition [3] or modeling complex behaviors [4] will likely require more realistic 

organization principles. 

If neural networks are to be realized in a more biologically realistic manner, the two 

aforementioned hindrances will need to be overcome.  The first, conceptual intractability, 

is being slowly broken apart by a large number neuroscientists such as those previously 

referenced.  Their progress has led to many new ideas and models regarding the 

functioning of individual neurons.  A major insight that has emerged from these studies 

involves the role of the single neuron in the computational abilities of neural networks –

both biological and artificial [2,5].  In particular, the structural organization of the 

neuron’s dendrite (the part of the neuron that receives signals from other neurons) has 

become an important concept in both the theory of biological neuron functioning [2,5-7] 

and computational studies [8].  Models that do not take into account the physical structure 

of the neuron are in effect using point neurons.  Point neurons are named as such to 

illustrate the lack of dendrites where afferent neurons instead synapse directly onto the 

soma (cell body). 

One biological phenomenon that has been attributed to interactions between neurons 

synapsing at proximal locations on a dendrite is the directionally selective activation of 

starburst amacrine cells [9].  Euler et al. [9] demonstrated that the signal, which responds 

vigorously for stimuli moving centrifugally –i.e., away from the soma–, is the result of 

local computations that take place on the dendrites of the cell.  Following this result, 

Tukker et al. [10] created a realistic computational model that showed the directionally 

selective signal found at the distal tips of the dendrites could be accounted for by an 

interaction between a temporally delayed global signal and local synaptic input. 

The second hindrance, computational intractability, is a result of the large number of 

calculations needed to model a realistic neuron.  One approach that is being used to 

overcome computational insufficiencies in highly parallel applications, such as neural 

modeling, is to use the Graphics Processing Unit (GPU) [11], which is the primary 

computational unit integrated into present-day computer graphics cards. 

In this paper, we present a neural network design that has been crafted for execution on 

the GPU.  The design achieves real-time computational abilities while preserving 

potentially crucial features of realistic brain models such as dendritic computing.  To 

demonstrate the neural network design, we implement a sample network that simulates a 

subset of the retinal circuitry responsible for generating the directionally selective signal 

in the starburst amacrine cells. 



2 GPU Processing 

In recent years, the computational abilities of certain systems have seen enhanced growth 

due to the expansion of parallel systems such as cluster computing and distributed 

computing.  Another highly parallel paradigm that has recently been exploited by 

computationally hungry scientists is the GPU, which is currently being used for image 

processing, computer vision, signal processing, video encoding, and ray tracing, among 

others [11]; applications such as these have been given the acronym GPGPU for general-

purpose computation using graphics hardware. 

2.1 Brief Overview of GPU Architecture 

The massive computational power underlying the GPU comes from its parallel 

architecture, which is implemented using a computational unit known as a stream 

processor.  Essentially, a stream processor is a highly restricted form of a processor core; 

whereas processor cores are able to perform a wide variety of complex tasks, stream 

processors use a specialized instruction set to perform the tasks that are repeatedly 

executed during computer graphics rendering.  By performing only a handful of tasks, the 

GPU can pack hundreds of stream processors into a single GPU, as opposed to the eight 

processor cores available in modern CPUs at the time of writing. 

Given the restricted nature of stream processors, applications that wish to exploit the 

computational advantages of the GPU must adhere to a narrow flow of execution.  This 

flow is divided into four primary steps: vertex operations, primitive assembly, 

rasterization, and fragment operations.  All programs executed on the GPU must perform 

all four steps; however, in many GPGPU applications, the first three steps are executed at 

a bare minimum to support the bulk of the computation, which takes place at the final 

stage.  Those interested in the details of the first three stages are encouraged to visit a 

community website dedicated to GPGPU programming: http://www.gpgpu.org. 

The fragment operations that support the bulk of GPGPU computations are performed 

by a simple program designed to execute on the GPU known as a fragment shader.  

Fragment shaders perform a series of operations that manipulate one pixel of data per 

execution.  However, since there are hundreds of stream processors, many millions of 

pixels of data can be processed in a very short period of time. 

Data used by GPGPU applications must also conform to computer graphics constructs 

which use images known as textures to store data.  In traditional computer graphics 

applications, a texture stores visual attributes not suited for –or too computationally 

http://www.gpgpu.org/


expensive for– representation by geometry, such as the clothes of a character or the 

asphalt of a highway. 

2.2 Neural Networks on the GPU 

Many ANNs involve a highly parallel design that is well suited for implementation on the 

GPU.  Consequently, a number of researchers have taken advantage of this to achieve 

notable gains in execution time [12-14].  For instance, Bernhard and Keriven [12] were 

able to achieve a 5 to 20 fold increase in performance over a CPU implementation while 

simulating spiking neural networks for image segmentation.  Gobron et al. [13] use the 

GPU to model the retina using cellular automata, and Woodbeck et al. [14] use the GPU 

to implement a model of the processing that takes place in the primary visual cortex.  

