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Abstract Imitation is a common and effective way for

humans to learn new behaviors. Until now, the study of

imitation has been hampered by the challenge of measuring

how well an attempted imitation corresponds to its stimulus

model. We describe a new method for quantifying the

fidelity with which observers imitate complex series of

gestures. Wearing a data glove that transduced movements

of their digits, subjects viewed and then reproduced a

sequence of gestures from memory. The velocity profile of

each digit’s flexion or extension was used to segment

movements made during an imitation into gestures that can

be compared against corresponding gestures in the stimulus

model. The outcome is a multivariate description of each

imitation, including its temporal characteristics, as well as

spatial errors (in individual gestures and in the ordering of

those gestures). As a demonstration, we applied this

method to data from an imitation learning experiment with

gesture sequences. With repetition, overall fidelity of imi-

tation improved, with various aspects of the imitation

improving at different rates. Confirming the approach’s

usefulness, when we varied the complexity associated with

imitation, that variation was robustly reflected in our

measures of imitation quality. Finally, we describe a simple

way to extend our methods to make them useful not only in

assessing imitation and imitation learning, but also in

various settings in which the detection and characterization

of subtle abnormalities in movement production is

paramount.
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Introduction

By observing and then attempting to imitate the actions of

others, humans acquire many cognitive competencies,

including language and various skilled behaviors. After a

long period of relative dormancy, research interest in

imitation has been rekindled by the discovery of ‘‘mirror’’

neurons in the macaque brain (Rizzolatti et al. 1996). A

putative analogue in the human brain, the ‘‘mirror system,’’

has been assigned various functions (Iacoboni 2005),

including central roles in action imitation, rehearsal (motor

imagery) of actions, as well as in understanding the

intentions of others (but see, Oztop et al. 2006). However,

despite its importance for neuroscience and related disci-

plines, imitation has long resisted the kind of quantitative

study that would be required for full understanding of the

neural and cognitive mechanisms that make that skill

possible. The work we present here is the first stage of a

project designed to resolve the major obstacles that have

retarded the study of imitation and related motor behaviors.

Among the difficulties that have hindered study of

imitation is the absence of appropriate, controlled but

flexible test materials, and the challenge of properly

quantifying the fidelity with which behaviors are being

imitated. As imitated behaviors increase in complexity
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(i.e., imitating a series of component actions), the obstacles

hindering the study of imitation increase as well. In fact, to

circumvent these obstacles, one influential study of imita-

tion went to the lengths of limiting its test materials to

displays in which just an index finger or a middle finger

was flexed; that same study adopted an equally restricted

method for quantifying imitation success, using only a

binary, pass–fail scale (Iacoboni et al. 1999). And even

when more complex behaviors have been examined, such

as in studies of apraxics (Kimura 1993), assessment of

imitation fidelity has incorporated substantial subjectivity,

and therefore might fail to capture important aspects of

performance.

Formally, the problem of quantifying the match between

a model and an imitation of that model can be described as

assessing the similarity of one n-dimensional trajectory to

another. Drawing on examples from many domains other

than imitation, Vlachos et al. (2002) catalogued the sig-

nificant challenges in comparing two trajectories in any

domain. Many of these challenges are relevant to the study

of imitation, particularly in the common case where an

imitation deviates from its stimulus model in spatial and/or

temporal parameter. Such disparities foreclose the use of

simple Euclidean metrics for comparing imitation and

model, because any of these disparities would be repre-

sented in time series of unequal length. In addition, a

simple Euclidean metric, even if it could be applied, would

assign uniform weights to all the values in the n-dimen-

sional time series representing the model and its imitation.

Without significant embellishment, this uniform weighting

would elide numerous theoretically important characteris-

tics, including sequencing and serial-order effects (e.g.,

Lashley 1951; Agam et al. 2005; Agam and Sekuler 2007).

In the initial application of our analytic method we

examined imitation of sequences of gestures, each drawn

from a pool of 16 different patterns of digit flexions and

extensions. These flexion/extension patterns, which are

shown in Fig. 1, were selected as being representative of a

range of other motor behaviors, and because they lent

themselves to controlled variation and recombination in

many different, novel sequences. These qualities have been

important in devising test materials for other research

domains, including memory (Ebbinghaus 1885/1913).

Finally, we were attracted to these stimuli because of their

kinship to gestures in American Sign Language (ASL),

which we will study as part of our overall project (Fig. 1).

We present some experimental data that demonstrate our

approach. Results show that our method can successfully

generate a useful multivariate description of various types

of errors made during imitation of gesture sequences, and

can characterize practice-based improvements in imitation.

Method

Subjects

Eight paid subjects were recruited from the Brandeis

University community. The subjects, whose ages ranged

from 19 to 29 years old (M = 21.25, SD = 3.05), reported

Fig. 1 The 16 component

gestures used in generating each

6-item sequence of gestures.

Gestures that match or closely

approximate letters in American

Sign Language are starred
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no prior experience with ASL; this exclusion criterion

reflected the fact that some of our stimuli were similar to

letters in ASL’s finger spelling alphabet. All subjects pro-

vided written informed consent for the experiment in

accordance with the principles of the Declaration of Hel-

sinki. The experimental protocol had been approved by

Brandeis University’s Committee for the Protection of

Human Subjects. All subjects had normal or corrected to

normal vision and were strongly right-handed as deter-

mined by the Edinburgh Handedness Inventory (Oldfield

1971).

