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Abstract 
 

This is the first study to measure semantic guidance during 
scene inspection, based on the efforts by two other research 
groups, namely the development of the LabelMe object-
annotated image database and the LSA@CU text/word latent 
semantic analysis tool, which computes the conceptual 
distance between two terms. Our analysis reveals the 
existence of semantic guidance during scene inspection, that 
is, eye movements during scene inspection being guided by a 
semantic factor reflecting the conceptual relation between the 
currently fixated object and the target object of the following 
saccade. This guidance may facilitate memorization of the 
scene for later recall by viewing semantically related objects 
consecutively. 

Keywords: semantic guidance; contextual guidance; eye 
tracking; eye movement, scene inspection. 

Introduction 
 
Real-world scenes are filled with objects representing not 
only visual information, but also meanings and semantic 
relations with other objects in the scene. The guidance of 
eye movements based on visual appearance (low-level 
visual features) has been well studied in terms of both 
bottom-up (e.g., Bruce & Tsotsos, 2006; Henderson, 2003; 
Itti & Koch, 2001; Parkhurst, Law & Niebur, 2002) and top-
down control of visual attention (e.g., Henderson, 
Brockmole, Castelhano & Mack, 2007; Hwang, Higgins & 
Pomplun, 2009; Peters & Itti, 2007; Pomplun, 2006; 
Zelinsky, 2008; Zelinsky, Zhang, Yu, Chen & Samaras, 
2006) as well as neurological aspects (e.g., Corbetta & 
Shulman, 2002; Egner, Monti, Trittschuh, Wienecke, Hirsch 
& Mesulam, 2008).  

Although there has been research on high-level contextual 
effects on visual search using global features (e.g., Neider & 
Zelinski, 2006; Torralba, Oliva, Castelhano & Henderson, 
2006) and primitive semantic effects based on co-
occurrence of objects in term of implicit learning (e.g., 
Chun & Jiang, 1998; Chun & Phelps, 1999; Manginelli & 
Pollmann, 2008), effects on eye movements by object 
meaning and object relations, Semantic guidance, have not 
been studied because of a few hurdles that make such study 
more complicated: (1) Object segmentation is difficult, (2) 
semantic relations among objects are hard to define, and (3) 
a quantitative measure of semantic guidance has to be 
developed.  

Automated segmentation of images and labeling is one of 
the crucial steps for further understanding of image context, 
and there have been numerous attempts to solve this 
problem, ranging from global classification of scenes to 
individual region labeling (Athanasiadis, Mylonas, Avrithis, 
& Kollias, (2007); Boutell, Luo, Shena & Brown, 2004; Le 
Saux, & Amato, 2004; Luo & Savakis, 2001), but results 
were rather disappointing compared to human performance. 
Thanks to the LabelMe object-annotated image database 
(Russell, Torralba, Murphy & Freeman, 2008) developed by 
the MIT Computer Science and Artificial Intelligence 
Laboratory (CSAIL), various scenes with annotated objects 
are available to the public, which helps to bypass the first 
hurdle.  

In order to convincingly compute semantic or conceptual 
relations between objects, the co-occurrence of objects has 
to be analyzed in a large number of scenes images. 
Unfortunately, collecting and analyzing a sufficient amount 
of annotated scenes is unfeasible with the currently 
available data sources. Since semantic relations are formed 
at the conceptual rather than at the visual level, relations do 
not have to be derived from image databases. Any database 
that can generate a collection of contexts or knowledge can 
be used to represent the semantic meaning of objects.  

A useful mathematical method for such representation for 
computer modeling and simulation is Latent Semantic 
Analysis (LSA), which is based on the analysis of 
representative corpora of natural text.  It transforms the 
occurrence matrix from large corpora into a relation 
between the terms/concepts, and a relation between those 
concepts and the documents (Landauer, Foltz & Laham, 
1998). Since annotated data in LabelMe are text descriptions 
of objects, their semantic or conceptual relation can be 
processed with LSA. In this study, the LSA@CU text/word 
latent semantic analysis tool is used to pass the second 
hurdle. 

Equipped with above tools, we computed a series of 
semantic salience maps for each labeled object in a subject’s 
visual scan path. These salience maps approximated the 
transition probabilities for the following saccade to the other 
labeled objects in the scene, assuming that eye movements 
were entirely guided by the semantic relations between 
objects. Under this assumption, the probability of a gaze 
transition between two objects is proportionate to the 
strength of their semantic relation. Subsequently, the 
amount of semantic guidance was measured by the Receiver 
Operator Characteristic (ROC), which computes the extent 
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to which the actual gaze transitions followed the ideal 
semantic salience map. 