However, each of these instances of neural network processing use simple point-neurons 

to perform the pertinent computations, which will likely be insufficient to for complex 

tasks such as robust object recognition. 

3 Neural Network Design 

3.1 Single Neuron Model 

As mentioned previously, researchers now believe the physical organization of synapses 

plays a key role in the processing of information by neurons.  In the design presented here, 

we take into account the organization of afferent synapses to facilitate some of the 

mechanisms that underlie the computational power of biological neurons.  Figure 1 

illustrates a neuron that can be simulated  using  the  present  model.  The important  thing  

to  notice  is  the   

     



Fig. 1. Illustration of potential neurons in the present model. 

labeling of dendrite segments, which permits local computations to take place in 

individual segments.  London and Häusser [5, pp. 509] note, “Because the branch points 

in the dendritic tree can be seen as summing up the current in individual branches, ... the 

whole dendrite can implement complex functions.”  The addition of this type of 

organization will allow the use of what London and Häusser refer to as  the  dendritic  

toolkit  [5].   In the sample network we use this dendritic toolkit to compute a direction 

selective signal in the dendrites of a simulated starburst amacrine cell. 

3.2 Single Neuron Creation 

The single neuron model described in the previous section allows inputs to be grouped 

together on a single dendrite segment so that local computations can take place 

independently.  However, it may not be entirely clear how the dendrite segments can be 

generated or how afferent synapses can be connected to each segment.  Consequently, we 

have included the pseudocode for a recursive function that generates the dendrite 

branching patterns from a branch code.  For example, the branch code that is used to 

generate the left neuron in Figure 1 is given on the first line of pseudocode, and the branch 

code to generate the right neuron is 41110111011101110. 

Essentially, each digit in the branch code, which can be stored in string form, 

represents the number of new segments that are to be generated from the current location.  

For example, ‘2’ represents a binary split, ‘1’ represents a single segment, and ‘0’ 

represents the end of a segment.  When a split is encountered, the subsequent digit(s) is 

used to generate the first segment of the split until that branch is terminated with a ‘0’ at 

which point the following digit(s) is used to generate the second segment of the most 

recent split, and so on until all segments have been terminated. 

branchCode = “5210102101012210101021010110” 

SetupDendriteSegment(int codeIndex) 

 if branchCode[codeIndex] equals ‘0’ 

  delete digit from branchCode at codeIndex and return 

 DendriteSegment d = new DendriteSegment 

 while SynapsesNeeded() equals true 

  Add GetNextSynapse() to d 

 for i = Integer of branchCode[codeIndex] to 0 

  SetupDendriteSegment(codeIndex+1) 



 delete digit from branchCode at codeIndex and return 

End SetupDendriteSegment 

The SetupDendriteSegment function can generate a complex branching pattern 

from a string of digits; however, it still must be decided how afferent inputs will be 

connected to the individual dendrite segments.  Since this is different for each type of 

neuron, a general procedure is described which invokes two undefined functions, 

SynapsesNeeded and GetNextSynapse which are left to the reader to implement 

as needed by their application. 

One final item needs to be handled before the segments are complete, which is the fact 

that the local membrane potentials of neighboring segments should be part of the local 

computation that takes place on each individual dendrite segment.  This can be solved by 

simply treating the neighboring segments as synapses and identifying these with a unique 

synapse type (described in the following section). 

3.3 Data Storage 

In the present model, functionally identical neurons are arranged into a single layer 

which forms the functional unit of the network.  Each layer of simulated neurons in the 

network requires three textures to be maintained throughout execution: a neuron texture, a 

dendrite texture, and a synapse texture.  Individual pixels in the neuron texture store the 

activation (i.e., membrane potential; A
N
) for each individual neuron as well as an index to 

the first dendrite segment of the neuron (I
D
) stored in the dendrite texture.  Pixels in the 

dendrite texture store the local membrane potential of each dendrite segment (A
D
), an 

index to the first synapse of the segment (I
S
) stored in the synapse texture, and a weight 

used to moderate how much local potential is transferred from the segment (W
D
).  Finally, 

each pixel in the synapse texture stores an index to the afferent membrane potential that is 

being transferred by the synapse (I
A
); for instance, bipolar cells in the sample network 

receive input from the photoreceptor neurons, which will be indexed by the synapse 

texture of the bipolar cell’s synapses.  However, as with biological neurons, synapses in 

the model can also receive their input from a dendrite segment of another neuron.  The 

synapse texture also contains a weight used to modify the synapse strength (W
S
) and the 

type of the synapse (T) which determines the texture that is indexed by the synapse.  

Figure 2 illustrates a summary of the data model described above. 