Materials

Using the method described below, model sequences were

generated from the set of 16 gestures shown in Fig. 1. The

Vizard VR Toolkit (WorldViz, Santa Barbara, CA) dis-

played the stimulus sequences on a 2100 CRT monitor with

a refresh rate of 85 Hz. The stimulus was a right hand

displayed on the screen with the palm facing the subject. At

its longest, from the wrist to the tip of the middle finger, the

stimulus model hand was 8.6� visual angle. The width of

the model’s wrist and palm, with all digits extended, were

2� and 5.7� visual angle, respectively.

Allowing all five digits of one hand to be either flexed or

extended produces a set of 25 = 32 hand gestures. Because

we suspected that all 32 gestures would not be equally easy

for subjects to reproduce (Schieber and Santello 2004), we

carried out a preliminary study to identify a set of gestures

that would be biomechanically possible for every subject to

reproduce, and of approximately equal difficulty to repro-

duce. Six subjects viewed each of the 32 gestures four times

in a random fashion. None of these subjects would serve in

the actual experiment. After each observation, subjects

attempted to reproduce the gesture and then used a scale

from ‘‘1’’ (very easy) to ‘‘5’’ (extremely difficult) to rate

how difficult the gesture was to reproduce. This rating

constituted a self-report of difficulty. In addition, the data

from each trial were analyzed to determine if the subject

formed the correct hand position (behavioral performance).

Flexion values were measured for each digit ranging

from 0 (completely extended) to 1 (completely flexed). A

digit was categorized as flexed if the flexion value excee-

ded the 0.5 threshold, and extended if the flexion value fell

below the 0.5 threshold. Each digit reproduction was

compared to the corresponding model digit and judged to

be correct (0) or incorrect (1). Thus, if all the digits in the

reproduction were correct, subjects received a score of 0,

whereas a reproduction with each digit incorrect would

receive a score of 5. Data were averaged for each of the 32

gestures, producing an average score for each gesture for

both behavioral performance and self-report. To ensure that

the gestures used in our experimental protocol were all

biomechanically possible for subjects to perform and of

approximately equal difficulty we selected gestures with an

average self-report score of less than 2, and an average

behavioral performance of less than 0.5. This resulted in a

total of 16 gestures for use in the demonstration

experiment.

Apparatus

Subjects performed their imitations while wearing a right-

handed, one-size model of the 5DT DataGlove 5 Ultra

(Fifth Dimension Technologies) along with a hand sensor

and a lower arm sensor from the PatriotTM motion tracking

system (Polhemus). Rather than measuring the Cartesian

coordinates of digit endpoints, for each digit, the data glove

measures the flexion/extension of the intermediate and

proximal phalanges of each digit. To determine the maxi-

mum flexion and extension of each digit, each subject must

perform a short series of calibration routines where they are

required to flex and extend each digit. The system then

normalizes the data received from the glove in such a way

that the maximum flexion of each digit is set to 1, and the

maximum extension is set to 0. Subjects were instructed to

make their movements naturally and not to overextend

their hands or to flex their digits too tightly (i.e., they were

instructed to make a loose fist as opposed to forcing all five

digits into their palm). Hand and lower arm sensors mea-

sured the position of the hand and arm in the x, y and z

dimensions as well as measuring yaw, pitch and roll.

However, as the position of the hand and arm in the

demonstration experiment were kept constant, our current

analysis is limited to data collected from the data glove.

Stimulus construction and description

Sequences were generated by a Matlab program whose

input was an ordered set of n gestures, and whose output

was a seamless sequence in which each individual gesture

blended smoothly into the next. The time for which each

static gesture was held, as well as the transition times

between successive static gestures were based on pilot

observations with subjects who were excluded from the

demonstration experiment itself. With these pre-defined

hold and transition times for gestures, our sequence-gen-

erating software used tweening1 to interpolate 42 frames

1 Tweening is an animation technique that interpolates the differ-

ences between two existing key frames in an animation timeline.

Tweening can operate on differences between the pre-existing frames,

in attributes such as scale, opacity, location, color and shape.
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between gestures in the sequence, blending successive

static gestures with seamless transitions, as suggested in

Fig. 2b. As a result, when the entire sequence of frames is

displayed, an observer experiences smooth movement from

the nth gesture in the sequence, through the tweened

frames, to the n + 1th gesture in the sequence. In the

resulting sequences, transitions from one gesture to another

were smooth, biomechanically possible and natural

seeming.

We used three types of stimuli: static gestures, two-

gesture sequences, and six-gesture sequences. The first two

types were used as practice stimuli to familiarize subjects

with the gestures; the third constituted the experimental

stimulus materials. The 16 different 6-item stimulus mod-

els in the experiment proper were divided equally between

two conditions, which were designed to manipulate the

cognitive demands required for each sequence by varying

the number of digits whose changed state had to be noted

for each change in gesture. For one-transition gesture

sequences, sequences were constructed so that only one

digit changed (i.e., was newly extended or flexed) between

successive gestures in each sequence. In sequences of the

two-transition condition exactly two digits were made to

change between consecutive gestures. In addition, each

successive pair of gestures appeared just once in the eight

different stimulus models of each transition condition.