Method 

Participants 
Ten participants performed this experiment. All were 

students at the University of Massachusetts Boston, aged 
between 19 to 40 years old. Each was entitled to a $10 
honorarium. 

Apparatus 
Eye movements were tracked and recorded using an SR 

Research EyeLink II system. After calibration, the average 
error of visual angle in this system is 0.5˚. Its sampling 
frequency is 500 Hz. Stimuli were presented on a 19-inch 
Dell P992 monitor. Its refresh rate was set to 85 Hz and its 
resolution was set to 1280×1024 pixels. Participant 
responses were entered using a game-pad. 

Materials 
A total of 200 photographs (1024×768 pixels) of real-

world scenes, including landscapes, home interiors, and city 
scenes, were selected from the LabelMe database 
(http://labelme.csail.mit.edu/) as stimuli (see Figure 1). 
Objects in each scene were annotated with polygon 
coordinates which define the outline of the object shape, and 
they were labeled with representative English words.  

When displayed on the screen, the photographs covered 
16˚×12˚ of visual angle. Each scene contained an average of 
53.03±38.14 labeled objects (in the present work, ‘±’ always 
indicates a mean value and its standard deviation), and the 
median value for the number of objects in each image was 
40. On average, labeled objects covered 92.88±10.52% of 
the scene area. 

 
 

 
 
 
 
 
 
 
 
 
 

 
(a)                                              (b) 

 
Figure 1: Sample trials. Scene is displayed for five 
seconds, followed by target object name for two seconds. 
(a) Target object absent case; (b) Target object present 
case (target object is marked for illustrative purpose). 
 

Procedure 
After five practice trials, subjects viewed 200 randomly 

ordered scenes. Subjects were instructed to inspect the 
scenes and memorize them for subsequent object recall tests. 
After the five-second presentation of each scene, an English 
word was shown and subjects were asked whether the object 
indicated by the word had been present in the previously 
viewed scene. If subjects believed that the object in question 
had been in that scene, they had to press a button on the 
game pad within two seconds. If they were unable to make 
the decision within that period, the trial would time out and 
the next trial would begin (see Figure 1). Target object 
present cases and target object absent cases were evenly 
distributed among the 200 trials. 

Data Analysis 

Object Z-Order  
As noted in the Materials section, scenes were selected 

from the LabelMe annotated image database. However, 
there is one problem that prevents using the annotated data 
directly for the analysis of the eye-tracking data. The 
LabelMe annotation tool allows users to submit the object 
boundary as they assume it to be, regardless of whether it is 
partially or fully overlapped by other objects. As a result, a 
gaze fixation at the intersection of two or more objects 
regions could be assigned to multiple objects. In other 
words, the object membership of the intersected area is 
ambiguous.  

In order to solve this membership ambiguity problem, the 
‘Z-order’ among intersecting objects must be resolved. Two 
comparison methods, one based on the number of 
characteristic polygons in the intersection area and the other 
based on visual feature similarity were used to solve this 
problem, mainly following the suggestions by Russell et al 
(2008). The logic of the first method is the simple fact that 
visible objects that are on top will contribute more 
characteristic polygons defining the intersection area than 
the other intersecting objects. The logic of the second 
method is that the object whose non-intersecting part is 
visually most similar to the intersection area will take the 
on-top position.  

Since the first method is computationally inexpensive, it 
is applied first. If the first method cannot make a definitive 
decision above some certainty threshold, the second method 
is applied, which involves more complex visual feature 
comparison between intersection and object regions using 
the Histogram Intersection Similarity Method (Swan & 
Ballard, 1991) over pixel intensity. 

After applying the z-order computation to all object pairs 
in the scene, we can derive their final z-order. For each 
object, this value represents the number of other objects on 
top of it. Therefore, whenever an eye fixation falls onto a 
location where multiple annotated objects intersect, the 
lowest z-ordered object is assigned to the eye fixation (see 
Figure 2). 
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Figure 2: Sample of z-ordered objects. All objects in the 
scene have characteristic polygons with four corners. 
The Z-order among object A and other objects except 
object F is resolved by the number of characteristic 
polygons in the intersection area. Z-order between object 
B and object C is resolved by visual feature similarity. 

Latent Semantic Analysis 
Latent Semantic Analysis (LSA) is a theory and method 

for extracting and representing the contextual usage-
meaning of words by statistical computations applied to a 
large corpus of text (Landauer & Dumais, 1997). The basic 
premise in LSA is that the aggregate contexts in which a 
word does and does not appear provide a set of mutual 
constraints to induce the word’s meaning.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Semantic similarity between two words using 
LSA tools. Cosine of the angle θ between the vectors 
representing two words, Word1 and Word2, in semantic 
space is the semantic similarity between two words.    