 



3.4 Model Execution 

As mentioned in the previous section, functionally identical neurons are grouped into 

layers.  Each layer is executed by two fragment shaders each time a neuron’s activations  

 

Fig. 2. Data model for the neural network design.  Each pixel (grey square) is used to 

store the various indexes and parameters used to compute the activations of the neurons 

and dendrites in the network. 

are calculated.  The first fragment shader computes the local activation function of 

individual dendrite segments.  This shader executes by beginning at the first indexed 

synapse in the synapse texture and iterating over subsequent synapses until a blank 

synapse is encountered –denoted by a -1 in I
A
.  The membrane potential calculated in this 

way is then stored in the G component of the dendrite texture.  The second shader 

computes the global activation function of the neurons in the network.  This shader works 

in a manner very similar to the first shader by iterating over the dendrite segments directly 

connected to the neuron soma, and the activation of the neuron is stored in the G 

component of the neuron texture. 

4   Sample Network 

The sample network presented hereafter is used to demonstrate how the organization 

principles previously described can be implemented to achieve both function and 



efficiency.  To this end, the following network will be used to model a subset of the 

retinal circuitry responsible for the directionally selective signal found in the distal 

dendrite branches of the starburst amacrine cells.  In particular, we model the 

photoreceptors (S-, M-, & L-wavelength cones), horizontal cells (H1 and H2), on-center 

bipolar cells (S-, M-, & L-wavelength cells), and starburst amacrine cells.  The local 

membrane potentials of the network demonstrate the computation of the centrifugal 

direction selective signal very similar to that of biological neurons [9,10]. 

4.1   System Overview 

Input to the network is achieved using a standard webcam setup that captures video at 30 

frames per second (FPS).  After each frame is captured, it is transferred to video memory 

on the graphics card using the OpenGL API.  Fragment shaders, which encompass nearly 

all of the network processing and implementation, are implemented using OpenGL’s high 

level shading language, GLSL.  The neuron, dendrite, and synapse textures are created 

prior to execution using an extension of the methods detailed in previous sections. 

4.2   Network Organization 

The wiring of photoreceptors, horizontal cells, and on-center bipolar cells is modeled 

directly from the biological wiring described in [9-10,15,16].  Figure 3 illustrates the 

connections that exist between a single starburst amacrine cell and the cells that contribute 

to its activation; essentially, the neurons shown for the classic receptive field for a single 

starburst amacrine cell.  Dendritic branching of horizontal and bipolar cells incorporates 

only single branch segments –e.g., a branch code of 410101010.  Bipolar cells compute 

a contrast modulated activation through an antagonistic center-surround organization of its 

afferent synapses from cones (center) and horizontal cells (surround).  For the sake of 

brevity, the equations used to compute neural activations are not presented.  However, the 

neural activations follow very closely those of their biological counterparts as described 

by Dowling [15], and are similar in motivation to those of [17]. 

Starburst amacrine cell dendrites follow the basic design present in Figure 1.  This 

dendrite branching pattern, though highly simplified, still preserves the necessary 

geometric relationship that allows for the computation of the centrifugal-selective signals 

as described by Tukker et al. [10].  As dendrite segments of the starburst amacrine cell 

move progressively farther from the soma, inputs to these segments are selectively 

received from bipolar cells that are more distant from the starburst cell.  



 

 

     

Fig. 3. Connections and data flow in the sample network.  (left) A 3-dimensional 

rendering of the actual connections that contribute to the activation of a single starburst 

amacrine cell in the sample network.  Illustrated neurons represent the classic receptive 

field of the starburst neuron.  (right) Source image and the activations of each layer in the 

network.  Lighter portions represent higher activations whereas the color represents the 

relative contribution by red, green, and blue components of the source signal. 

4.3   Network Results 

In all, the network consists of nine layers of neurons, more than 225,000 individual 

neurons, and more than 2 million synapses.  Despite its size, the activations of every 

neuron in the network can be computed in 7 ms or, put another way, the network operates 

at approximately 142 pulses per second (1 pulse = 1 computation of neuron activations). 



The activations of the individual layers in the network are demonstrated in Figure 3 

(right).  The activations of all layers, with the exception of the starburst amacrine layer, 

are illustrated during a single, similar pulse step.  The activations of the starburst amacrine 

layer, however, are from a pulse that is many steps into the future, which demonstrates the 

motion of the robot pictured.  Although the starburst amacrine cells are directionally 

selective, their highly overlapped nature instead results in activations similar to image 

subtraction from tradition image processing techniques.  This result in itself could be 

achieved with a simpler network; however, starburst amacrine cells form a crucial input 

for the computationally more complex directionally selective ganglion cells [9].  As such, 

this network represents a significant first step in the creation of a larger, more complex 

network dedicated to modeling the complex visual processes that contribute to our own 

remarkable visual abilities. 
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