As mentioned above, the two transition conditions were

used to manipulate the complexity needed to imitate the

sequences. With stimuli from the one-transition condition,

a total of five digits could change in flexion/extension from

the first gesture to the sixth; with stimuli from the two-

transition condition, a total of ten digits could change from

the first gesture to the sixth. As a subject would have to

remember and perform twice as many items (digit states) in

the two-transition condition than in the one-transition

condition, we hypothesized that imitating two-transition

models would be more difficult for subjects to imitate than

the one-transition models, and that, consequently, subjects

would make more errors in imitating two-transition

sequences. We included these two distinct types of

sequences to verify that our algorithm could recover the

performance difference expected from the two conditions.

Every gesture sequence, regardless of condition, began

and ended with an open hand. These ‘‘bookend’’ open hand

gestures were added to embed the six actual experimental

gestures in comparable contexts. Without the bookend

gestures, the first and the last of the six experimental

gestures would lack a pre- or post-transition, respectively,

so that the timing of their imitation could not be compared

to the other four gestures. The subjects’ reproduction of the

bookend gestures was excluded from all analyses.

Procedure

Subjects viewed the stimuli while seated at a table, right

elbow on a wrist rest and forearm and digits extended

straight up. The palm faced the subject, just as the stimulus

was displayed with the stimulus palm facing the subject. As

a result, there was no need for the subject to perform a

coordinate transform. For each 6-item sequence, stimulus

presentation took 11.5 s. After the presentation completed,

Fig. 2 a An example of one 6-

item stimulus model. Note that

the model begins and ends with

all digits fully extended, and

that the change from one gesture

to the next involves a flexion or

extension of exactly one digit

per gesture. b The inset shows

five sample digit postures that

were transitional movements

between the second and third

gestures in the sequence. Forty-

two transitional digit postures

were shown between each pair

of successive gestures in each

sequence, resulting in a very

smooth movement throughout

the entire sequence
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the screen cleared, and subjects waited for a tone (2 s after

the stimulus had completed) before beginning their imita-

tion. Subjects were instructed to accurately imitate as many

gestures in the sequence as possible, and try to attempt to

reproduce them in the correct order. Subjects were allowed

14 s to complete their imitation of each 6-item sequence.

No subject reported needing more time to complete their

imitation. Though they could see their own hand while

performing the imitation, no other explicit feedback about

imitation accuracy was provided. After the response time

elapsed, subjects were instructed to press a key with their

left hand to start the next trial.

Calibration phase

At the start of the session, we calibrated the data glove by

presenting a subject with images of four hand postures.

These postures involved various configurations with the

digits being flexed or extended, for example an open hand

and clenched fist. During the 10-s period in which the

images were visible, a subject reproduced them in suc-

cession, as many times as possible. Subjects were

monitored to ensure that they reproduced each calibration

hand posture at least once.

Familiarization phase: I

To begin the process of familiarizing subjects with each

component gesture they would later see in the multi-item

gesture test sequences, subjects viewed and imitated each of

the 16 static, component gestures that would appear in those

sequences. Subjects started each trial with an open hand,

with their palm facing them. Each gesture, shown in Fig. 1,

was displayed for 1 s. Two seconds after the gesture disap-

peared from the display screen, the subject heard a tone

indicating that they were to reproduce the stimulus gesture

from memory. Subjects were instructed to initiate their

movement as quickly as possible after the ‘‘go’’ signal and to

hold the gesture for 2 s (when a written instruction indicated

that they should return to the starting position). All 16 ges-

tures were presented twice, in block randomized fashion.

Familiarization phase: II

Subjects next viewed and imitated eight different two-

gesture sequences. Each sequence began and ended with an

open hand, and each gesture was held for 1 s, with a

transitional time of 500 ms. Thus the total stimulus pre-

sentation time for these two-gesture sequences was 5.5 s.

As in the first familiarization phase, 2 s after the gesture

disappeared from the display screen, the subjects heard a

tone indicating they were to reproduce the sequence from

memory. They had a window of 7 s in which to reproduce

the sequence. Overall, these eight familiarization sequen-

ces incorporated all 16 component gestures. As each

sequence was presented just once in this phase, over both

familiarization phases subjects saw and imitated each of

the sixteen gestures three times.

Experimental phase

Finally, in the experimental phase of the procedure, each

subject viewed and imitated eight different 6-item gesture

sequences. Each sequence began and ended with an open

hand, and included tweened frames between successive

gestures. Each gesture was held for 1 s, with a 500 ms

transitional time between gestures. The eight model

sequences were shown and imitated in massed fashion; that

is, each model was viewed and imitated 10 times before the

subject saw the next model sequence. Additionally, and

unbeknown to subjects, the experimental phase was divi-

ded into two equal parts, with each part containing four

models from one of the transition conditions (i.e., one-

transition models or two-transition models). Thus, half the

subjects imitated four of the two-transition models fol-

lowed by four of the one-transition models, while the

remaining subjects imitated four of the one-transition

models followed by four of the two-transition models. The

choice of models from each transition condition was fully

counterbalanced across subjects.

Segmentation

To compare subjects’ imitations of gesture sequences to the

corresponding model sequences, we developed a multi-

stage algorithm that determined the differences between

the model and the subject’s reproduction. As both the

model and the imitation sequence contain a specific num-

ber of component gestures, to compare the imitation

sequences to the model sequences, the algorithm first needs

to segment both the imitation and model and then compare

the corresponding individual components. Toward this end,

the algorithm resamples the data to achieve a constant

sampling rate of 50 Hz. Each resulting sample x(t) is rep-

resented by a 5-component vector containing the flexion

values, ranging from 0 to 1, of all digits at time step (or

sample number) t. Then it computes the combined velocity

v(t) of digit motion at a given time step t by computing the

root mean square flexion difference in the five digits

occurring within a narrow time window centered at time t.