 
In a nutshell, LSA similarity computation can be 

described as follows: At first, a word occurrence matrix is 
constructed from the large corpus of text, where each row 
stands for a unique word, each column stands for a text 
passage or context and each cell contains the frequency with 
which the word appeared in the context.   

Next, each cell frequency is normalized by its 
information-theoretic measure, in other words, by its 
importance in the context, which is computed by the usual 
Shannon entropy, -p log p over all entries in its row.  

Then a form of factor analysis called Singular Value 
Decomposition (SVD) is applied to reduce this huge-

dimensional matrix to a smaller-dimensional vector space 
called ‘semantic space’. Since this is a vector space 
generated from individual word appearance frequency, it 
has the nice property that even if two words have never co-
occurred in the same document it can easily estimate their 
latent semantic relationship (Jones & Mewhort, 2007; 
Landauer, et al, 1997). 

Every term, every text, and every novel combination of 
terms has a high-dimensional vector representation in the 
space. So the semantic similarities between two terms and 
two or more novel combinations of terms can be calculated 
by the cosine value of the angle between two vectors 
representing them in semantic space. The greater the cosine 
value, the closer is the semantic relationship of the objects.  

Table 1 shows examples of LSA cosine values for various 
objects’ labels used in scene image Dining20 in terms of the 
object label “FORK”. The semantic similarity between 
“FORK” and “TABLE TOP” is higher than the semantic 
similarity between “FORK” and “SHELVES”. There can be 
lots of reasons why conceptual similarity between fork and 
table top is higher than similarity between fork and shelves, 
for example, because forks are usually put on table tops but 
rarely on shelves, or because forks are typically used for 
eating food on table tops rather than on shelves. However, 
the important part is that LSA can quantify higher-level 
conceptual semantic similarity, regardless of whether it 
came from geometrical proximity, functional similarity or 
even shape similarity. 

 
Table 1: Sample LSA cosine values. 

 
Label 1 Label 2 Cosine 

… … … 
FORK TABLE TOP 0.43 
FORK PLATE 0.34 
FORK CANDLESTICKS 0.27 
FORK FIRE PLACE 0.17 
FORK SHELVES 0.09 

… … … 
 

In this study, to compute semantic similarity among 
object labels, a web-based LSA tool, LSA@CU 
(http://lsa.colorado.edu), developed by the University of 
Colorado at Boulder was used. This tool was set to create a 
semantic space from the general readings up to 1st year 
college with 300 factors. The system will compute a 
similarity score between 0 and 1 for each submitted text 
compared to all other submitted texts for the same image. 
For the annotated scenes used in our experiment, the 
average score is 0.245±0.061. 

Semantic Guidance 
In this study, the semantic guidance effect is defined as 

the extent to which the semantic relation/similarity between 
the currently fixated object and the other objects in the 

A: # of objects on-top = 4 
B: # of objects on top = 0  
C: # of objects on top = 1 
D: # of objects on top = 0 
E: # of objects on top = 0 
F: # of objects on top = 0 
Z-order: B=D=E=F<C<A 

Word1 Word2 

θ 

Corpus of text Semantic space 

Latent 
Semantic 
Analysis 

Singular 
Value 
Decomposition 

Occurrence matrix 
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scene influences the choice of the consecutively inspected 
object. 

In order to compute this effect quantitatively, the 
computation has to follow each subject’s eye movements. 
Since we are interested in the effect of semantic similarity 
on gaze transitions, i.e., the selection of the next object to 
inspect, only eye movements that transition between distinct 
objects were analyzed. For the starting point of each of these 
transitions, a semantic landscape was generated based on the 
LSA cosine value between the labels of the currently fixated 
object and each other object in the scene, as shown in Figure 
4. The semantic landscapes, excluding the area occupied by 
the currently observed object, were normalized so that the 
sum of all activation was one. 

With the normalized semantic landscape, the Receiver 
Operating Characteristic (ROC) value was computed in a 
similar way as it was done in previous studies (Hwang et al, 
submitted; Tatler, Baddeley & Gilchrist, 2005) for the 
semantic landscape as a predictor of the target point of the 
transition. All ROC values computed along scan paths were 
averaged across scenes to obtain the extent of semantic 
guidance during the inspection of a scene. If eye movements 
were exclusively guided by semantic information, this 
average ROC value should be close to one. If there were no 
semantic effect on eye movements at all, the average ROC 
value should be close to 0.5, indicating prediction at chance 
level. 
 