Instead of simply measuring the changes between
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consecutive samples, this window was introduced to reduce

the noise in velocity measurement. The ideal size of the

time window depends on the accuracy and frequency of

flexion measurement. In the present study, the window was

set to 140 ms, or 7 samples—from (t - 3) to (t + 3):

where f is the number of flexion values collected per

sample, so f = 5 in the present study. In its next stage, the

algorithm examines the velocity information throughout a

given imitation and categorizes successive intervals in the

imitation as one of two possible types of components:

gestures (static or held) and transitional movements

(movements from one static gesture to another). A com-

ponent gesture is defined as static when the velocity drops

below 10% of its peak velocity and remains below that

level for at least 100 ms; the duration threshold of 100 ms

was empirically determined to yield the most plausible

results for the present type of motion sequences. A tran-

sitional movement is defined by an interval between two

consecutive component gestures in which the combined

velocity does not fall below 10% of the peak velocity for a

duration of 100 ms or longer.

Comparison to model stimulus

Once the transitional movements and component gesture

time epochs have been defined, our algorithm examines the

flexion data for each digit in each time epoch, weighting

each digit equally. The flexion threshold is defined as a

value of 0.5, with any digit whose flexion value exceeded

that threshold considered to be flexed, and any digit with a

flexion value below the threshold considered to be exten-

ded. Each gesture is demarcated by the digits that were

extended, starting with the thumb (1) and ending with the

little finger (5). Thus, a completely open hand—with all

digits extended—would be represented as 12345, and a

gesture with only the middle and ring fingers extended

would be represented as 34. Figure 3 shows the results of

the segmentation process for one trial, as well as the pic-

toral gesture representation of the raw data below the

graph.

Once the component static gestures have been identified

by our algorithm, the subject’s imitation is compared to the

original model, in both accuracy and timing. The bookend

gestures (i.e., open hand gestures) are first removed from

both the model and the reproduction. Each gesture in the

imitation is compared to each gesture in the model and the

algorithm reorders the imitation to minimize the sum of

incorrectly reproduced digits across all gestures in the

sequence. The total number of errors in an imitation are

calculated from the sum of the values of different error

categories.

Categories of errors

When imitating sequences of hand gestures, there are three

main categories of errors that subjects could commit,

namely gesture-level, sequence-level, and unmatched

errors.

Gesture-level errors

Gesture-level errors are defined by one or more flexion

differences between a reproduced gesture and the model

gesture that it was meant to reproduce. There is currently a

divide in the scientific community as to the existence of

digit somatotopy in the hand’s representation in primary

motor cortex (M1), though many studies suggest a consid-

erable overlap of digit representations in M1 (see Sanes and

Schieber 2001 for a summary, and Hlustı́k et al. 2001; Rao

et al. 1995; Sanes et al. 1995 for studies on the overlap).

Despite the controversy, human hands have well-defined

biomechanical constraints, such that when an intended digit

is in transition between flexion and extension (or vice

versa), the adjacent digits move more than the non-adjacent

digits do (Fish and Soechting 1992; Häger-Ross and

Schieber 2000). As a result, our algorithm was designed to

differentiate between (1) an interchange of adjacent digits,

and (2) an interchange of non-adjacent digits, with biome-

chanical coupling making the former kind of interchange

more likely than the latter (Loehr and Palmer 2007;

Schieber and Santello 2004). An adjacent gesture-level

error is the flexion swapping between two adjacent digits.

For example, if the model 124 were reproduced as 125, then

the subject simply extended the little finger instead of the

ring finger. A non-adjacent gesture-level error involves an

interchange of two non-adjacent digits, such as the index

and ring fingers in the reproduction of 12 for 14.

vðtÞ ¼ 1

f
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxðt þ 3Þ þ xðt þ 2Þ þ xðt þ 1Þ � xðt � 1Þ � xðt � 2Þ � xðt � 3ÞÞ2
q
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In both of the above cases, the number of extended

digits in the model is correctly reproduced. However, there

are other gesture-level errors that do involve a mismatch in

the number of flexed digits between the model and the

imitation. Consider, for example, an error that we call an

individual flexion error: the gesture 234 is reproduced as

24, or conversely, the gesture 24 is reproduced as 234. In

the first of these individual flexion errors, one digit

extension has been omitted (an Omission Error); in the

second of these individual flexion errors, an extra digit

extension has been inserted (an Insertion Error). Figure 4

shows an example of a gesture-level error where, for the

sixth gesture, the subject produced 3 instead of 234.

Sequence-level errors

At the sequence level, similar types of errors can occur. As

gestures in our task are performed sequentially, there are

obvious parallels to work on serial order with verbal

materials: performance in both domains shows evidence of

failures in working memory (Conrad 1960; Lee and Estes

1977; Lewandowsky and Murdock 1989). A common

sequence-level error is the mistake of swapping two con-

secutive gestures in a sequence. For example, if the

sequence 123–1234–134–13 were reproduced as 123–134–

1234–13, then such an error is represented by the second

Fig. 3 An example of the

segmentation stage of the

algorithm. Light gray vertical
bands indicate individual static

gestures as determined by the

segmentation process. Dark
gray vertical bands indicate

transitory movements. The

vertical line at y = 0.5 is the

flexion threshold. The black
horizontal lines along the x-axis,

below each light gray band,

indicate the duration of each

static gesture

Fig. 4 a The model stimulus to be imitated. b A subject’s imitation

of the model stimulus as seen in a. As shown, the subject correctly

imitated the first five gestures (the first and last gestures, the open

hand, do not count). But, with the sixth gesture (highlighted in both

the model and subsequent imitation), instead of extending the ring

finger, the subject flexed the index finger. In addition, the timing is

slightly different, as a and b are time-scaled comparisons
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and third reproduced gestures, whose order has been

inverted. In some cases however, two non-consecutive

gestures may be swapped, such as gestures number two and

four when the model 235–245–24–23 is reproduced as

235–23–24–245. It is also possible that the sequence is

permutated in such a way that there is no pair of gestures

whose positions were exactly swapped. For instance, let us

assume the model 345–34–45–134 and its reproduction

134–34–345–45. Here, we have no pairwise swapping, but

three of the four gestures (numbers one, three, and four in

the model) occupy incorrect positions within the repro-

duced sequence. These are counted as three sequence-level

errors. We can assign sequence-level errors to individual

gestures in the model sequence, that is, we can determine

whether a particular gesture was imitated correctly with

regard to digit flexion and serial position. This allows us to

study the accuracy of gesture imitation as a function of the

gesture’s serial position in the model sequence.

Unmatched errors

Finally, it is possible that the algorithm is unable to match

an imitated gesture to one in the model. There are two

possible causes to this, both involving a mismatch in the

number of gestures reproduced versus the number of ges-

tures in the model. First, the imitation may contain more

gestures than the model. In this case, after all the model

gestures have been matched with those from the imitation,

the number of extraneous, unmatched gestures in the imi-

tation is the number of unmatched errors in that imitation.

For example, if the sequence 123–1234–134–13 were

reproduced as 123–1234–134–1234–13, the algorithm will

find the second 1234 is an extraneous gesture, and there

will be one unmatched error in the imitation. Second, a

subject might reproduce fewer gestures than in the model.

In this case, all the gestures that are imitated will be best

matched to the model; any leftover model gestures will

comprise the unmatched errors. For example, if the

sequence 123–1234–134–13 were reproduced as 123–13,

the algorithm will find that 1234 and 134 were not repro-

duced, which will result in two unmatched errors.

In identifying the types and positions of errors in some

reproductions, we run into a problem of ambiguity: In

many cases there are two or more error patterns that could

have caused the observed discrepancies between model and

reproduction. To illustrate the ambiguity within an indi-

vidual gesture, consider a model gesture 234 and its

reproduction 345. Clearly there is an error, but that error

could have arisen from a non-adjacent flexion swapping of

the index and little fingers, or two individual flexion errors

for the same fingers. If we include errors at the sequence

level, the situation becomes more complex, as illustrated

by the following example: Model 1234–125–12 is repro-

duced as 123–125–1234. One possible explanation of the

underlying errors is that one individual flexion error

occurred in gesture 1, and two of the same type occurred in

gesture 3, while the order of gestures was correctly

reproduced. Alternatively, the subject may have swapped

gestures 1 and 3 during imitation, and introduced an indi-

vidual flexion error when reproducing 12 so that it became

123. Other error patterns as well could have caused the

observed reproduction.

To reduce ambiguity and determine the most plausible

underlying error pattern, the algorithm first attempts to put

the imitation in a sequence that best reflects the original

model; that is, it reorders the gestures in the imitation in

order to minimize the sum of the incorrectly reproduced

digit flexions across all gestures in the sequence. Next, the

algorithm looks at the differences between flexions in each

imitated gesture and flexions in the model gesture. The

observed differences in the flexion of each gesture com-

prise a minimum number of elementary errors (swapping,

inserting, and omitting flexions). Finally, any extraneous

gestures in the imitation that are not matched to the model

and any gestures that are in the model but not matched to

the imitation comprise the unmatched errors.

Statistical analysis

When subjects failed to start and finish a sequence with

an open hand, that trial was excluded from our data

analysis. A failure to start the sequence with an open

hand suggests that subjects initiated their response before

the ‘‘go’’ cue. A failure to end a sequence with an open

hand suggests that subjects either forgot to return to the

open hand, or they ran out of time to complete their

imitation. Of all experimental trials, 5.625% were exclu-

ded for this failure.

Dependent measures included spatial errors and tem-

poral errors, including number of gestures reproduced,

total errors, gesture level errors, sequence level errors,

unmatched errors, serial position errors, pre-movement

latency, movement time and average transition time

between segments. All statistical analysis was performed

with SPSS. Each dependent variable was subjected to a

repeated-measures ANOVA, with condition (one-transi-

tion or two-transition) and repetition (1–10) being

within-subject variables. For serial position errors an

additional within-subjects factor of serial position was

incorporated into the analysis. Where sphericity

assumptions were violated, Hunyh–Feldt corrections were

applied. A significance threshold of 0.05 was used

throughout. For conciseness only significant findings are

reported here.
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Results

Number of gestures produced

Subjects were told to reproduce as many gestures as they

could remember, but that number of reproduced gestures

often fell short of the number (six) that comprised the

model. The average number of gestures that subjects pro-

duced in their imitations did not differ significantly

between the conditions of transition (F1,7 = 1.489,

p = 0.262). Repetition of a model significantly influenced

the number of gestures reproduced, with that number

increasing systematically from the first to the tenth

presentation (F6.777,47.437 = 9.909, p \ 0.001). This effect

can be seen in Fig. 5a. There is also a significant interac-

tion between transition condition and repetition

(F9,63 = 5.910, p \ 0.001), with a more consistent number

of gestures reproduced in the one-transition condition.