 
 
 
 

 
 
 

(a)                                          (b) 
 
 
 
 
 
 
 
 

(c)                                          (d) 
 

Figure 4: Examples of semantic landscapes. Currently 
fixated object is marked with orange square. (a) Original 
scene image (Dining20). (b) Semantic landscape during 
gaze fixation on an object labeled as “PLANT IN POT”. 
(c) Semantic landscape when eye is currently fixated on 
an object labeled as “FORK”. (d) Semantic landscape 
when eye is currently fixated on an object labeled as 
“FLAME”. As it can be seen from above, conceptually 
closer objects receive higher activation, for example, 
candle sticks in (d) are activated by the object label 
“FLAME”.    

Experimental Results 
 

As described in the previous section, semantic guidance 
effects in terms of the ROC measure were computed for all 
subjects’ empirical data for all scenes, considering only 
transitions between distinct objects during scene inspection. 
In order to get controlled comparative results, hypothetical 
eye movements that always choose a random object 
regardless of the current object’s semantic relation with 
other objects in the scene were used to simulate the random 
guidance case. For each simulated trial, the number of 
fixations during the inspection period was kept identical to 
the empirical data for fair comparison.  

As it is shown in Figure 5, the semantic guidance of the 
actual, empirical transitions between distinct objects is 
clearly greater (0.649±0.080) than that of random simulation, 
which is approximately at chance level (0.508±0.073), and 
the difference between them is statistically significant, t(199) 
= 29.676, p < 0.001.    

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5: Semantic guidance as measured by the ROC 
method. Dotted line indicates chance level. The average 
guidance of empirical human data is 0.649±0.080 and it 
is significantly higher, all ts(199) > 13.099, ps < 0.001, 
than for the hypothetical random case (0.508±0.073), in 
which consecutive objects for inspection are chosen 
randomly, and the hypothetically dissociated eye 
fixation data-scene pair case (0.576±0.065). The 
difference between the empirical and dissociated cases 
confirms the existence of semantic guidance. 
 
Is this difference possibly created by a proximity effect, 

since semantically closer items may tend to be located more 
closely together in the visual scenes than other objects, and 
saccadic eye movements tend to be shorter than transitions 
between randomly chosen points? To test for such a 
confound, an additional hypothetical case is generated by 
dissociating eye movement data and scene images. For 
example, for scene 1, we analyze the eye movements made 
in scene 2, for scene 2, we analyze the eye movements made 
in scene 3, and so on. This manipulation preserves the 
saccade amplitude statistics, i.e., objects closer to each other 
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will still receive more transitions than others, but it 
eliminates semantic guidance entirely.  If the resulting ROC 
value is close to 0.5, we can conclude that it is entirely the 
semantics that guide eye movements. If, on the other hand, 
the value is closer to the empirical semantic guidance value 
of 0.65, then we can conclude that semantic guidance does 
not play a role in guiding eye movements, and what we have 
measured is purely a proximity effect. Since the result of 
dissociated-pair simulation (0.576±0.065) is significantly 
lower than that for the empirical data, t(199) = 13.099, p < 
0.001, and is also significantly bigger than the random 
transition case, t(199) = 12.618, p < 0.001, we can conclude 
that although there is a significant proximity effect during 
scene inspection, semantic guidance also plays a significant 
role independently of proximity.   

 

Conclusions 
Unlike other contextual guidance models that focus on 

defining the context of the scene from its gist and create a 
model of eye fixation distribution or study the context in 
terms of implicit learning by measuring co-occurrence or 
contextual cueing of objects, our study focused on how this 
context is constructed by following the observers’ eye 
movements.  

Based on empirical data and a linguistic measure on 
objects labels, we have shown that there is a significant 
semantic effect that guides eye movement during scene 
viewing. In other words, our eyes tend to move to objects 
that are conceptually similar/close to the currently inspected 
object.  

The function of such a guidance mechanism could be to 
optimize the encoding of scenes for later object recall. 
Object information may be encoded more efficiently if 
semantically related objects are inspected and memorized in 
close temporal succession. 

From the current results it cannot be concluded whether 
this scan path planning is happening at the beginning of the 
scene viewing by analyzing the scene gist or it is 
incrementally constructed during the inspection period 
(similar to finding the optimal path using a “greedy” 
algorithm). Nevertheless, the present study has introduced a 
new interdisciplinary approach combining visual context 
research and linguistic research and pointed out a new way 
of looking at the semantics of the visual world. 
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