These effects need to be considered in the computation of

error scores, as the more gestures a subject reproduces, the

greater is the opportunity for gesture- or sequence-level

errors. Therefore, data were normalized according to the

number of gestures that were produced.

Spatial errors in imitation

The (normalized) total number of errors decreased with

repetitions, demonstrating an improvement in performance

with practice (F4,861,29.165 = 4.853, p \ 0.001). Further,

we see more errors in early repetitions in the two-transition

condition compared to the one-transition condition, with a

significant interaction between transition condition and

repetition (F5.642,33.849 = 3.945, p \ 0.01). Because our

algorithm breaks the errors down into various categories

(gesture-level, sequence-level, and unmatched gestures),

we can look at these same effects for each error category.

Figure 5b, c shows the normalized errors for the total errors

and across each error category for the one- and two-tran-

sition conditions, respectively.

For gesture-level errors, subjects make less errors as rep-

etition number increases (F6.635,39.811 = 6.093, p \ 0.001).

Fig. 5 a Mean number of

gestures made in imitation for

each repetition of a model

sequence. b Mean number of

errors, by error type, over

repetitions of a one-transition

model sequence; results are

normalized by the number of

gestures made in imitation. c
Mean number of errors, by error

type, over repetitions of a two-

transition model sequence;

results are normalized by the

number of gestures made in

imitation. In all panels, error
bars represent within-subject

standard errors of the mean

Exp Brain Res (2008) 187:139–152 147

123



In addition, subjects make approximately twice as many

gesture level errors in the two-transition condition com-

pared to the one-transition condition (F1,6 = 41.792,

p = 0.001). This is expected, given that twice as many

digits change in the two-transition condition than in the

one-transition condition. For sequence-level errors, sub-

jects once again produce fewer errors with increased

repetition (F3.973,23.836 = 4.278, p = 0.010). The same

pattern is observed for the unmatched gestures, with

improvements occurring with repetition (F5.634,33.806 =

6.559, p \ 0.001). In addition, in the two-transition con-

dition (compared to the one-transition condition), subjects

make more unmatched errors during early repetitions, with

this difference disappearing in later repetitions; this is

reflected in a significant interaction between repetition and

transition condition (F6.385,38.309 = 3.554, p \ 0.01).

Serial order

How accurately do subjects imitate the serial order of the

model? That is, is a specific gesture in the imitation cor-

rectly matched to one in the model in both order in the

sequence and in digit flexion? To calculate serial position

we compared each item in the model sequence to each

corresponding item in the reproduction, a correct match

was assigned a value of 1 and an incorrect match was

assigned a value of 0. We find that errors decrease with

repetition (F5.556,38.889 = 4.828, p = 0.001) and increase

with serial position (F3.125,21.874 = 19.284, p \ 0.001), in

other words, during the first gestures subjects make fewer

mistakes. This primacy effect is significantly larger for the

one-transition condition compared to the two-transition

condition (Fig. 6a, b, respectively), shown by a significant

interaction between transition condition and serial position

(F4.291,30.035 = 4.493, p \ 0.01).

Temporal analysis of imitation

Pre-movement latency is the amount of time a subject

holds the initial open hand before initiating the transition to

the first gesture in the imitation, after the tone sounds.

Subjects show a decrease in pre-movement latency from

repetition one (M = 1,200.938, SD = 457.304) through to

repetition ten (M = 798.438, SD = 268.301), indicating

that they take significantly less time to prepare their

response as they become more familiar with the stimulus

(F9,54 = 3.243, p \ 0.01).

The movement time is defined as the total amount of time

the subject takes to complete the imitation, excluding the

time both open hands are held. As this is highly dependent on

the number of gestures produced, movement time is

expressed as a function of the number of gestures

reproduced. We observed a decrease in movement time as

repetition number increases from repetition 1 (M =

2,149.734, SD = 460.551) to repetition 10 (M = 1,645.175,

SD = 334.742); this effect is statistically significant

(F6.164,36.981 = 4.089, p \ 0.01). In addition, subjects take

longer to perform the two-transition stimuli (M = 1,987.395,

SD = 376.572) than the one-transition stimuli

(M = 1,555.560, SD = 323.188); this main effect of transi-

tion condition is also significant (F1,6 = 6.533, p \ 0.05).

Fig. 6 Accuracy as a function of item position in the model sequence

for multiple repetitions for the one-transition (a) and two-transition

(b) models
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The mean transition time is the average of all the tran-

sition times between static gestures. Transition times are

much slower for two-transition models (M = 806.342,

SD = 96.107) than for one-transition models (M =

509.118, SD = 26.551), a difference that is statistically

significant (F1.7 = 12.088, p = 0.01).

Discussion

We have presented a novel methodology for assessing the

fidelity of human imitation of complex movements. This

methodology builds on a recent scheme introduced by

Agam and colleagues who measured the fidelity of imita-

tion using an automated segmentation of behavior

sequences into constituent parts (Agam et al. 2005, 2007).

Their scheme incorporated the same spatio-temporal dis-

continuities that human observers use when segmenting

continuous behaviors into constituent subcomponent

behaviors (Zacks and Tversky 2001; Zacks et al. 2001).

Though the analytic technique used by Agam et al. (2005)

succeeded in opening important insights into the neural

mechanisms that support imitation, that technique’s scope

is limited to a narrow range of stimuli and responses,

namely linked, linear, two-dimensional motion sequences.

We address that limitation here by presenting a novel, far

more flexible method that generates a multivariate assess-

ment of imitation quality for complex, realistic movements.

Our approach compares an imitation of any multi-

dimensional sequence to the original model sequence on a

multivariate level. This enables the study of sequence-

based motor learning to move beyond simple comparisons,

such as subjective analysis or using a pass–fail measure, as

we are now able to examine more intricate properties of

sequenced behavior. Using the velocity components of an

imitation, the algorithm segments the movement of the

model and the imitation into component parts and then

makes a spatio-temporal comparison of individual com-

ponents of the model sequence to the imitated sequence.

Here, we have presented data that illustrate the effec-

tiveness of our algorithm. We asked subjects to imitate

sequences of hand movements, which were repeated ten

times. We showed that our algorithm could successfully

isolate various types of spatial errors and quantify them.

We demonstrated that the total number of errors decreases

with repetition, and that different error types can account

for the total number of errors (with omissions and inser-

tions accounting for most of our error types). As we are

able to break an imitation down into component parts, our

algorithm also allows us to compare our results to those

from studies in other domains, such as short-term visuo-

spatial memory. In the one-transition condition, we found

both a primacy effect and a trend towards a 1-item recency

effect, similar to findings from other studies of short term

memory, using either verbal materials (Lee and Estes 1977;

Lewandowsky and Murdock 1989) or non-gestural motor

imitation (Agam et al. 2005, 2007). Interestingly, even

after ten repetitions of each sequence in massed fashion,

there is little change in the shape of the serial order curves

seen in Fig. 6, a phenomenon that rules out several theo-

retical accounts of practice-based imitation learning (Agam

et al. 2007).

In addition, we illustrated that our algorithm could

identify chronometric properties of imitation, with longer

pre-motor latencies observed during early imitations in

subjects compared to later imitations. This presumably

reflects a learning effect in that the cognitive effort needed

by the subject decreases with repetition, as the subject

learns the sequence. To further advance this claim, we also

found an effect of repetition on the total time to complete

the imitation (normalized by the number of gestures pro-

duced), with subjects performing the imitation faster with

repetition.

Our algorithm also recovers the differences in perfor-

mance that arise from differences in the complexity of the

two different transition conditions. Subjects perform the

one-transition condition faster than the two-transition

condition. This effect is further supported by the finding

that the transitions between static gestures are slower in the

imitation of the two-transition sequences when compared

to those of the one-transition sequences, and that there are

about twice as many gesture-level errors in the two-tran-

sition condition than in the one-transition condition. In

addition, the difference in sequence complexity is also

reflected in many of our spatial error measures (including

number of gestures reproduced, total number of errors,

total number of unmatched errors, and serial position

errors), with subjects in the two-transition conditions

showing more errors on early repetitions, with the two

conditions converging on later repetitions when subjects

have had more practice at the sequences.

In this paper we focused on the analysis of imitation of

gesture sequences that were observed, stored and retrieved

from memory. However, it is important to recognize that

the analytic tools described here should be useful in other

settings as well. In the work reported here we segmented

trajectories on the basis of finger flexion velocity, but this

same segmentation can easily be extended to include more

factors. For example, a study involving imitation of natu-

ralistic arm movements could use the methodology

presented here to segment the arm’s trajectory according to

the velocity profiles of not just the fingers, but the upper

arm and forearm as well. Thus, the algorithm could be

easily extended to include any or all components reported

by a motion capture device. As a result, our methodology is

not limited to simply finger flexions, or even to descriptions
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based on Cartesian coordinates of upper and lower arms, in

the case of a reaching task; it can characterize relative or

absolute angles, as well as the roll, pitch, and yaw of the

various components. Using the resultant segmentation

points, our algorithm could quantify and categorize types

of errors in performance, and capture the chronometric

properties of performance, assigning appropriate weights to

various components.

Its extensibility allows our basic approach to be applied

to the analysis of complex movements, producing useful

information, including chronometrical information, which

is difficult to achieve with ordinary video-based analysis

and description of gestures. To take one example, data

from patients with a motor system deficit might resist

analysis because of idiosyncratic and seemingly random

movements and movement timing that may intrude during

an attempted imitation. To deal with such anomalies, post-

segmentation parameters of the analysis could be fine-

tuned in various ways, e.g., adjustment could be made to

the duration threshold that we used here to define a gesture

component (100 ms). Additionally, the same method could

search through the motion capture data for an imitation that

correctly matches just a portion of the model trajectory.

The latter is especially important for patients who, in the

process of completing their imitation, actually imitate the

model with fair fidelity, despite incorporating extra com-

ponents before or after the imitation itself.

The novel methodology presented here affords a way to

answer many questions about the production of complex

movements, and about the contribution of the various

components of the human praxis system. The praxis system

represents a fronto-parietal network of brain regions dedi-

cated to tool use. Damage to this system results in apraxia,

an inability to perform purposeful skilled movements. With

one form of apraxia, ideomotor apraxia, patients can make

spatial and temporal movement errors when asked to

pantomime tool use, gesture to command, imitate move-

ments or use real tools and objects (Heilman and Rothi

2003). With only modest changes, our analytic tools can be

adapted to identify subtle deficits in pantomimed tool use

performance (Halsband et al. 2001; Sunderland and Shin-

ner 2007), as is often used in the diagnosis and evaluation

of apraxic patients. In this context, pantomimed tool use

refers to an instruction to demonstrate how one would use a

tool or object, either in the absence of the object or without

making contact with the object. For example, a subject may

be given a command such as ‘‘Show me how you would

use a hammer.’’ In a series of recent experiments, the

movement errors made by ideomotor apraxic patients were

assessed by scoring a videotape of subjects’ performance

(Haaland et al. 2000; Halsband et al. 2001; Buxbaum et al.

2005; Rumiatai et al. 2005; Jax et al. 2006; Sunderland

2007). Although that approach may be adequate in

identifying gross errors, it lacks the ability to precisely

define and identify various types of errors and the chro-

nometric properties of such errors. Our novel methodology

has the potential to overcome such shortcomings.

Another potential use of the methodology we have

described herein, is the possibility to examine spatial and

temporal errors produced by individuals with unusual

expertise or a suspected deficit in some movement-related

domain. The former would include individuals whose

gestural expertise arises from their fluency in ASL, par-

ticularly as about half the gestures used in our sequences

very closely approximate letters from the ASL alphabet

(for example, Whitehead et al. 1997; Jerde et al. 2003).

Individuals with suspected deficits would include those

with some form of autistic spectrum disorder (Iacoboni and

Dapretto 2006; Hamilton et al. 2007; Vanvuchelen et al.

2007). Finally, we believe that our analytical methods

could be incorporated into systems that deliver automated,

robot-assisted rehabilitation to post-stroke patients (Li et al.

2006; Matarı́c et al. 2007). A detailed multivariate analysis

of movements made by such patients could greatly increase

the feedback that robot therapists give to post-stroke

patients, which may well facilitate the rehabilitation

process.

Of course, as with any new methodology, our technique

arrives with caveats. To compare a subject’s series of hand

gestures to that of a model sequence, our algorithm

examines the flexion and extension of each digit of one

hand, and characterizes the imitation’s various chrono-

metric properties. In the experiment presented here, a pre-

experiment calibration routine determined the maximum

flexion and extension possible for each subject, and then

normalized each subject’s data so that the maximum flex-

ion was set to one, and the maximum extension was set to

zero. We then employed a threshold of 0.5, categorizing a

digit with a value of greater than 0.5 as being flexed, and a

digit with less than 0.5 as being extended. Although this

binary approach is suitable for our current experimental

paradigm (where digits in the model were either fully

flexed or extended), this approach would be less suited

when model digits could assume more than just two states.

In the near future, we plan to extend our basic method to

encompass these more subtle cases, with additional states

of flexion, and taking note of not only digit flexion, but also

digit adduction.

It is also important to note that in addition to the flexion

and extension of the digits, our existing sensors and

methodology afforded the opportunity to examine the

position and orientation of the hand and lower arm. How-

ever, for the demonstrations presented here, we held

constant the position of the hand and arm, thereby

restricting analysis to data collected from the data glove

alone. We plan to extend our experimental paradigm to
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more complex movements by taking full account of hand

and arm movements, as well as those of the digits. Finally,

the results presented here came from a task in which sub-

jects imitated the gestures of just a single hand. We plan to

extend our approach to simultaneous movements of both

hands, using tasks that require bimanual control and

coordination.

In conclusion, here we have devised and tested a novel

technique for assessing the fidelity of human imitation. We

employed a behavioral paradigm to illustrate the efficacy of

our algorithm at defining the components of the movement

and for quantifying and categorizing errors in both the

spatial and temporal domain. We feel this technique has

broad implications for cognitive neuroscience and neuro-

psychology, allowing researchers and clinicians to ask

previously unanswerable questions about the ability to

imitate. We hope to extend this methodology to study

different types of complex movements in subjects from

special populations, such as experts and novices, as well as

patients with deficits in the ability to program and perform

certain complex movements.

References

Agam Y, Bullock D, Sekuler R (2005) Imitating unfamiliar sequences

of connected linear motions. J Neurophysiol 94:2832–2843

Agam Y, Galperin H, Gold BJ, Sekuler R (2007) Learning to imitate

novel motion sequences. J Vis 7:1–17

Agam Y, Sekuler R (2007) Interactions between working memory

and visual perception: an ERP/EEG study. Neuroimage 36:933–

942

Buxbaum L, Johnson-Frey S, Bartlett-Williams M (2005) Deficit

internal models for planning hand-object interactions in apraxia.

Neuropsychologia 43:917–929

Conrad R (1960) Serial order intrusions in immediate memory. Br J

Psychol 51:45–48

Ebbinghaus H (1885/1913) Memory: a contribution to experimental

psychology. Teachers College, Columbia University, New York

Fish J, Soechting JF (1992) Synergistic finger movements in a skilled

motor task. Exp Brain Res 91:327–334

Haaland K, Harrington D, Knight R (2000) Neural representations of

skilled movement. Brain 123:2306–2313
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